IT-Security

Chapter 2: Symmetric Encryption

Prof. Dr.-Ing. Ulrike Meyer

Overview

Intuition on Symmetric Ciphers

- Alice wants to send a confidential plaintext to Bob
- Alice and Bob share a secret key
- Alice uses the key to encrypt plaintext to ciphertext
- Bob uses the key to decrypt ciphertext to plaintext
- Decryption is "difficult" without the key

Formal Definition of Encryption Scheme

- An encryption scheme is a five-tuple ($\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D}$) consisting of
 - ▶ The plaintext space \mathcal{P} of plaintexts (e.g., $\mathcal{P} = \{0,1\}^n$ for some $n \in \mathbb{N}$)
 - ▶ The cipher space C of ciphertexts (e.g., $C = \{0,1\}^m$ for some $m \in \mathbb{N}$)
 - ▶ A key space \mathcal{K} of keys (e.g., $\mathcal{K} = \{0,1\}^k$ for some $k \in \mathbb{N}$)
 - ▶ A family $\mathcal{E} = \{E_K : K \in \mathcal{K}\}$ of functions $E_K : \mathcal{P} \rightarrow \mathcal{C}$ called encryption functions
 - ▶ A family $\mathcal{D} = \{D_K: K \in \mathcal{K}\}$ of functions $D_K: \mathcal{C} \to \mathcal{P}$ called decryption functions
- Such that for any $K_1 \in \mathcal{K}$ there is a $K_2 \in \mathcal{K}$ such that
 - ▶ For all $P \in \mathcal{P}$ it holds that $D_{K_2}(E_{K_1}(P)) = P$
- In a symmetric encryption scheme the encryption and decryption keys are the same
- Note that this definition does not cover any notion of security yet

Kerckhoff's Principle 1883

A cryptosystem should be secure even if everything about the system, **except the key**, is public knowledge

• In contrast:

Keeping the design of a cryptosystem secret is often referred to as

"security by obscurity"

Example Caesar Cipher

• The cipher

- Plaintext space = ciphertext space = {A,..., Z}, Key space = {1,...,25}
- **•** Replace each plaintext letter with the one k letters after it. E.g., for k = 4

Plaintext	Α	В	С	D	Ε	F	G	Н	I	J	К	L	Μ
Ciphertext	Е	F	G	Н	I	J	Κ	L	Μ	Ν	0	Ρ	Q

• Security of the Caesar cipher

Plaintext	Ν	0	Р	Q	R	S	Т	U	V	w	X	Y	Z
Ciphertext	R	S	Т	U	V	W	Х	Y	Ζ	А	В	С	D

- Assume a message has been encrypted letter by letter using the Cesar cipher
- ▶ Try out each of the 25 keys and check if the resulting plaintext makes sense
 - Requires recognizable plaintext
- ► The key space is too small!

A secure cipher requires a large key space

Brute Force Attack on the Caesar Cipher

• • •

Plaintext	Α	В	С	D	Ε	F	G	н	I	J	К	L	Μ
Ciphertext	Е	F	G	Н	I	J	Κ	L	Μ	Ν	0	Ρ	Q

Plaintext	Ν	0	Р	Q	R	S	Т	U	V	W	X	Y	Ζ
Ciphertext	R	S	Т	U	V	W	Х	Y	Ζ	А	В	С	D

A / I		Λ	ΝЛ		$\boldsymbol{\sim}$
VI	ירא	r V	IVI		ι.
			••••	· ·	~

- k=1? VHFXULWB k=2? UGEWTKVA
- k=3? TFDVSJUY
- k=4 SECURITY
- k=5? RDBTQHSX

- If the message is short, multiple keys may lead to sense making plaintexts
- If the message is long enough, on average key found after ½ |*K*| tries
- Brute force attacks are also known as
 - exhaustive search attacks

Monoalphabetic Substitution Cipher

• Idea

- Replace each plaintext letter with one specific other letter according to a substitution table
- Plaintext space = ciphertext space = {A,...Z}
- Key space = all permutations of the letters A,..., Z
- Size of the key space: $|\mathcal{K}| = 26! = 4.0329146 \cdot 10^{26}$

• Example

Plaintext	Α	В	С	D	Ε	F	G	Н	I	J	К	L	Μ
Ciphertext	D	Н	С	Е	Ζ	W	V	S	J	Μ	L	0	Q
Plaintext	Ν	0	Ρ	Q	R	S	т	U	V	W	X	Y	Z
Ciphertext	Ρ	А	F	К	G	Ν	В	R	Т	Y	I	Х	U

Trying out each possible key is quite time consuming!

Exhaustive Search for Monoalphabetic Ciphers

Let's assume we

- Can decrypt 5 characters per ms
- Need to decrypt 100 characters to be sure we found the right key

Difficulty of exhaustive search depends on

- size of key space
- resources of attacker
- Then we will on average need $\frac{1}{2} \cdot \frac{100}{5} \cdot |\mathcal{K}| = |\frac{1}{2} \cdot 20 \cdot |\mathcal{K}|$ ms to find the right key
 - That is $10 \cdot 4.0329146 \cdot 10^{26}$ ms = $4.0329146 \cdot 10^{27}$ ms = $4.0329146 \cdot 10^{24}$ s = $6.7215243 \cdot 10^{22}$ min
 - = 1.2788288 · 10¹⁷ years
- Let's assume we
 - Can decrypt 500 000 characters per ms and still need to decrypt 100 characters in order to be sure
- Then we will on average need $\frac{1}{2} \cdot \frac{100}{500\ 000} \cdot |\mathcal{K}| = \frac{1}{2} \cdot \frac{1}{5\ 000} \cdot |\mathcal{K}|$ ms to find the right key
 - That is $10^{-4} \cdot 4.0329146 \cdot 10^{26}$ ms = $4.0329146 \cdot 10^{22}$ ms = $4.0329146 \cdot 10^{19}$ s = $6.7215243 \cdot 10^{17}$ min
 - = 1.2788288 · 10¹² years

Example Letter Frequencies

• For any given language and text basis one can determine the relative letter frequencies

Letter	ENG	GER	Letter	ENG	GER	Letter	ENG	GER
А	8.167%	6.516%	J	0.153%	0.268%	S	6.327%	7.270%
В	1.492%	1.886%	К	0.772%	1.417%	т	9.056%	6.154%
С	2.782%	2.732%	L	4.025%	3.437%	U	2.758%	4.166%
D	4.253%	5.076%	Μ	2.406%	2.534%	V	0.978%	0.846%
E	12.702%	16.396%	Ν	6.749%	9.776%	W	2.360%	1.921%
F	2.228%	1.656%	0	7.507%	2.594%	х	0.150%	0.034%
G	2.015%	3.009%	Ρ	1.929%	0.670%	Υ	1.974%	0.039%
Н	6.094%	4.577%	Q	0.095%	0.018%	Z	0.074%	1.134%
I	6.966%	6.550%	R	5.987%	7.003%			

Top 5	letters	in E	inglish	texts

Letter	ENG
E	12.702%
Т	9.056%
А	8.167%
0	7.507%
I	6.966%

• Other useful frequencies include, Bigrams, double letters, etc.

Frequency Analysis

Can be used to

- Break any cipher that preserves frequencies
 - As long as enough ciphertext is available that has been produced by the same key
- E.g., Monoalphabetic Substitution Ciphers can be broken this way

So, how can we get a secure cipher and what does secure mean anyway

Frequency Analysis

- Given a (long) ciphertext in a known language
- Count the frequency of each letter occurring in the ciphertext
- Replace them according to their frequency in the natural language
- Check if the resulting plaintext makes sense

Example Frequency Analysis on Monoalphabetic Substitution Cipher

Top 5 • Ciphertext C Ε JW XAR DGZ FDGDPAJE XAR HZOJZTZ BSDB D TZGX ZTJO DBBDCLZG JN ARB BA VZB XAR Т JW XAR DGZ FDGDPAJE XAR HZOJZTZ BSDB D TZGX ZTJO DBBDCLZG JN ARB BA VZB XAR Α I? ?O? A?E ?A?A?OI? ?O? ?E?IE?E T?AT A ?E?? E?I? ATTA??E? I? O?T TO ?ET ?O? 0 Letter in C W Η R Ρ Ε V В D Α G С X D 0 Ν Frequency 7 6 7 8 5 Replace E Т Α 0 R С Κ Υ U F Ρ Ν D Н V S G В L

▶ I? YOU ARE ?ARA?OI? YOU ?E?IE?E T?AT A ?ERY E?I? ATTACKER I? OUT TO ?ET YOU

▶ IF YOU ARE PARANOID YOU BELIEVE THAT A VERY EVIL ATTACKER IS OUT TO GET YOU

• Gives us 20 letters for which the mapping is known, i.e. 76,9% of the key

with

Overview

Perfect Secrecy

Idea of Shanon

► A ciphertext should not reveal any new information on the plaintext

Definition:

An encryption scheme is said to provide perfect secrecy if

Given a probability distribution Pr on \mathcal{P} , and Pr(P) > 0 for all plaintexts P

For each $P \in \mathcal{P}, C \in \mathcal{C}$ and $K \in \mathcal{K}$ chosen uniformly at random $\Pr(P|C) = \Pr(P)$

Whether or not C is observed, P is as likely as its occurrence in the plaintext space

• This implies: $|\mathcal{K}| \geq |\mathcal{C}| \geq |\mathcal{P}|$ for a perfectly secure encryption scheme

- ▶ $|C| \ge |P|$ holds for any encryption scheme as the encryption functions need to be injective
- ▶ If $|\mathcal{K}| < |\mathcal{C}|$ would hold, then for any $P \in \mathcal{P}$, $\{E_k(P) \mid k \in \mathcal{K}\} \neq \mathcal{C}$, i.e., there is a C

 $\in C$ that does not occur as ciphertext of P such that Pr(P|C) = 0 for this C

• As we assume Pr(P) > 0, this contradict the perfect forward secrecy

Equivalent Formulations for Perfect secrecy

Definition:

Given a probability distribution Pr on \mathcal{P} , and Pr(P) > 0 for all plaintexts P

An encryption scheme is said to provide perfect secrecy if

For each $P \in \mathcal{P}, C \in \mathcal{C}$ and $K \in \mathcal{K}$ chosen uniformly at random

 $\Pr(\boldsymbol{P}|\boldsymbol{C}) = \Pr(\boldsymbol{P})$ -

Equivalent 1. Pr(C|P) = Pr(C)2. $Pr(C|P_1) = Pr(C|P_2)$

Proof of 1.:

"\equiv ": Assume
$$Pr(C|P) = Pr(C)$$
, then $\frac{Pr(C|P)Pr(P)}{Pr(C)} = Pr(P)$
as $Pr(C|P)P(P) = Pr(P|C) Pr(C)$ it follows that $Pr(P)$
 $= Pr(P|C)$
"\equiv ": Symmetrical argument

Equivalent Formulations for Perfect secrecy

Definition:

Given a probability distribution Pr on \mathcal{P} , and Pr(P) > 0 for all plaintexts P

An encryption scheme is said to provide perfect secrecy if

For each $P \in \mathcal{P}, C \in \mathcal{C}$ and $K \in \mathcal{K}$ chosen uniformly at random

 $\Pr(\boldsymbol{P}|\boldsymbol{C}) = \Pr(\boldsymbol{P})$

Proof of 2.:

" \implies ": Follows directly from 1.

If Pr(C|P) = Pr(C) for any $P \in \mathcal{P}, C \in \mathcal{C}$

then $Pr(C|P_1) = Pr(C|P_2)$ for any $P_1, P_2 \in \mathcal{P}, C \in \mathcal{C}$

Proof of 2.:

"\(\equiv \cong r: \lf \Pr(C|P_1) = \Pr(C|P_2) = x \text{ for any } P_1, P_2 \equiv \mathcal{P}, C \equiv C, \text{ then} $\Pr(C) = \sum_P \Pr(C|P) \Pr(P) = x \sum_P \Pr(P) = x = \\\Pr(C|P)$

Shannon's Theorem 1949

Shannon's Theorem:

Let $|\mathcal{P}| = |\mathcal{C}| = |\mathcal{K}|$, and Pr(P) > 0 for all plaintexts *P*.

Then an encryption scheme provides **perfect secrecy** \Leftrightarrow

- **1.** K chosen uniformly at random for each plaintext to encrypt and
- 2. for each $P \in \mathcal{P}$ and $C \in \mathcal{C}$ there is exactly one $K \in \mathcal{K}$ with $E_K(P) = C$

A cipher providing perfect secrecy cannot be broken by an attacker. Not even by one with infinite computational resources and infinite time

Proof Sketch for Shanon's Theorem

Proof

- " \Rightarrow "Assume encryption scheme is perfectly secure
 - ▶ Let $P \in \mathcal{P}$ and assume there is a $C \in C$ such that there is no K with $E_K(P) = C$,
 - ▶ then Pr(P|C) = 0 and thus $Pr(P) \neq Pr(P|C)$ which contradicts the perfect secrecy.
 - Consequently, there must be at least one K such that E_K(P) = C. As there are as many keys as ciphertexts, there must be exactly one such K for each P and C.
 - If K was not chosen uniformly, then given C, there would be some plaintexts that is more likely, than others. This again contradicts the perfect secrecy.

" \Leftarrow " Assume each key is equally likely and for each *P*, *C* and there is exactly one *K* such that $E_K(P) = C$.

► Then, $Pr(C|P) = \frac{1}{|\mathcal{K}|}$ such that for any *C* and P_1, P_2 it holds that $Pr(C|P_1) = Pr(C|P_2) = \frac{1}{|\mathcal{K}|}$, such that the second equivalent definition of perfect secrecy holds

The One-Time-Pad (OTP)

- Plaintext space, ciphertext space, key space
 - ▶ $\mathcal{P} = \mathcal{C} = \mathcal{K} = \{0,1\}^n$ for some $n \in \mathbb{N}$,

Also Known as Vernam Cipher or Vernam's one-time-pad

- Key Generation:
 - ▶ Pick $K \in \mathcal{K}$ uniformly at random for each $P \in \mathcal{P}$ to encrypt
- Encryption:

Perfect Secrecy of the One-Time-Pad

Theorem:

The One-Time-Pad provides perfect secrecy

Proof:

- ► Follows directly from Shannon's Theorem:
 - As | P | = |C| = | K | per definition of the OTP, we can apply Shannon's Theorem
 - Key is selected uniformly at random in one-time pad ⇒ each key is equally likely
 - Given any pair C, P of ciphertext and plaintext there is a key K that

encrypts P to C, namely $K = P \oplus C$:

 $E_K(P) = P \oplus K = P \oplus (P \oplus C) = C$

Properties of the One-Time-Pad

Advantages

Easy to compute

- Encryption and decryption are the same operation
- Bitwise XOR is very cheap to compute

As secure as theoretically possible

- Given a ciphertext, all plaintexts are equally likely
- Security independent on the attacker's
 - computational resources

Disadvantages

Key must be as long as plaintext

- Impractical in most realistic scenarios
- Still used for diplomatic and intelligence traffic

Does not guarantee integrity

- One-time pad only guarantees confidentiality
- Attacker cannot recover plaintext, but can easily change it to something else without being detected
- Insecure if keys are reused
 - Attacker can obtain XOR of plaintexts
- Obviously not practical for all applications

Overview

Practical Modern Encryption Schemes

Most encryption schemes used in practice do not provide perfect secrecy

- **Stream ciphers** try to simulate the OTP based on a small random seed
- Block cipher encrypt complete blocks of plaintexts instead of single bits
- When do we call such encryption schemes secure?

Computational Security

An encryption scheme is called **computationally secure** if

- ► All known attacks against the cipher are computationally infeasible
- I.e., theoretically possible but would take too much time to be practical for any (reasonable) amount of resources

Attacker Models

General assumption in any attack

- Attacker knows which cipher is used
- In line with Kerckhoff's principle

Attack result

- (Partial) key recovery
 - Attacker tries to retrieve (part of) the key
- ▶ (Partial) plaintext recovery
 - Attacker tries to retrieve (part of) the plaintext

Key recovery implies plaintext recovery but not

the other way round

Illustration of Ciphertext-only Attack

- A classical eavesdropper has access to ciphertext
- Thus, he can collect ciphertext(s) and try to
 - ► Recover the key and/or
 - Recover the plaintext

Illustration of Known-Plaintext Attack

• Attacker observes ciphertext and has access to one or more pair of plaintext and ciphertext

- E.g., as he is able to guess plaintext for some ciphertexts
 - E.g., due to Bob's reaction on receiving the ciphertext
- Tries to recover key and/or plaintext

Example:

- Substitution cipher vulnerable to a known plaintext attack
- One pair of plaintext / ciphertext sufficient to break (part of) the key

Example: Exhaustive Key Search

• Try out all possible keys from the key space

- Ciphertext-only setting
 - Try out each key to decrypt the ciphertext and check if resulting plaintext "makes sense"
 - Only works if valid plaintexts are recognizable for the attacker
- Known-plaintext setting
 - Try out each key to decrypt the ciphertext
 - Check if it decrypts to the known plaintext
- Ciphertext-only setting is more difficult for the attacker
 - Consequently: being secure against a ciphertext-only attack is easier to achieve
- Security in a chosen-ciphertext setting is hardest to achieve

Difficulty of Known-Plaintext Brute Force Attack

- Difficulty of exhaustive key search is proportional to the key size
 - On average attacker will have to try out $\frac{|\mathcal{K}|}{2}$ keys
- And proportional to the resources of the attacker

Key Size (bits)	Number of Alternative Keys	Time required at 1 decryption/µs	Time required at 10 ⁶ decryptions/μs
32	$2^{32} = 4.3 \times 10^{9}$	2 ³¹ μs = 35.8 minutes	2.15 milliseconds
56	$2^{56} = 7.2 \times 10^{16}$	2 ⁵⁵ µs = 1142 years	10.01 hours
128	$2^{128} = 3.4 \times 10^{38}$	$2^{127} \mu s = 5.4 \times 10^{24}$ years	5.4×10^{18} years
168	$2^{168} = 3.7 \times 10^{50}$	$2^{167} \mu s = 5.9 \times 10^{36}$ years	5.9×10^{30} years
26 characters (permutation)	$26! = 4 \times 10^{26}$	$2 \times 10^{26} \mu s$ = 6.4 × 10 ¹² years	6.4×10^6 years

Other Attack Strategies besides Brute Force and Frequency Analysis

Time-memory trade-off

- Can be used to accelerate known-plaintext attacks
- Exploits a trade-off between time, memory and key space size

Differential cryptoanalysis

- Chosen-plaintext attack
- Attacker tries to recover key using known differences between plaintexts and comparing them to the differences in the ciphertexts

Algebraic attacks

- Reduces breaking a cipher to solving a system of linear equations with the key bits as unknowns
- Can work very well in a known-plaintext setting

Related key attacks

- Chosen-plaintext attack
- Assumes attacker has access to chosen plaintext encrypted with keys
- Attacker knows relations between keys

Overview

Stream Ciphers

• The one-time pad $C = P \bigoplus K$ is perfectly secure

If the key is chosen uniformly at random for each P

Idea of stream cipher

- ► Replace *K* with pseudo-random bit-generator PRBG
 - Seed PRBG with "truly random" key K
 - Include a fresh initialization vector IV for each P
- Encryption/Decryption very fast
 - Key stream can be pre-generated

The PRNG should be cryptographically secure

We typically cannot proof that a PRBG is cryptographically secure, we assume it is if no attack is known

Stream cipher

For each plaintext **P** select a fresh **IV** and set $C = E_K(P) = IV \parallel P \oplus PRBG(IV, K)$. PRBG(IV,K) is also referred to as **key stream** The same key **K** is used for multiple plaintexts

A PRBG is said to be cryptographically secure iff

There is no polynomial-time algorithm which on input of the first k bits of the output of PRBG can predict the next bit with probability > ½ . I.e., it passes the next bit test.

General Stream Cipher Weakness

- If the IV is ever reused with the same key
 - Stream ciphers are vulnerable to a known-plaintext attack
- Why?
 - Assume attacker known P_1 , C_1
 - As $C_1 = E_K(P_1) = IV \parallel P_1 \bigoplus \mathsf{PRBG}(IV, K)$ attacker knows IV and $\mathsf{PRBG}(IV, K)$
 - Thus, if *IV* and *K* are reused to encrypt *P*₂, and attacker observes *C*₂
 - Then he can decrypt P_2 by $C_2 \bigoplus IV \parallel \mathsf{PRBG}(IV, K) = 0 \parallel P_2$

• As, e.g., been used to attack the security architecture WPA2 for WLAN

► Known as KRACK attack

Examples for Stream Ciphers

- Well-known insecure stream ciphers
 - ► RC4
 - Before its break used in WLAN, TLS, ...
 - ▶ A5/1, A5/2
 - Supported by GSM (2G mobile networks)
 - ► E0
 - Supported by old Bluetooth versions

- Well-known (yet) unbroken stream ciphers
 - SNOW 3G
 - Supported by 3G/LTE/5G networks
 - ► CHACHA20

> ...

- Supported by TLS, IPSec,...
- Unbroken Block ciphers in CTR Mode
 - Supported by LTE/5G networks
 - Supported by TLS, IPSec,...

• Any cipher that only provides computational security can break at any point in time

▶ We need to be prepared and always ensure that we can easily switch from one cipher to another

Block Ciphers

Operate on plaintext blocks of a specific length

- ▶ Called the block length $\mathbf{b} \in \mathbb{N}$ of the cipher
- ▶ Plaintext space $\mathcal{P} = \{0,1\}^b$ and ciphertext space $\mathcal{C} = \{0,1\}^b$
- ▶ For each key *K* in the key space $\mathcal{K} = \{0,1\}^k$, $E_K : \mathcal{P} \to \mathcal{C}$

• Typically need to be used in a specific mode of encryption

▶ Specifies how plaintexts of length > *b* bits are encrypted

Examples for Block Ciphers

- Well-known insecure block ciphers
 DES

 Before its break used in IPSec, TLS, ...

 IDEA
 ...
- Well-known (yet) unbroken block ciphers
 KASUMI

 Supported by 3G/LTE/5G networks

 AES

 Supported by TLS, IPSec,...

 Camellia

 Supported by TLS
 ...

We need to be prepared and always ensure that we can easily switch from one cipher to another

Example Block Cipher: DES

• Published in 1977 by the National Bureau of Standards*

- Designed by IBM and the NSA
- Uses a 64-bit key K and a block length of 64 bit
 - But: 8 bits of the key are used as parity bits
- Effective key size is 56 bits

* called National Institute of Standards and Technology (NIST) since 1988

Security of DES

• January 13th, 1999: DES key broken within 22 hours and 15 minutes

- In a contest sponsored by RSA Labs using
- Brute force key search using
- ▶ the Electronic Frontier Foundation's Deep Crack custom DES cracker ...
- ... and the idle CPU time of around 100,000 computers
- Since then, DES is considered insecure
- Biggest weakness still is the key length of 56 bits only!

First Proposed Fix: 2DES

• First idea to increase the key size of DES

Use DES twice with two independently chosen keys

• Problem: this does not double the key size!

Meet in the middle attack on 2DES

- Assume attacker has access to (P, C), where $C = DES_{K^*}(DES_{K'}(P))$
- Attacker can encrypt P with any possible key (2^{56} DES operations)
 - And thus, create lookup table $E_K(P) = Z_K$ for $K \in \{0,1\}^{56}$ of intermediate ciphertext
- Attacker can decrypt C with all possible keys (at most 2^{56} DES operations)
 - And compute $D_K(C) = X_K$, $K \in \{0,1\}^{56}$ until $X_{K_i} = Z_{K_j}$ is found in the lookup table
- Then $K_i = K'$ and $K_i = K^*$ with high probability

IT-Security - Chapter 2 Symmetric Encryption

Complexity of the attack:

- $2 \cdot 2^{56} = 2^{57}$ DES operations
- Effective key size only increased by one!

3DES = "Triple DES"

• Use DES three times in a row

Variants

- ▶ 3-key DES: K1, K2, and K3 are pairwise different
 - Provides an effective key size of 112 bit according to NIST
- 2-key DES: K1 = K3
 - Provides and effective key size of 80 bit according to NIST
- ▶ Both variants use encryption with K1, decryption with K2 and encryption with K3
 - Setting K1=K2=K3 this allows 3DES-only capable senders to communicate with DESonly capable receivers

The Advanced Encryption Standard (AES)

Goals of the NIST Call for AES

- More secure than 3DES
- More efficient than 3DES
- Support different key lengths
 - 128, 192, and 256 bit
- The block length of the cipher is 128 bit
 - Regardless of the key length

Timeline of AES Selection

- Jan. 1997 NIST-call published
- Aug. 1998: 15 candidates presented
 - Cast-256, Crypton, DEAL, DFC, E2, Frog, HPC, Loki97, Magenta, MARS, RC6, Rijndael, SAFER+, Serpent, Twofish
 - Broken shortly afterwards (or during presentation)
 DEAL, Frog, HPC, Loki97, Magenta
- Aug. 1999 finalists announced
 - MARS, RC6, Rijndael, Serpent, Twofish
- Oct. 2000 Rijndael selected as AES
- Nov. 2001 AES standardized in FIPS 197

Selection Criteria

		Rijndael	Serpent	Twofish	MARS	RC6
	General Security	2	З	З	З	2
	Implementation Difficulty	3	З	2	1	
	Software Performance	23		1	2	2
I won!!	Smart Care Performance	3	З	2	1	
\bigwedge	Hardware Performance	3	3	2	1	2
\bigvee	Design Features	2		3	2	1
	Total	16	14	13	10	9
曲人						

Taken from http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

Structure of AES

• AES operates in rounds

Input and output of each round represented as 4x4 byte matrices

				-					-			
i_0	i_4	i ₈	<i>i</i> ₁₂		<i>s</i> ₀₀	<i>s</i> ₀₁	<i>s</i> ₀₂	<i>s</i> ₀₃		<i>o</i> ₀	0 4	08
i_1	i_5	i 9	i_{13}		<i>S</i> ₁₀	<i>s</i> ₁₁	<i>s</i> ₁₂	<i>S</i> ₁₃		0 1	0 5	09
i_2	<i>i</i> ₆	i_{10}	i_{14}	-	<i>S</i> ₂₀	<i>s</i> ₂₁	<i>S</i> ₂₂	S ₂₃		0 2	0 6	<i>o</i> ₁₀
i_3	<i>i</i> ₇	<i>i</i> ₁₁	<i>i</i> ₁₅		<i>S</i> ₃₀	<i>S</i> ₃₁	S ₃₂	S 33		<i>0</i> ₃	07	<i>o</i> ₁₁

	02	03	01	01			
A =	01	02	03	01			
	01	01	02	03			
	03	01	01	02			

Multiplication in GF(2⁸)

Round operations

Substitute Byte (SB)

Round Key Addition (KA)

*o*₁₂

0₁₃

0₁₄

015

Shift Row (SR)

Mix Column (MC)

128 bit Round Key

Reminder: Multiplication in GF(2^8) with $x^8 + x^4 + x^3 + x + 1$ as irreducible Polynomial

• For example, (in hex notation) 57 • 83 = c1 in GF(2⁸) because

- ▶ 57 = 01010111 $\simeq x^6 + x^4 + x^2 + x + 1$
- ▶ $83 = 10000011 \simeq x^7 + x + 1$
- $(x^{6} + x^{4} + x^{2} + x + 1) (x^{7} + x + 1) = x^{13} + x^{11} + x^{9} + x^{8} + x^{7} + x^{7} + x^{5} + x^{3} + x^{2} + x + x^{6} + x^{4} + x^{2} + x + 1 = x^{13} + x^{11} + x^{9} + x^{8} + x^{6} + x^{5} + x^{4} + x^{3} + 1$

►
$$x^{13} + x^{11} + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 \mod x^8 + x^4 + x^3 + x + 1 = x^7 + x^6 + 1$$

 $= 1100\ 0001$
 $= c1$

Substitute Byte (SB)

				Column 4			3	38		•			r c	ach b eplace olum i	yte b ed wit n b ₀ b;	$= b_0$ th byte: b_2b_3 and b_2b_3	$b_1b_2b_3b_4b_5b_6b_7$ is e in S in and row $b_4b_5b_6b_7$
35	99 202	124 130	119 201	123 125 38	242 250 54	107 89	111 71 247	197 240 204	48 173	1 212 165	103 162 229	43 175 241	254 156	215 164 216	171 114 49	118 192 21	Pow 2
11000100	4 9 83	199 131 209	35 44 0	195 26 237	24 27 32	150 110 252	5 90 177	154 160 91	7 82 106	105 18 59 203	128 214 190	226 179 57	235 41 74	39 227 76	178 47 88	117 132 207	I ROW Z
	208 81 205	239 163 12	170 64 19	251 143 236	$\begin{array}{c} 67 \\ 146 \\ 95 \end{array}$	77 157 151	$51 \\ 56 \\ 68$	133 245 23	69 188 196	249 182 167	2 218 126	127 33 61	80 16 100	60 255 93	159 243 25	$168 \\ 210 \\ 115$	S-Box
lowest order bit here!	96 224 231	129 50 200	79 58 55	220 10 109	34 73 141	42 6 213	144 36 78	136 92 169	70 194 108	238 211 86	184 172 244	20 98 234	222 145 101	94 149 122	11 228 174	219 121 8	C DON
	186 112 225 140	120 62 248 161	37 181 152 137	46 102 17 13	28 72 105 191	166 3 217 230	180 246 142 66	198 14 148 104	232 97 155 65	221 53 30 153	116 87 135 45	31 185 233 15	75 134 206 176	189 193 85 84	139 29 40 187	138 158 223 22	

IT-Security - Chapter 2 Symmetric Encryption

AES Operation Overall

• The round key is always 128 bit key

MC*: no mix column operation in the last round

- Different for each round, generated from the secret key
- Number of rounds depends on the key size
 - 128 bit key: 10 rounds
 192 bit key: 12 rounds
 256 bit key: 14 rounds

Modes of Encryption

- Block ciphers of block length b
 - Allow us to encrypt a plaintext P of b bit
 - How can we encrypt longer plaintexts?

Mode of encryption

- ► Let $P = P_1 \parallel P_2 \parallel P_3 \parallel P_4 \parallel \cdots \parallel P_n$ with $P_i \in \{0, 1\}^b$ for i = 1, ..., n - 1and $P_n \in \{0, 1\}^l$ for some $0 < l \leq b$
- A mode of encryption specifies how to encrypt plaintext *P* based on a **b** bit block cipher *E_K*(·)

• Modes we cover here

- Electronic Code Book (ECB) mode
- Cipher Block Chaining (CBC) mode
- Counter Mode (CTR)

Modes we may cover in exercises

- Cipher Feedback Mode (CFB)
- Output Feedback Mode (OFB)
- AEAD Modes Chapter 3
 - Authenticated Encryption with Associated

Data (AEAD) Modes

• E.g., Gallois Counter Mode (GCM)

Electronic Codebook Mode (ECB)

ECB Mode

Encryption: $C_i = E_k(P_i)$ for i = 1, ..., n**Decryption:** $P_i = D_k(C_i)$ for i = 1, ..., nRequires **padding** of P_n to b bit

Illustration of encryption in ECB Mode

Problem

- \blacktriangleright Same P_i leads to same C_i
- Thus, patterns in plaintext lead
 - to patterns in ciphertext
 - ECB mode should not be used!

Cipher Block Chaining Mode (CBC)

CBC Mode

$$\begin{split} \mathrm{IV} &:= \ \mathrm{C}_0 \\ \textbf{Encryption:} \ \mathrm{C}_i \ = \mathrm{E}_k \left(\mathrm{P}_i \oplus \mathrm{C}_{i-1} \right) \text{ for } i = 1, \dots, n \\ \textbf{Decryption:} \ \mathrm{P}_i \ = \mathrm{D}_k \left(\mathrm{C}_i \right) \oplus \mathrm{C}_{i-1} \left) \text{ for } i = 1, \dots, n \\ \text{Requires padding of } \mathrm{P}_n \text{ to b bit} \end{split}$$

Illustration of encryption in CBC Mode

• Requires a fresh IV for each plaintext to encrypt

- ▶ If same IV is reused on P and P^{*}
 - then C_1 and C_1^* reveal, whether $P_1 = P_1^*$
- Is vulnerable to a so-called padding-oracle attack > Should not be used anymore

Counter Mode (CTR)

CTR Mode

IV public, fresh for each plaintext

Encryption: $C_i = E_k(IV + i) \bigoplus P_i$ for i = 1, ..., n

Decryption: $P_i = C_i \bigoplus E_k(IV + i)$ for i = 1, ..., n

Illustration of encryption in CTR Mode

Properties of CTR Mode

- CTR Mode does not require padding of P_n to b bit
- Ciphertext is of the same size as plaintext
- CTR Modes turns a block cipher into a stream cipher
- CTR mode encryption and decryption can be parallelized

Summary

• Symmetric Encryption Schemes provide confidentiality

- Require a secret key shared between the communicating entities
- Perfect secrecy can be obtained by the one-time-pad
 - ▶ Requires key chosen uniformly at random and as long as the plaintext for each plaintext
 - Impractical to use in many situations
- Practical encryption schemes only provide computational security
 - Can in theory always be broken with a brute force attack in a known plaintext setting
 - Require long keys to make brute force attack practically impossible
- Different attacker models make different assumptions with respect to
 - ▶ The knowledge of the attacker (ciphertext-only, known plaintext,...)
 - ► The goal of the attacker (plaintext recovery, key recovery)
 - ▶ The approach the attacker takes (brute force, frequency analysis, differential analysis...)

Summary

- Practical symmetric encryption schemes can be divided into
 - Stream ciphers, e.g., ChaCha20
 - ► Block ciphers, e.g., AES
- Stream ciphers encrypt a plaintext by xoring it with a key stream
 - Key stream is generated by
 - a (longer term) secret key that is reused for multiple plaintext
 - and fresh IV for each plaintext to encrypt
 - Should never reuse IVs with the same key
- Block ciphers require the use of a mode of encryption
 - Specifies how to encrypt plaintext that are longer than one block-length of the block cipher
 - ▶ These modes have a strong influence of the security of the encryption scheme
 - Used with in an insecure mode, a secure block cipher may become insecure
 - ► The effective key size of a block cipher cannot be doubled by applying the cipher twice

References

More details on symmetric encryption

- ▶ Johannes Buchmann, Einführung in die Kryptographie, 6. Auflage, Springer Verlag 2016
 - Kapitel 3 Kapitel 6
- ▶ W. Stallings, Cryptography and Network Security: Principles and Practice, 8th edition, Pearson 2022
 - Chapters 3, 4, 6, and 7

Standard Documents

- ▶ FIPS 197: Advanced Encryption Standard
 - https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
- ▶ FIPS 46-3: Data Encryption Standards (DES)
 - https://csrc.nist.gov/files/pubs/fips/46-3/final/docs/fips46-3.pdf