IT-Security

Chapter 4: Asymmetric Cryptography

Public key encryption, Digital Signatures, Diffie-Hellman Key Agreement

Prof. Dr.-Ing. Ulrike Meyer

Overall Lecture Context

• In the security mechanisms we covered so far

Alice and Bob needed to share the same secret key

• In this chapter we learn how asymmetric cryptosystems work

- > Alice can share a single public key with multiple other parties and keeps a private key to herself
- ▶ In an asymmetric encryption scheme,
 - anyone in possession of Alice's public key can encrypt messages for Alice
 - but only Alice can (with the private key) decrypt messages
- ▶ In a digital signature scheme
 - only Alice can sign a messages
 - anyone in possession of the public key can verify a signature on a message

Overview

• Basic Number Theory

▶ Finite Fields, greatest common divisor,

Fermat's theorem

- Factorization
- Discrete Logarithms

Digital Signatures

- Intuition on integrity protection with digital signatures
- RSA as signature scheme
- Digital signature standard

• Public Key Encryption Schemes

- Intuition
- ► RSA as encryption scheme

- Diffie-Helman Key Agreement
 - Basic idea
 - Man-in-the-middle attack

• Quantum Computers

Modular Arithmetic and Residue Class Rings

Let
$$\mathbb{Z}_n = \{\overline{\mathbf{0}}, \overline{\mathbf{1}}, \overline{\mathbf{2}}, ..., \overline{n-1}\}$$
 with $\overline{k} = \{x \in \mathbb{Z} \mid x \mod n = k\}$

Addition: $\mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$, $\overline{a} + \overline{b} := \overline{a+b}$ Then, for all \overline{a} , $\overline{b} \in \mathbb{Z}_n$ it holds that $\overline{a} + \overline{b} = \overline{b} + \overline{a}$ $(\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c})$ $\overline{0} + \overline{a} = \overline{a}$ $\overline{a} + \overline{n - a} = \overline{n} = \overline{0}$ $\in \mathbb{Z}_n$ such that $\overline{a} \bullet \overline{x} = \overline{1}$

Multiplication: $\mathbb{Z}_n \times \mathbb{Z}_n \to \mathbb{Z}_n$, $\bar{a} \bullet \bar{b} := \overline{ab}$ Then, for all \overline{a} , $\overline{b} \in \mathbb{Z}_n$ it holds that $\overline{a} \bullet \overline{b} = \overline{b} \bullet \overline{a}$ $(\overline{a} \bullet \overline{b}) \bullet \overline{c} = \overline{a} \bullet (\overline{b} \bullet \overline{c})$ $\overline{1} \bullet \overline{a} = \overline{a}$ \bar{a} is called invertible mod n if there is an \bar{x}

> For ease of reading, we will denote \overline{k} as k mod n in the rest of this lecture

Thus, $(\mathbb{Z}_n, +, \bullet)$ forms a commutative ring with 1

IT-Security - Chapter 4 Asymmetric Cryptography

Example: Addition and Multiplication in \mathbb{Z}_6

+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

•	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

• Invertible in \mathbb{Z}_6 :

▶ 1,5

• Not invertible in \mathbb{Z}_6 :

▶ 0, 2, 3, 4

• Not all elements of $\mathbb{Z}_6 \setminus \{0\}$ are invertible

$$\Rightarrow$$
 (\mathbb{Z}_6 , +, •) is a ring but not

a finite field

Example: Addition and Multiplication in \mathbb{Z}_5

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

•	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

- Invertible in \mathbb{Z}_5 :
 - ▶ 1, 2, 3, 4
- Not invertible in \mathbb{Z}_5 :

▶ 0

- All elements of $\mathbb{Z}_5 \setminus \{0\}$ are invertible
- \Rightarrow (\mathbb{Z}_5 , +, •) is a finite field

Extended Euclidian Algorithm

Let gcd(n, k) denote the greatest common divisor of n and k

Then there are integers x, y such that xn + yk = gcd(n, k)

```
Euclidian algorithm computes gcd(n, k)
```

```
Input: integers k, n with n > k > 1
```

```
Set r_0 = n, r_1 = k
```

WHILE $r_{i+2} > 0$

Compute q_{i+1}, r_{i+2} with $r_i = q_{i+1} \cdot r_{i+1} + r_{i+2}$

END(WHILE)

RETURN $gcd(n,k) = r_{i+1}$

Extended Euclidian algorithm Additionally computes x, ySet $u_0 = v_1 = 1, u_1 = v_0 = 0$ WHILE $r_{i+2} > 0$ Compute $u_{i+2} = u_i - q_{i+1} \cdot u_{i+1}$ Compute $v_{i+2} = v_i - q_{i+1} \cdot v_{i+1}$ END(WHILE) RETURN $x = u_{i+1}$ and $y = v_{i+1}$

Example

Euclidian algorithm to compute gcd(595, 408)		Extended Euclidian algorithm additionally computes x_{ij}		
Set $r_0 = 595$, $r_1 = 408$		Set $u_0 = v_1 = 1$, $u_1 = v_0 = 0$		
$r_0 = \mathbf{q}_1 \cdot \mathbf{r}_1 + \mathbf{r}_2$		$u_2 = u_0 - q_1 u_1$	$v_2 = v_0 - q_1 v_1$	
$595 = 1 \cdot 408 + 187$		$u_2 = 1 - 1 \cdot 0 = 1$	$v_2 = 0 - 1 \cdot 1 = -1$	
$r_1 = \mathbf{q}_2 \cdot \mathbf{r}_2 + \mathbf{r}_3$		$u_3=u_1-q_2u_2$	$\mathbf{v}_3 = \mathbf{v}_1 - \mathbf{q}_2 \mathbf{v}_2$	
$408 = 2 \cdot 187 + 34$		$u_3 = 0 - 2 \cdot 1 = -2$	$v_3 = 1 - 2 \cdot (-1) = 3$	
$r_2 = q_3 \cdot r_3 + r_4$		$u_4 = u_2 - q_3 u_3$	$\mathbf{v}_4 = \mathbf{v}_2 - \mathbf{q}_3 \mathbf{v}_3$	
$187 = 5 \cdot 34 + 17$		$u_4 = 1 - 5 \cdot (-2) = 11$	$v_4 = -1 - 5 \cdot (3) = -16$	
$r_2 = q_3 \cdot r_3 + r_5$				
$34 = 2 \cdot 17 + 0$		$\Rightarrow 11 \cdot 595 + (-16) \cdot 40$	08 = 17	
⇒ gcd(408, 595) = 17				

Correctness of the Euclidian Algorithm

Observation: gcd(n,k) = gcd(n-k,k)

Proof:

- ▶ If d divides n and k, then there are r, s with n = rd and k = sd
- Thus n k = (r s)d, so that d also divides n k
- Thus, any divisor of n and k also divides n k
- Vice verse if d|k and d|n-k, then there are w, t with n-k = wd and k = td
- Thus n = n k + k = (w + t)d and any divisor of n k and k also divides n

Consequence: $gcd(n,k) = gcd(n \mod k, k) \Rightarrow gcd(n,k) = gcd(r_2,k) = gcd(r_2,r_3) \dots$

Applying this repeatedly until the remainder $r_{i+2} = 0$ gives us $r_{i+1} = gcd(r_{i-1}, r_i) = gcd(n, k)$

Existence of Multiplicative Inverses

 $a \in \mathbb{Z}_n$ is invertible mod $n \Leftrightarrow a$ and n are relatively prim $\Leftrightarrow \mathbf{gcd}(n, a) = \mathbf{1}$

Proof of " \Rightarrow " : Assume a is invertible

- \Rightarrow there is an integer x such that $xa = 1 \mod n$
- \Rightarrow there is an integer k such that xa = 1 + kn

 \Rightarrow there is an integer k such that xa + (-k)n = 1

Now if there was an integer d s.t. d|a and d|k

 \Rightarrow d| xa + (- k)n and thus: d| 1

 $\Rightarrow d = 1$ and thus a and n are relatively prime

Proof of " \Leftarrow ": Assume *a* and *n* are relatively prime.

Then gcd(a, n) = 1

 \Rightarrow there are integers x, y such that xa + yn = 1

$$\Rightarrow xa = 1 - yn = 1 \mod n$$

 \Rightarrow *x* is the inverse of *a* mod *n*

 $\mathbb{Z}_n^*\coloneqq$ Set of invertible elements in \mathbb{Z}_n

For
$$p$$
 prime, $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\}$ and $(\mathbb{Z}_p, +, \bullet)$ is a field

Euler's ϕ function

- The number $|\mathbb{Z}_n^*|$ of invertible elements of $|\mathbb{Z}_n$ is called $arphi(m{n})$
- For a prime number p it holds that $\varphi(p) = p 1$
 - ▶ All elements of $\mathbb{Z}_p \setminus \{0\}$ are invertible mod p

 $\Rightarrow \varphi(\boldsymbol{p}) = \boldsymbol{p} - 1$

• If n = pq where p and q are two different prime numbers, then

 $\varphi(\boldsymbol{n}) = (\boldsymbol{p}-1)(\boldsymbol{q}-1)$

- ▶ Not invertible: $p, 2p, 3p, ..., (q-1)p, qp \rightarrow q$ elements
- ▶ Not invertible: q, 2q, ..., $(p-1)q \rightarrow \text{another } p-1 \text{ elements}$
- The other n q (p 1) = n q p + 1 elements are invertible

$$\Rightarrow \varphi(\boldsymbol{n}) = (\boldsymbol{p} - 1)(\boldsymbol{q} - 1)$$

Examples:

$$\mathbb{Z}_{5}^{*} = \{1, 2, 3, 4\},$$

 $\mathbb{Z}_{4}^{*} = \{1, 3\},$
 $\mathbb{Z}_{10}^{*} = \{1, 3, 7, 9\}$

Euler's Theorem

Euler's theorem:

For any $a \in \mathbb{Z}_n^*$: $a^{\varphi(n)} = 1 \mod n$

Proof:

▶ If $a, b \in \mathbb{Z}_n^*$, then $a \cdot b \in \mathbb{Z}_n^*$

Multiplying all elements of Z_n^{*} with some a ∈ Z_n^{*} just reorders them:

- Assume x is the product of all different $x_1, ..., x_{\varphi(n)} \in \mathbb{Z}_n^*$
- Then, for any $a \in \mathbb{Z}_n^*$: $ax_1 a x_2 \dots a x_{\varphi(n)} = a^{\varphi(n)} x = x$

- otherwise $ax_i = ax_j$ for some $i \neq j$

• Multiplying the above equation with x^{-1} on both sides yields

 $a^{\varphi(n)} = 1 \bmod n$

Consequence:

For any $a \in \mathbb{Z}_n^*$ and any integer s it holds that $a^{\varphi(n)s+1} = a \mod n$

Generalization of Euler's Theorem

Generalization:

Let n = pq where p and q are **two different** prime numbers then

for all $a \in \mathbb{Z}_n$ it holds that $a^{\varphi(n)+1} = a \mod n$

Proof: For a = 0 the equation obviously holds

For all invertible $a \in \mathbb{Z}_n$ we already proofed it on the last slide

So, lets assume an $a \in \mathbb{Z}_n$ that is not invertible

- Then it is either divisible by p or by q (or both but then a = 0).
- Let's assume *a* is not divisible by *p* but divisible by *q*.
- ▶ Then, $a^{p-1} = 1 \mod p$ and $a^{q-1} = 0 \mod q$
- Thus, $a^{\varphi(n)+1} = (a^{p-1})^{q-1}a = a \mod p$ and $a^{\varphi(n)+1} = (a^{q-1})^{p-1}a = a \mod q$
- ▶ Thus, there are integers r and s with $a^{\phi(n)+1} = a + rp$ and $a^{\phi(n)+1} = a + sq$

- Consequently, rp = sq such that $q \mid r$
- So, there is an integer l with r = lq
- Thus, $a^{\varphi(n)+1} = a + rp = a + lqp = a + ln$
- $\Rightarrow a^{\varphi(n)+1} = a \mod n$

The Factorization Problem

Definition

Given a composite integer n, find a non-

trivial factor of n

Hardness of Factorization

- No known polynomial time algorithms for factorization on classical computers
- Best current algorithms for classical computers have sub-exponential run-time
 - Pollard's Rho Method
 - Quadratic Sieve
 - Number Sieve
 - ...

The Discrete Logarithm Problem

Definition DL Problem

Given a cyclic group G, a generator $g \in G$, and g^x but not x, find the **discrete** logarithm x.

Definition Decisional Diffie-Hellman Problem

 $\implies \begin{array}{l} \textbf{Given Given a cyclic group } G, \text{ a generator } g \in G, \\ \text{ and } g^x, g^y, g^z \text{ but not } x, y, z, \text{ decide if } g^{x \, y} = g^z \end{array}$

- The security of many asymmetric cryptosystems is based on the hardness of the discrete logarithm problem or the decisional Diffie-Hellman problem
- Relation between the two problems
 - If in a group the discrete logarithm problem can be solved, the DDH problem can also be solved

Overview

• Basic Number Theory

▶ Finite Fields, greatest common divisor,

Fermat's theorem

- Factorization
- Discrete Logarithms

• Digital signature schemes

- Intuition
- RSA as signature scheme
- Digital signature standard

Public Key Encryption Schemes

- Intuition
- RSA as encryption scheme

- Diffie-Helman Key Agreement
 - Basic idea
 - Man-in-the-middle attack

• Quantum Computers

Intuition Public Key Encryption

Note: The definition of an encryption scheme presented in Chapter 2 also holds for asymmetric encryption!

IT-Security - Chapter 4 Asymmetric Cryptography

• First asymmetric encryption scheme invented in 1977

- By Ron Rivest, Adi Shamir, and Leonard Adleman at MIT
- Original idea of asymmetric encryption goes back to Diffie and Hellman, though
- Patented from 1983 to 2000
- Supports different key lengths and variable block sizes
 - ► Currently, 2048 bit keys are considered sufficient
 - Implies a block length of 2048 bit
- Requires plaintext blocks to be represented as integers
 - ► Requires a coding scheme that converts bit strings in integers

RSA Key Generation

Public Key

- Randomly select two different large prime numbers p, q
- \blacktriangleright Set n := pq
- Chose $e \in \mathbb{Z}_n$ such that e is invertible mod $\varphi(n)$
- ▶ Set public key to (*n*, *e*)

Private Key

- Compute $d \in \mathbb{Z}_n$ such that $ed = 1 \mod \varphi(n)$
 - \exists integer k such that $ed = 1 + k \varphi(n)$
- ▶ Set private key to *d*

Side Notes

- Large prime numbers can be found by
 - Choosing random numbers of appropriate size
 - Testing for primality with probabilistic primality tests
- If the desired bit length of the modulus is k than p and q should be k/2-bit prime numbers
- Choose $e \in \mathbb{Z}_n$ randomly; check if gcd(e, n) = 1
- Compute *d* from *e* with the Extended Euclidian
 Algorithm

RSA Operation

Encryption

For a public RSA key pk = (e, n), $E_{pk}: \mathbb{Z}_n \to \mathbb{Z}_n$ $E_{pk}(m) = c = m^e \mod n$

Decryption

For the corresponding private RSA key sk = d $D_{sk}: \mathbb{Z}_n \to \mathbb{Z}_n$ $D_{sk}(c) = c^d = m \mod n$

Correctness of RSA

For any ciphertext $c \in \mathbb{Z}_n$:

 $c^d = m^{ed} \operatorname{mod} n = m^{\varphi(n)k+1} \operatorname{mod} n = m \operatorname{mod} n$

Small Example: Key generation: Let p = 3, q = 5, then n = pq = 15 $\varphi(n) = 2 \cdot 4 = 8$ Chose e = 3, then e is invertible mod $\varphi(n)$ as 8 and 3 are relatively prime Setting d = 3 we get $ed = 9 = 1 \mod 8$ Encryption of m = 7: $m^e \mod n = 7^3 \mod 15 = 343 \mod 15 = 13$ Decryption of c = 13: $c^d \mod n = 13^3 \mod 15 = 2197 \mod 15 = 7$

Efficient Modular Exponentiation

- RSA Encryption and Decryption: $x^k \mod n$
- "Naïve" modular exponentiation
 - Requires k modular multiplications
 - Problem: the size of the exponent is of the same order as the size of the modulus n
 - Naïve modular exponentiation is not efficient

- More efficient modular exponentiation
- Idea: Use the binary representation of k
 - ▶ $k = \sum k_i 2^i = k_0 + 2(k_1 + 2(k_2 + \cdots) \cdots)$ where $k_i \in \{0, 1\}$
 - Then we get $x^k = \prod x^{k_i 2^i}$
 - So, all we need to do is square and multiply

Example

- $\blacktriangleright \ k = 37 = 1 + 2^2 + 2^5$
- So $x^{37} = x \cdot x^{2^2} \cdot x^{2^5} = ((((x^2)^2)^2 x)^2)^2 x$
- Two multiplications by x and 5 squares

RSA Security (1)

Theorem:

Let p, q be prime numbers and $n = p \cdot q$

Then n can be efficiently factorized iff $\varphi(n)$ can be computed efficiently

Proof:

" \implies ": If n can be efficiently factorized then p and q can

efficiently be computed from n and therefore

 $\varphi(n) = (p-1) \cdot (q-1)$ is efficiently computable

" \Leftarrow ": If $\varphi(n)$ is known, then one can compute p and q

from the two equations $n = p \cdot q$ and $\varphi(n) = (p-1) \cdot (q-1)$

RSA Security (2)

Theorem:

Let p, q be prime numbers and $n = p \cdot q$ and (e, n) a public RSA key and d the corresponding private key. Then d can be efficiently computed from (e, n) iff n can be factorized efficiently.

Proof:

- " \Rightarrow ": There is a probabilistic polynomial-time algorithm that computes p and q from d, e, and n
- " \Leftarrow ": clear: if we can factorize n we have p and q and can compute $\varphi(n)$ and can thus compute d as the inverse of e

 $\mod \varphi(n)$

RSA Security (3)

Summary:

- Compute a private RSA key d from public key (e, n) is equivalent to factorizing n
- Factorizing *n* is equivalent to computing $\varphi(n)$

It is still unclear if there is a way to decrypt RSA-encrypted messages without knowledge of the private key d

Recall Hardness of Factorization:

▶ For classical computers, there is currently no polynomial-time algorithm for factorization

Chosen Plaintext Attack Against RSA

Recall from Chapter 2: chosen plaintext attack against a cipher

Attacker can obtain ciphertext for plaintexts of its choice

Example: RSA can always be attacked in a chosen plaintext setting

- Any attacker with access to the public key (e, n) can generate ciphertexts for plaintexts of its choice
 - Attacker choses m and computes $c = m^e \mod n$

For deterministic asymmetric ciphers we always need to consider a chosen plaintext setting as realistic

Semantic Security

Definition: Semantic Security

- Assume a challenger choses two plaintexts m_1 and m_2
- He encrypts the plaintexts with a public key $pk c_1 = E_{pk}(m_1)$ and $c_2 = E_{pk}(m_2)$
- He then provides m_1 , m_2 , c_1 , c_2 and pk to an adversary
- ▶ Then the public key encryption schemes is said to be **semantically secure**
 - if the adversary cannot guess with a probability larger than ½ which ciphertext encrypts which plaintext

Deterministic asymmetric ciphers like (textbook) RSA are not semantically secure

Turning RSA into a Semantically Secure Cipher with OAEP

• The Optimal Asymmetric Encryption Padding OAEP

- Converts message M into encoded messages EM *M*' = 0 0 0x01 М h(L)Uses random seed to make RSA semantically secure seed Notations MFG ▶ *M*: bit-string message to encrypt \blacktriangleright h: hash function MFG ▶ *seed*: random seed, same length as output of h ► L: optional label, empty string by default EM = 0x00maskedSeed maskedM' MGF: mask generation function
 - Padding with zeros:
 - let n be a k -byte modulus, then k |M| 2|h(L)| 2

bytes of zero bytes are used as padding

Backdoors in Key Generation

• Idea

- Whenever RSA is used,
 - keys must be generated
- Whoever implements these key generation
 - can manipulate the code such that keys generated with it include a backdoor
- This backdoor allows him to
 - retrieve the private key corresponding to a public key generated with his implementation

• Underlining Model

- Manufacturer (Attacker)
 - Designer of the backdoor
 - Integrates the backdoor in the key generation code
- User (Victim)
 - In possession of a device or piece of code for key generation, e.g. for RSA, manipulated by the manufacturer
 - Can observe public and private keys generated by his device
- External attacker
 - Can observe public keys used by the user

Backdoor for RSA Key Generation

Naïve RSA Backdoor

- ► Key generation code with backdoor
 - Fix a prime number p
 - Choose a second prime number q at random
 - Set n = qp
 - Select *e* relatively prime to $\varphi(n)$ and *d* such that
 - $ed = 1 \mod \varphi(n)$

Unfortunately

- External attacker that observes two public keys (e, n) and (e', n') can compute p = gcd(n, n')
 - Thus, any external attacker that suspects this backdoor can check for it
- User can check if the code/devices has this backdoor in the same way

Exploiting the backdoor

- ▶ If manufacturer sees that user uses (*e*, *n*)
 - compute q by n/p, from q, p, e compute d

Backdoor for RSA Key Generation

Better RSA Backdoor

- ► Manufacturer's RSA key pair (*E*, *N*) and *D*
- Key generation code with backdoor
 - Pick random prime numbers p and q and set n
 - = pq
 - Compute $e = p^E \mod N$
 - Check if e is invertible $mod\varphi(n)$
 - If yes, compute the inverse d and output (e, n), d
 - If no, pick a new prime number p and start again

Exploiting the backdoor

- ▶ If manufacturer sees that client uses (*e*, *n*)
- Compute e^D mod N = p and can use this to compute q and then d

External attacker and user

- Cannot check for this backdoor as they do not have the private key D
- To the user e looks as if it was randomly picked

Backdoors like this exist for the key generation operations of many public key cryptosystems

Overview

• Basic Number Theory

▶ Finite Fields, greatest common divisor,

Fermat's theorem

- Factorization
- Discrete Logarithms

• Digital signature schemes

- Intuition
- RSA as signature scheme
- Digital signature standard

• Public Key Encryption Schemes

- Intuition
- RSA as encryption scheme

- Diffie-Helman Key Agreement
 - Basic idea
 - Man-in-the-middle attack

• Quantum Computers

Intuition Digital Signatures

- Alice uses her private key to generate a signature on the message
- Anyone in possession of Alice's public key can verify the signature
- Difficult to generate a message, signature pair that is accepted by the signature verification
 - Without access to the private key

Definition Digital Signature Scheme

A digital signature scheme consists of

- A key generation algorithm that
 - generates a public key pk for signature verification
 - generates a private key *sk* for signature generation
- A family of signature generation algorithms sig_{sk} that
 - takes a message M as input and outputs the signature $sig_{sk}(M)$
- A family of signature verification algorithms ver_{pk} that
 - takes a message M and a signature $sig_{sk}(M)$ as input and
 - returns success or failure

Naïve RSA Signatures (Insecure!)

Key generation as in RSA Encryption

Public Key

- ▶ Randomly select two large prime numbers *p*, *q*
- Set n := pq
- Chose $e \in \mathbb{Z}_n$ such that e is invertible mod $\varphi(n)$
- ► Set public key pk = (n, e)

Private Key

▶ Compute private key $sk = d \in \mathbb{Z}_n$ such that

 $ed = 1 \mod \varphi(n)$

Signature generation

• signature s on message $m: s = m^d \mod n$

Signature verification

•
$$s^e = m^{de} \stackrel{?}{=} m$$

Vulnerable to existential forgery

Attacker can choose signature s and compute
 m = s^e and then claim that (m, s) is a valid
 signature

RSA Signature Scheme

Key generation as in Naïve RSA

Signature generation

- Let h be a publicly known cryptographic hash function
- Signature s on m is $s = h(m)^d$

Signature verification

► On receipt of $(\overline{m}, \overline{s})$ verifier checks if $h(\overline{m}) \stackrel{?}{=} \overline{s}^e \mod n$

Secure against existential forgery

Attacker cannot find a message m such that $h(m) = s^e \text{ as } h \text{ is pre-image resistant}$

Hashing before signing is also required for security reasons in many other asymmetric signature schemes

Attacks on Digital Signatures

Attack result

- **Total break:** (partial) recovery of the signature key
- Universal forgery: forge signatures on any message of the attacker's choice
- Selective forgery: forge a signature on a specific chosen message
- Existential forgery: merely results in some valid message/signature pair not already known to the adversary

Power of attacker

- ► Key-Only Attack: Attacker only in possession of the public verification key
- Known-Message Attack: Attacker observes some message/signature pairs; tries to generate another valid pair
- Strength of attacker increases Chosen-Message Attack: Attacker can choose messages and can make the signer sign them; tries to generate another valid pair

Digital Signature Algorithm

- Adopted as standard by NIST in 1994
- Standardized in FIPS 186
- Security is based on the DDH assumption
 - Related to but strong than the Discrete Logarithm problem
- Can be defined over different cyclic groups for which DDH
 - assumption seems to hold, e.g.
 - Cyclic sub-groups of order q of \mathbb{Z}_p^* , where p and q are prime
 - numbers where q divides (p-1)
- Variants for other cyclic groups exist
 - ▶ E.g. ECDSA on specific elliptic curves over a finite field

Key Generation for DSA

Public parameters

▶ Two prime number p, q with q|(p-1)

▶ $x \in \mathbb{Z}_p^*$ such that $g := x^{\frac{p-1}{q}} \mod p \neq 1$

- The smallest interger *i* or which $g^i = 1 \mod p$ is i = q
- Thus, g generates a sub group of order q in \mathbb{Z}_p^*
- Cryptographic hash function h

Private key

• Chose $a \in \{1, ..., q-1\}$ uniformly at random and set sk = a

Public key

• Set A = $g^a \mod p$ as public key pk

DSA Operation

Signature generation on message m

- ▶ Chooses $k \in \{1, ..., q 1\}$ uniformly at random
- Signer computes
 - $\mathsf{r} = (g^k \bmod p) \bmod q$
 - $s = k^{-1}(h(m) + ar) \mod q$
 - Signature: $sig_{sk}(m) = (r, s)$

Signature verification

- ▶ Upon receipt of *m*, *r*, *s* the verifier
- Checks if $r \in \{1, ..., q 1\}$ and $s \in \{1, ..., q 1\}$
- Computes $u_1 = h(m)s^{-1} \mod q$, $u_2 = rs^{-1} \mod q$
- Computes v = $g^{u_1} A^{u_2} \mod p \mod q$
- Accept signature if v = r, reject otherwise

Correctness of Verification

• Upon receipt of *m*, *r*, *s* the verifier computes

$$v = g^{u_1} A^{u_2} \mod p \mod q$$
$$= g^{h(m)s^{-1}} A^{rs^{-1}} \mod p \mod q$$
$$= g^{h(m)s^{-1} + ars^{-1}} \mod p \mod q$$
$$= g^{s^{-1}(h(m) + ar)} \mod p \mod q$$
$$= g^{s^{-1}sk} \mod p \mod q$$
$$= g^{s^{-1}sk} \mod p \mod q$$
$$= g^{s^{-1}sk} \mod p \mod q$$
$$= r$$
g was selected such that $g^q = 1 \mod p$, thus
 $g^k \mod p = g^{k \mod q} \mod p$

Reusing k leads to a total break of DSA

Assume k is used to sign two known messages m_1 and once for m_2 , then

$$r = (g^{k} \mod p) \mod q \text{ (same for both messages)}$$

$$s_{1} = (k^{-1}(h(m_{1}) + ar)) \mod q$$

$$s_{2} = (k^{-1}(h(m_{2}) + ar)) \mod q$$
Thus, $s_{1} - s_{2} = k^{-1}(h(m_{1}) - h(m_{2})) \mod q$
and therefore: $k = (s_{1} - s_{2})^{-1}(h(m_{1}) - h(m_{2})) \mod q$
And thus, $a = r^{-1}(s_{1}k - h(m_{1})) \mod q$

I.e., private key *a* can be computed by anyone observing the messages and signatures if the same *k* is used twice

MACs versus Digital Signatures

- MACs can provide
 - Message integrity
 - Origin authentication

 Require verifier to share a secret key with MAC producer

- Signature Schemes can provide
 - Message integrity
 - Origin authentication
 - Broadcast authentication
 - Non-repudiation
- Require verifier to obtain an authentic copy of public key of signer

Overview

• Basic Number Theory

▶ Finite Fields, greatest common divisor,

Fermat's theorem

- Factorization
- Discrete Logarithms

• Digital signature schemes

- Intuition
- RSA as signature scheme
- Digital signature standard

• Public Key Encryption Schemes

- Intuition
- RSA as encryption scheme

• Diffie-Helman Key Agreement

- Basic idea
- Man-in-the-middle attack

• Quantum Computers

Diffie-Hellman (DH) Key Agreement

Oldest public key mechanism

- Invented in 1976
- Is a key establishment protocol by which two parties can
 - Establish a symmetric secret key K
 - Based on publicly exchanged values

• Security based on hardness of discrete logarithm problem

- Any polynomial-time algorithm that solves the DL problem also solves the computational DH-problem:
 - Given a prime number p, a generator g of \mathbb{Z}_p^* , g^a , g^b find $K = g^{ab}$
- It is unknown if the computational DH-problem can be solved without solving the DL problem

Diffie-Hellman Key Agreement

Public parameters

▶ Prime number p, generator g of \mathbb{Z}_p^*

Private values

- Private DH-value of Alice
 - $a \in \{2, ..., p-2\}$ chosen uniformly at random
- Private DH-value of Bob
 - $b \in \{2, ..., p-2\}$ chosen uniformly at random

Public values

- Public DH-value of Alice $A = g^a \mod p$
- Public DH-value of Bob $B = g^b \mod p$

As
$$A^b \mod p = g^{ab} = g^{ba} = B^a \mod p$$

Alice and Bob now share the secret key K = g^{ab}

Man-in-the-Middle Attack

All computations are done mod p and a, b, c, d are chosen from $\{2, ..., p-2\}$

Result

- ► A shares **K**₁ with attacker
 - but thinks she shares it with B
- ▶ B shares K_2 with attacker
 - but thinks he shares it with A
- A and B do not share key
 - but they think they do

⇒ Attacker can eavesdrop!

Symmetric vs. Asymmetric Cryptography

Symmetric Cryptography

- More efficient
 - Often used to encrypt large amounts of data
- ▶ Higher number of secret keys required
 - n(n-1)/2 keys required to enable pairwise
 confidential communication between n parties
- Secret keys need to be distributed
 - Need to ensure confidentiality and authenticity

Asymmetric Cryptography

- Less efficient
 - Rarely used to encrypt longer messages
- Lower number of private keys required
 - *n* keys required in order to enable pairwise
 confidential communication between n parties
- Only public keys need to be distributed
 - Need to ensure authenticity of public keys but not confidentiality

In practice, the best of both worlds is often combined: asymmetric cryptography is used to establish secret keys which are then used for symmetric encryption and integrity protection

Overview

• Basic Number Theory

- ▶ Finite Fields, greatest common divisor,
 - Fermat's theorem
- Factorization
- Discrete Logarithms

• Digital signature schemes

- Intuition
- RSA as signature scheme
- Digital signature standard

• Public Key Encryption Schemes

- Intuition
- RSA as encryption scheme

- Diffie-Helman Key Agreement
 - Basic idea
 - Man-in-the-middle attack

• Quantum Computers

Quantum Computers and Traditional Asymmetric Schemes

- 1994 Peter Shor developed two polynomial time quantum algorithms
 - A factorization algorithm that can factorize large compound numbers
 - A discrete logarithm algorithm that can compute the discrete logarithm x of g^x mod p for a given prime number p and generator g
- All classical asymmetric schemes can be broken with a large enough quantum computer, e.g.
 - RSA signature scheme and RSA encryption scheme
 - DSA
 - Diffie-Helman Key Agreement
 - Elliptic Curve Cryptosystems lice ECDSA, ECDH
- Lead to NIST calls for quantum secure encryption, signature, and key agreement schemes
 - New post quantum algorithms selected in 2022

Quantum Computers and Traditional Symmetric Schemes

- Grover's algorithm (1996) enables breaking symmetric encryption schemes like AES in $O(2^{n/2})$ where n is the bit length of the key
 - ▶ Thus, it is currently believed that doubling the key size for symmetric encryption suffices

• No known algorithm to find collisions for hash functions faster than on classical computers yet

Cryptographic hash functions are currently believed not to be affected by quantum computers

Summary

• Asymmetric encryption schemes: confidentiality

- Most prominent example: RSA
 - Security depends on hardness of factorization

• Digital signature schemes: integrity protection

- Most prominent examples: RSA, DSS
 - Security of DSS depends hardness of computing discrete logarithms
- All signature schemes require hashing before signing
- Provide non-repudiation and broadcast integrity protection
 - which cannot be provided by symmetric integrity protection via MACs

Summary

• Diffie-Helman Key Agreement: establish secret key

- Can be used to establish a shared secret key for a symmetric scheme
- ► Is itself an asymmetric scheme
- Security depends on hardness of discrete logarithm
- Is in its basic version vulnerable to a man-in-the-middle attack
- All asymmetric schemes require authentic public keys
 - Need to be able to obtain authentic copy of the public keys of other entities
- All classical asymmetric schemes can be broken by large enough quantum computers

References

- Johannes Buchmann, Einführung in die Kryptographie, Springer Verlag 2016
 - Chapter 8
- W. Stallings, Cryptography and Network Security: Principles and Practice, 8th edition, Pearson 2022
 - Chapter 9: Public Key Encryption and RSA
 - Chapter 10: Other Public Key Cryptosystems
 - Diffie Hellman
 - Chapter 13: Digital Signatures