IT-Security

Summary

Prof. Dr.-Ing. Ulrike Meyer

Chapter 1: Introduction

• Security goals

- ► Confidentiality, Integrity, Availability
- Examples for attacks against these goals
- Definition of security services and security mechanisms
 - ▶ Which of them aim at prevention, detection, or deterrence
- Categorization of attackers according to
 - Skills
 - Knowledge on and access to target
 - Computational resources
 - Motivation

Chapter 2: Symmetric Encryption (1)

- Definition of an encryption scheme
- Kerckhoffs' principle
- Examples for classical ciphers
 - Caesar cipher (easily breakable with brute force due to short key length)
 - Monoalphabetic substitution cipher (easily breakable with frequency analysis)
- Perfect Secrecy
 - Shannon's theorem
 - One-time pad and perfect secrecy of the one-time pad
 - Practical problems with the one-time pad
- Computational Security

Chapter 2: Symmetric Encryption (2)

• Modeling attacks against ciphers

- W.r.t power of the attack (ciphertext-only attack, known-plaintext attack...)
- ▶ W.r.t. attack result ((partial) plaintext recovery, (partial) key recovery)
- ► W.r.t technique used (brute force, time-memory trade-off, differential, algebraic..)

• Block ciphers versus stream ciphers

- How are they defined
- ▶ What's the problem with key stream re-use when a stream cipher is used

• Basic facts on DES, 2DES, 3DES, AES

- ► Key sizes, block sizes, attacks
- Meet-in-the-middle attack on 2DES

Chapter 2: Symmetric Encryption (3)

• Modes of encryption (ECB, CBC, CFB, OFB, CTR, GCM)

• Encryption / decryption, properties

• Stream ciphers and block ciphers alone do not provide integrity

► Understand that plaintext encrypted with a stream cipher can be changed by anyone

Chapter 3: Integrity (1)

Definitions for

- hash function, cryptographic hash function, pre-image resistance, 2nd pre-image resistance, collision resistance, relations between the properties
- Complexity of brute force attacks against ideal hash functions
- Basic facts on MD-5, SHA-1, SHA-2, SHA-3
 - Length of hash value, broken / not broken (yet ;-))
- Definition message authentication code
- HMAC, CMAC constructions in detail
 - Including advantage of HMAC over other constructions
 - Including advantage of CMAC over CBC-MAC

Chapter 3: Integrity (2)

- Methods for replay protection
- Ways to combine integrity protection and encryption
- Galois Counter Mode (GCM)

Chapter 4: Asymmetric Cryptography (1)

• RSA key generation, encryption, decryption in detail

- Extended Euclidian algorithm
- ► Including security proofs and why we need Optimal Asymmetric Encryption Padding
- Details on how OAEP works and adds semantic security to RSA
- Symmetric versus asymmetric encryption
- RSA Backdoors general idea and examples
- Definition of digital signatures
 - Details of RSA-Signatures (with hashing)
 - Why we hash messages before signing

Chapter 4: Asymmetric Cryptography (2)

• Type of attacks against signature schemes

- wrt power of attacker (key-only etc...)
- ▶ wrt result of the attack, e.g. total break, existential forgery,...

• Type of attacks against signature schemes

- wrt power of attacker (key-only etc...)
- ▶ wrt result of the attack, e.g. total break, existential forgery,...
- Comparison of MACs and digital signatures
- Details on key generation, signature generation/verification in DSS
- Details on Diffie-Hellmann key agreement and MitM against DH

Chapter 5: Authentication and Key Agreement (1)

• Definition of entity authentication

- ► Correctness, resistance against transfer, impersonation resistance
- mutual vs. unilateral authentication

• Example Building Blocks for unilateral and mutual authentication

- ▶ With time stamps, with random challenges, with signatures, with MACs
- Understand the problem of reflection attacks in this context

• Definiton of the properties of session key establishment protocols

- key agreement vs. key transport protocols
- authenticated key establishement
- explicit key authentication, implicit key authenticaiton, key freshness, perfect forward secrecy, known key attacks

Chapter 5: Authentication and Key Agreement (2)

- Analyze key establishment protocols w.r.t. these properties
- Diffie-Hellmann,
 - Man-in-the middle attack in DH, implicit key authentication in Diffie-Hellmann, authenticated DH

• Trusted Third Parties in Key Establishment

- ▶ Main idea of Key distribution center, example protocol
- Main idea of Certification authorities,
 - Example authenticated DH with certificates
 - Content of a certificate
 - Certificate verification
 - Certificate revocation
 - Chains of certificates

Chapter 5: Authentication and Key Agreement (3)

• Typical password-based authentication between client and server

- Relation between randomly selected passwords and effective key length
- Password based user authentication by a server
 - Advantage storing cryptographic hashes of passwords over plaintext / encrypted storage
- Purpose of salting passwords
- Dictionary attacks on password files
- Typical password-based authentication between two peers
 - MAC-keys generated from password
 - Vulnerability against offline password cracking

Chapter 6: Network Security Protocols (1)

• IPSec

- Transport mode vs tunnel mode
- Security services offered by ESP and AH
 - What does an IP packet look like that is protected with ESP/AH in tunnel/transport mode
 - Which part of the packet is encrypted/integrity protected in ESP/AH in tunnel/transport mode
- ▶ Fields in AH and ESP protocol headers / ESP trailer
- Replay protection in ESP and AH
- Main content of SAs and SA selectors
- Inbound / outbound processing overview

Chapter 6: Network Security Protocols (2)

• IPSec

- IKE v2 protocol details
 - In particular: how do initiator and responder authenticate each other?
 - What's the basis for the key agreement?
 - How are security algorithms for IKE itself / for ESP and/or AH negotiated?

• TLS 1.3

- Understand the details of the handshake protocol
 - Different options to authenticate the handshake (mutual or unilateral authentication with signatures, PSK-based authentication only, DH with PSK)
 - Properties these different options have
- Comparison between IPSec and TLS including main use cases

Chapter 7: Email, DNS, SSH (1)

• Email Security

- End-to-end vs hop-by-hop protection of email
- End-to-end security goals
- Basic principle used in PGP and S/MIME (hybrid encryption, signatures for nonrepudiation...)
- Web of trust in PGP
 - Introducer Trust, certificate trust, key legitimacy
- ▶ Main ideas of DKIM, SPF, and DMARC

Chapter 7: Email, DNS, SSH (2)

• DNS

- General operation of DNS
 - Concept and types of resource records
 - Recursive and interative queries
 - Purpose of caching
- Security issues of DNS
 - Authenticity of resource records
 - cache poisoning
 - Confidentiality
- DNSSec
 - New types of resource records
 - Keys used in DNSSec and how they are distributed and authenticated

Chapter 7: Email, DNS, SSH (3)

• SSH

- Details on the transport layer protocol
 - Including the mandatory key exchange method
 - Including algorithm negotiation
- User authentication protocol
 - Including the details on the three user authentication protocols (public key, password, host-based)

Chapter 8: Denial of Service Attacks

• Classification of DoS attacks w.r.t. the type of resource they target

- network bandwith, system resources, appplication resources
- Example attack for each type
 - Flodding with ICMP echo requests, SYN Flooding, HTTP Flood
- Source address spoofing
- DDoS attacks
- Principle of a reflection attack
 - Amplification attack as a subtype of reflection attacks
- Preventive defense mechanisms

Chapter 9: Access Control, Firewalls, IDSs (1)

Access Control

- Discretionary vs. Mandatory access control
- Access control subjects, objects rights
- Access control matrices and Access control lists
- ► How do different Discretionary access control systems differ
 - Who can change acl associated with an object
 - How ACLs apply to privileged user
 - Support of groups and wildcards
 - Handling of contradictory permissions
 - Default settings

Chapter 9: Access Control, Firewalls, IDSs (2)

Access Control

- Access Control in UNIX file systems
 - rights
 - changing rights
 - meaning of rights on directories
 - user ids
- Roll based Access Control
 - Main idea
- Attribute based access control
 - Main idea

Chapter 9: Access Control, Firewalls, IDSs (3)

• Firewalls

- Packet filters
- ► Firewall policy
 - First match policy
 - Comprehensiveness of a fire wall policy
- Interpret rules in a simple packet filtering policy
 - Find redundant rules
 - Find (half-)shadowing rules
 - Combine rules
- Stateful firewall and why we need them
- What is a DMZ

Chapter 9: Access Control, Firewalls, IDSs (4)

• Intrusion Detection Systems

- Components of an IDS
- Basic assumption underlying any iDS
- Definition of detection rate and false alarm rate
- ► Base rate fallacy problem
- Anomaly detection vs. misuse (signature based) detection
- ► Host based vs. network-based intrusion detection
- Inline vs. passive network-based intrusion detection

Chapter 10

• Types of Malware w.r.t. spreading

worms, viruses, trojans

Botnets

- Command and Control Infrastructures
- DGAs

Buffer Overflows

- ► Basic principle
- Explain on an example if given a vulnerable piece of code
- Types of defenses
- Typical malware payloads

Good Luck!

... and don't forget to look at the exercises and e-tests as well!!!!

IT-Security 1 -- Summary