
Prof. Dr.-Ing. Ulrike Meyer

BA IT-Security
Chapter 1: Introduction

Security goals, attacks, mechanisms and services

► Definition of security goals

► Types of attacks that threaten them

► Examples for these attacks

► Definition of security mechanisms and services

► Examples

Overview on Chapter 1

2IT-Security - Chapter 1: Introduction

Vulnerabilities exploited by attacks

► Levels of a system on which vulnerabilities occur

► Examples of typical vulnerabilities on each level

Attackers

► Types of attackers

► Motivation of attackers

Overview on the rest of the lecture

► Overall structure

► Connections

► Further lectures and other teaching activities

Security goals, attacks, mechanisms and services

► Definition of security goals

► Types of attacks that threaten them

► Examples for these attacks

► Definition of security mechanisms and services

► Examples

Overview

3IT-Security - Chapter 1: Introduction

Vulnerabilities exploited by attacks

► Levels of a system on which vulnerabilities occur

► Examples of typical vulnerabilities on each level

Attackers

► Types of attackers

► Motivation of attackers

Overview on the rest of the lecture

► Overall structure

► Connections

► Further lectures and other teaching activities

Definition of IT-Security and Security Goals

4IT-Security - Chapter 1: Introduction

IT-Security comprises all measures to

prevent, detect, mitigate, or deter attacks against confidentiality, integrity, or availability

of an asset in a system, including data, software, hardware, and networks.

An attack is thus any action that compromises one of the three main security goals

Security Goals

Confidentiality Integrity Availability

Definition of IT-Security and Security Goals

5IT-Security - Chapter 1: Introduction

Confidentiality

Only authorized entities can access assets in a system

Integrity

Only authorized entities can make changes assets in a system

Availability

Authorized entities can access assets in a system as intended

Collectively referred to as CIA

Attacks

Targeting
Confidentiality

Eavesdropping

Traffic Analysis

Targeting
Integrity

Modification

Masquerading

Replay

Repudiation

Targeting
Availability

Denial of
service

Example Types of Attacks per Goal

6IT-Security - Chapter 1: Introduction

Example Attacks Against Confidentiality

7IT-Security - Chapter 1: Introduction

Targeting Confidentiality

Eavesdropping Interception of data during transfer

Traffic Analysis Analyze address information or timings to deduce
who communicates with whom

Example Attacks Against Integrity

8IT-Security - Chapter 1: Introduction

Targeting Integrity

Modification Intercept and Modify data in transfer

Masquerading Modify SCR address information of a data packet in transfer

Replay Intercept a data packet in transfer and later replay it

Repudiation Deny an action such as having sent a specific data packet

Targeting Availability Denial of service

Flood a web server with fake requests

Jam someone's wireless connection by emitting a
strong signal on his frequency

Enter someone's password wrongly so that his account
gets blocked

Example Attacks Against Availability

9IT-Security - Chapter 1: Introduction

Attack Examples

10IT-Security - Chapter 1: Introduction

Attack against Availability

Examples taken from https://thehackernews.com/

Attack against Availability

Attack Examples

11IT-Security - Chapter 1: Introduction

Attack against Integrity, Confidentiality

Attack against Confidentiality, Integrity, Availability

Examples taken from https://thehackernews.com/

Security Service

► A service that protects the security goals of assets in a system

► A security service makes use of one or more security mechanisms

Security Mechanisms and Services

12IT-Security - Chapter 1: Introduction

Security Mechanism

► A mechanism that is designed to detect, prevent, recover from, or deter

an attack against an asset in a system

Data confidentiality Encryption schemes

Data integrity
Message authentication code

Digital signature schemes

Message non-repudiation Digital signature

Entity authentication Digital signature or MAC,
and/or Encryption

Access control
Firewalls

Access control lists

Intrusion detection
Machine learning classifier

AV scanner

Examples for Security Services and Example Security Mechanisms

13IT-Security - Chapter 1: Introduction

Security Services Security Mechanisms

Security goals, attacks, mechanisms and services

► Definition of security goals

► Types of attacks that threaten them

► Examples for these attacks

► Definition of security mechanisms and services

► Examples

Overview

14IT-Security - Chapter 1: Introduction

Vulnerabilities exploited by attacks

► Levels of a system on which vulnerabilities occur

► Examples of typical vulnerabilities on each level

Attackers

► Types of attackers

► Motivation of attackers

Overview on the rest of the lecture

► Overall structure

► Connections

► Further lectures and other teaching activities

All defense mechanisms on all layers can be targeted and must interact properly

Attacks make use of Vulnerabilities on all Levels of a System

15IT-Security - Chapter 1: Introduction

Cryptographic primitives

Protocols and policies

Implementations

Building
blocks

Specifications

Systems

RSA, DSS, HMAC,
SHA-1…

TCP/IP, TLS, IPSec, HTTPs,
access control policies,…

Application software, Web
servers, protocol stacks, operating
systems, …

User / Administrators
Configuration, Password Selection,
Ignoring Software Updates, Installing
malicious software,…

Human

Classical Examples

► Encryption algorithms used in 2G mobile networks (A5/2, A5/1...)

► RC4 Encryption algorithms used in WLAN, TLS, IPSec,....

► Cryptographic hash functions MD5, SHA1

§ Used, e.g., in TLS

● Typical Solution: Integrate multiple algorithms to choose

► New attacks on ciphers cannot be prevented

► Include multiple algorithms as “mandatory“ to support in protocol specifications

► Allow for an easy integration of additional algorithms

► Configure your system to use secure algorithm if an algorithm is broken

Broken Building Blocks

16IT-Security - Chapter 1: Introduction

Need to agree on the algorithm to be used on specific connection

► Algorithm negotiation must be protected

Typical Approach

► Parties exchange information on which algorithms they support

► One of the algorithms both support is selected

► Information exchanged needs to be protected against manipulation

§ Problem: algorithms, e.g., for integrity protection have not been selected yet

New Problem: Secure Algorithm Selection

17IT-Security - Chapter 1: Introduction

Insecure negotiation leads to downgrading attacks

► Attacker can downgrade the negotiation to a broken algorithm

► Works because integrity of messages indicating the supported algorithms is not protected

► Broken algorithm often still supported to service old devices that only support old mechanisms

§ Backward Compatibility

Example for Insecure Algorithm Negotiation

18IT-Security - Chapter 1: Introduction

I can do A5/1, A5/2, A5/3
Ok, take A5/3

I can do A5/1, A5/2, A5/3
Ok, take A5/2Ok, take A5/2

Broken!

I can only do A5/2

A5/1, A5/2, A5/3

► encryption algorithms supported in 2G

mobile networks

► A5/2 totally broken since 2001

Broken CBC Mode of Encryption for Symmetric Ciphers

► If CBC Mode is used, then in some application settings it is possible to decrypt messages even if the

underlying encryption algorithm EK is secure

► All mandatory TLS 1.2 ciphers used CBC-Mode

Problem: ALL Building Blocks Need to be Negotiable

19IT-Security - Chapter 1: Introduction

x

IV : = C0

Encryption: Ci = Ek(Pi ⨁ Ci-1)
Decryption: Pi = Dk(Ci) ⨁ Ci-1

EK

P2P1

EK

C2C1

⊕ ⊕

x

EK

P4P3

EK

C4C3

⊕ ⊕IV

…

…

● Design Flaws

► E.g. WEP: wired equivalent privacy problem in Wireless LAN (2001)

§ Authentication breaks after simple eavesdropping on one authentication protocol run

§ Weak encryption, no integrity protection

§ …

● Backward Compatibility Problems

► If devices support different versions of a protocol, downgrading to an older version is often possible

§ Attack pretends that one of the communicating endpoints does not support newer version

● Incomplete Specifications

► Krack-attack against WLAN (2017)

§ Problem in the protocol design: unspecified how to handle unexpected messages

Typical Sources for Vulnerabilities in Protocols and Specifications

20IT-Security - Chapter 1: Introduction

● Software vulnerabilities

► Buffer overflows, Format string vulnerabilities, XSScripting,…

► Bugs like the OpenSSL bug: implementation problem on Debian-based systems (2006)

§ Lead to only 32,767 (= 	215	 − 	1)	 different SSH-keys

§ Not a vulnerability in the protocol design

§ “Just” a problem in the implementation of the pseudo-random function

► Using malicious libraries or insecure code fragments of others

● Update life cycles

► Software vulnerabilities can typically not be entirely avoided

► Updates that patch vulnerabilities need to be published and deployed

● Insecure default settings

► E.g., if IoT device ships with a default admin password and does not require changing it

Typical Sources for Vulnerabilities in Implementations

21IT-Security - Chapter 1: Introduction

● Failing to update available software patches

► More and more automated but still many software vulnerabilities exploited although patches are available

● Deliberately installing malicious software

► Typically, unintended

§ Trojans: malicious software masquerading as benign application

§ Clicking on a malicious attachment

§ Installing free software from dubious sources

● Social Engineering

► Talking someone into revealing their password

► Luring someone on a fake website and making them enter their login data

Examples for Users and Administrators as Vulnerabilities

22IT-Security - Chapter 1: Introduction

Example Social Engineering

23IT-Security - Chapter 1: Introduction

Example: Malware delivered with Social Engineering

24IT-Security - Chapter 1: Introduction

Security goals, attacks, mechanisms and services

► Definition of security goals

► Types of attacks that threaten them

► Examples for these attacks

► Definition of security mechanisms and services

► Examples

Overview

25IT-Security - Chapter 1: Introduction

Vulnerabilities exploited by attacks

► Levels of a system on which vulnerabilities occur

► Examples of typical vulnerabilities on each level

Attackers

► Types of attackers

► Motivation of attackers

Overview on the rest of the lecture

► Overall structure

► Connections

► Further lectures and other teaching activities

● Secret service and military personal

► Cyber attacks and defenses

● End users

► That do not adequately protect their

computers

● Pentesters

► Try to break into systems on demand

§ with explicit consent of system operator

► Reveal and help to fix exposed

vulnerabilities

● Criminals and Hackers-for-hire

► Making money as main motivation

§ Stealing and selling login credentials, trade

secrets, personal data, …

§ Extortion, e.g., by threatening to publish stolen

data or to stage a denial-of-service attack,…

§ Spreading spam

§ Get paid for exploits, malware, bots,…

● Crackers and Hacktivists

► Achieve Fame and glory in the blackhat

community

► Claim to crack for the greater good

Types and motivation of attackers

26IT-Security - Chapter 1: Introduction

All of them can be insiders or outsider attacker

● Attacks typically threaten one or more of the CIA security goals

► Confidentiality, Integrity, Availability

● Attacks can exploit vulnerabilities on all levels of a system

► Security mechanisms required on each level

► Mechanisms on different levels must interact properly

● Security mechanisms and services aim at protecting against attacks by

► prevention, detection, mitigation, or deterrence

● Attackers vary greatly with respect to

► Their motivation

► Their power w.r.t. their skills, knowledge on / access to the target, and

their computational resources,…

Summary

27IT-Security - Chapter 1: Introduction

Security goals, attacks, mechanisms and services

► Definition of security goals

► Types of attacks that threaten them

► Examples for these attacks

► Definition of security mechanisms and services

► Examples

Overview

28IT-Security - Chapter 1: Introduction

Vulnerabilities exploited by attacks

► Levels of a system on which vulnerabilities occur

► Examples of typical vulnerabilities on each level

Attackers

► Types of attackers

► Motivation of attackers

Overview on the rest of the lecture

► Overall structure

► Connections

► Further lectures and other teaching activities

Cryptographic Primitives

29IT-Security - Chapter 1: Introduction

Cryptographic primitives

Protocols and policies

Implementations

User / Administrators

Chapter 2: Symmetric Encryption

Chapter 3: Symmetric Integrity
Protection

Chapter 4: Asymmetric Cryptography

Cryptographic Primitives

30IT-Security - Chapter 1: Introduction

Cryptographic primitives

Protocols and policies

Implementations

User / Administrators

Chapter 5: Authentication and Key
Agreement

Chapter 6: Network Security
Protocols

Chapter 7: Securing Applications

Cryptographic Primitives

31IT-Security - Chapter 1: Introduction

Cryptographic primitives

Protocols and policies

Implementations

User / Administrators

Chapter 9: Access Control, Firewalls,
Intrusion Detection

Cryptographic Primitives

32IT-Security - Chapter 1: Introduction

Cryptographic primitives

Protocols and policies

Implementations

User / Administrators

Chapter 10: Malware and Software
Vulnerabilities

Chapter 8: Denial of Service Attacks

Non-Cryptographic Protection against Attacks on
Confidentiality, Integrity, and Availability

Cryptographic vs. Non-Cryptographic Protection

33

IT-Security - Chapter 1: Introduction

Cryptographic Protection against Attacks on
Confidentiality and Integrity

Chapter 2: Symmetric Encryption

Chapter 3: Symmetric Integrity Protection

Chapter 4: Asymmetric Cryptography

Chapter 9:
Access Control,

Firewalls,
Intrusion Detection

Chapter 5: Authentication and Key Agreement

Chapter 6: Network Security Protocols

Chapter 7: Securing Applications

Most Prominent Example Attacks that cannot be
prevented / detected by cryptographic means alone

Chapter 8: Denial of Service Attacks

Chapter 10: Malware and Software Vulnerabilities

● IETF RFC 4949: Security Glossary

● W. Stallings, Cryptography and Network Security: Principles and Practice, 8th edition, Pearson 2022

► Chapter 1: Information and Network Security Concepts

References

34IT-Security - Chapter 1: Introduction

Prof. Dr.-Ing. Ulrike Meyer

IT-Security
Chapter 2: Symmetric Encryption

● Introduction

► Intuition

► Formal definition

► Historic examples

Overview

2IT-Security - Chapter 2 Symmetric Encryption

● Perfect Secrecy

► Definition

► Shanon’s theorem

► One-time-pad

● Computational Security

► Attacker models

§ Knowledge

§ Goal

§ Strategy

● Practical Schemes

► Stream ciphers

► Block ciphers

► Modes of encryption

How can we
model

attackers?

What is an
encryption

scheme

Can a cipher
be perfectly

secure?

How do
modern

ciphers work
and how are
they used?

● Alice wants to send a confidential

plaintext to Bob

● Alice and Bob share a secret key

● Alice uses the key to encrypt plaintext to

ciphertext

● Bob uses the key to decrypt ciphertext

to plaintext

● Decryption is ”difficult” without the key

Intuition on Symmetric Ciphers

3IT-Security - Chapter 2 Symmetric Encryption

Encryption
algorithm

Ciphertext

3

Plaintext

Decryption
algorithm

Ciphertext 3

Insecure channel

Secret Key
Plaintext

Secret Key

● An encryption scheme is a five-tuple (𝒫,𝒞,𝒦,ℰ,𝒟) consisting of

► The plaintext space 𝒫 of plaintexts (e.g., 𝒫 = {0,1}n for some n ∈ℕ)

► The cipher space 𝒞 of ciphertexts (e.g., 𝒞 = {0,1}m for some m ∈ℕ)

► A key space 𝒦 of keys (e.g., 𝒦 = {0,1}k for some k ∈ℕ)

► A family ℰ	 = 	 {𝐸!: 	𝐾	 ∈ 𝒦	}	of functions 𝐸𝐾 ∶ 	𝒫	 → 	𝒞	called encryption functions

► A family 𝒟	 = 	 {𝐷!: 	𝐾	 ∈ 𝒦}	 of functions 𝐷𝐾 ∶ 	𝒞	 → 	𝒫	called decryption functions

● Such that for any 𝑲𝟏 ∈ 𝒦 there is a 𝑲𝟐 ∈ 𝒦 such that

► For all 𝑃	 ∈ 	𝒫	it holds that 𝐷!!(𝐸!"(𝑃)) = 𝑃

● In a symmetric encryption scheme the encryption and decryption keys are the same

● Note that this definition does not cover any notion of security yet

Formal Definition of Encryption Scheme

4IT-Security - Chapter 2 Symmetric Encryption

A cryptosystem should be secure even if everything

about the system, except the key, is public knowledge

Kerckhoff’s Principle 1883

5IT-Security - Chapter 2 Symmetric Encryption

● In contrast:

► Keeping the design of a cryptosystem secret is often referred to as

“security by obscurity”

● The cipher

► Plaintext space = ciphertext space = {A,…, Z}, Key space = {1,…,25}

► Replace each plaintext letter with the one k letters after it. E.g., for k = 4

● Security of the Caesar cipher

► Assume a message has been encrypted letter by letter using the Cesar cipher

► Try out each of the 25 keys and check if the resulting plaintext makes sense

§ Requires recognizable plaintext

► The key space is too small!

Example Caesar Cipher

6IT-Security - Chapter 2 Symmetric Encryption

Plaintext A B C D E F G H I J K L M

Ciphertext E F G H I J K L M N O P Q

Plaintext N O P Q R S T U V W X Y Z

Ciphertext R S T U V W X Y Z A B C D

A secure cipher requires a large key space

● If the message is short, multiple keys may lead

to sense making plaintexts

● If the message is long enough, on average key

found after ½ |𝒦| tries

● Brute force attacks are also known as

exhaustive search attacks

Brute Force Attack on the Caesar Cipher

7IT-Security - Chapter 2 Symmetric Encryption

Plaintext A B C D E F G H I J K L M

Ciphertext E F G H I J K L M N O P Q

Plaintext N O P Q R S T U V W X Y Z

Ciphertext R S T U V W X Y Z A B C D

SECURITY

WIGYVMXC

 WIGYVMXC
k=1? VHFXULWB
k=2? UGEWTKVA
k=3? TFDVSJUY
k=4 SECURITY
k=5? RDBTQHSX
…

● Idea

► Replace each plaintext letter with one specific other letter according to a substitution table

► Plaintext space = ciphertext space = {A,…Z}

► Key space = all permutations of the letters A,…, Z

► Size of the key space: |𝒦| = 26! = 4.0329146 · 1026

● Example

● Trying out each possible key is quite time consuming!

Monoalphabetic Substitution Cipher

8IT-Security - Chapter 2 Symmetric Encryption

Plaintext A B C D E F G H I J K L M

Ciphertext D H C E Z W V S J M L O Q

Plaintext N O P Q R S T U V W X Y Z

Ciphertext P A F K G N B R T Y I X U

● Let’s assume we

► Can decrypt 5 characters per ms

► Need to decrypt 100 characters to be sure we found the right key

● Then we will on average need 𝟏
𝟐
(𝟏𝟎𝟎

𝟓
(| 𝒦 |= 𝟏

𝟐
(𝟐𝟎 (| 𝒦 | ms to find the right key

► That is 10 5 4.0329146 · 1026 ms = 4.0329146 · 1027 ms = 4.0329146 · 1024 s = 6.7215243	 5 1022 min

= 1.2788288 · 1017 years

● Let’s assume we

► Can decrypt 500 000 characters per ms and still need to decrypt 100 characters in order to be sure

● Then we will on average need 𝟏
𝟐
(𝟏𝟎𝟎
𝟓𝟎𝟎	𝟎𝟎𝟎

(|𝒦|= 𝟏
𝟐
(𝟏
𝟓	𝟎𝟎𝟎

(|𝒦|ms to find the right key

► That is 10-4 5	4.0329146 · 1026 ms = 4.0329146 · 1022 ms = 4.0329146 · 1019 s = 6.7215243	 5 1017 min

 = 1.2788288 · 1012 years

Exhaustive Search for Monoalphabetic Ciphers

9IT-Security - Chapter 2 Symmetric Encryption

Difficulty of exhaustive search depends on

► size of key space

► resources of attacker

Top 5 letters in English texts

● For any given language and text basis one can determine the relative letter frequencies

● Other useful frequencies include, Bigrams, double letters, etc.

Example Letter Frequencies

10IT-Security - Chapter 2 Symmetric Encryption

Letter ENG GER

A 8.167% 6.516%

B 1.492% 1.886%

C 2.782% 2.732%

D 4.253% 5.076%

E 12.702% 16.396%

F 2.228% 1.656%

G 2.015% 3.009%

H 6.094% 4.577%

I 6.966% 6.550%

Letter ENG GER

J 0.153% 0.268%

K 0.772% 1.417%

L 4.025% 3.437%

M 2.406% 2.534%

N 6.749% 9.776%

O 7.507% 2.594%

P 1.929% 0.670%

Q 0.095% 0.018%

R 5.987% 7.003%

Letter ENG GER

S 6.327% 7.270%

T 9.056% 6.154%

U 2.758% 4.166%

V 0.978% 0.846%

W 2.360% 1.921%

X 0.150% 0.034%

Y 1.974% 0.039%

Z 0.074% 1.134%

Letter ENG

E 12.702%

T 9.056%

A 8.167%

O 7.507%

I 6.966%

Frequency Analysis

► Given a (long) ciphertext in a known language

► Count the frequency of each letter occurring in

the ciphertext

► Replace them according to their frequency in

the natural language

► Check if the resulting plaintext makes sense

Frequency Analysis

11IT-Security - Chapter 2 Symmetric Encryption

● Can be used to

► Break any cipher that preserves frequencies

§ As long as enough ciphertext is available that has

been produced by the same key

● E.g., Monoalphabetic Substitution Ciphers can

be broken this way

A large key space is necessary but does
not guarantee a secure cipher

So, how can we get a secure cipher
and what does secure mean anyway

● Ciphertext C

► JW XAR DGZ FDGDPAJE XAR HZOJZTZ BSDB D TZGX ZTJO DBBDCLZG JN ARB BA VZB XAR

► JW XAR DGZ FDGDPAJE XAR HZOJZTZ BSDB D TZGX ZTJO DBBDCLZG JN ARB BA VZB XAR

► I? ?O? A?E ?A?A?OI? ?O? ?E?IE?E T?AT A ?E?? E?I? ATTA??E? I? O?T TO ?ET ?O?

► I? ?O? ARE ?ARA?OI? ?O? ?E?IE?E T?AT A ?ER? E?I? ATTACKER I? O?T TO ?ET ?O?

► I? YOU ARE ?ARA?OI? YOU ?E?IE?E T?AT A ?ERY E?I? ATTACKER I? OUT TO ?ET YOU

► IF YOU ARE PARANOID YOU BELIEVE THAT A VERY EVIL ATTACKER IS OUT TO GET YOU

● Gives us 20 letters for which the mapping is known, i.e. 76,9% of the key

Example Frequency Analysis on Monoalphabetic Substitution Cipher

12IT-Security - Chapter 2 Symmetric Encryption

Letter in C Z B D A J G C L X R W F P E D T O N V H

Frequency 8 7 7 6 5

Replace
with

E T A O I R C K Y U F P N D H V L S G B

Top 5

E

T

A

O

I

● Introduction

► Intuition

► Formal definition

► Historic examples

Overview

13IT-Security - Chapter 2 Symmetric Encryption

● Perfect Secrecy

► Definition

► Shanon’s theorem

► One-time-pad

● Computational Security

► Attacker models

§ Knowledge

§ Goal

§ Strategy

● Practical Schemes

► Stream ciphers

► Block ciphers

► Modes of encryption

How can we
model

attackers?

What is an
encryption

scheme

Can a cipher
be perfectly

secure?

How do
modern

ciphers work
and how are
they used?

● Idea of Shanon

► A ciphertext should not reveal any new information on the plaintext

Perfect Secrecy

14IT-Security - Chapter 2 Symmetric Encryption

Definition:

An encryption scheme is said to provide perfect secrecy if

Given a probability distribution Pr on 𝒫, and Pr(𝑃) > 	0 for all plaintexts 𝑃

For each 𝑃	 ∈ 𝒫, 𝐶	 ∈ 𝒞	and 𝐾	 ∈ 𝒦	chosen uniformly at random Pr(𝑷|𝑪) = Pr(𝑷)	

● This implies: |𝒦| 	≥ 	 |𝒞| 	≥ 	 |𝒫|	for a perfectly secure encryption scheme
► |𝒞| ≥ |𝒫| holds for any encryption scheme as the encryption functions need to be injective

► If |𝒦| < |𝒞| would hold, then for any 𝑃	 ∈ 𝒫, {	𝐸"(𝑃) | 𝑘 ∈ 𝒦} ≠ 𝒞, i.e., there is a 𝐶	

∈ 𝒞	 that does not occur as ciphertext of 𝑃 such that Pr(𝑃|𝐶) = 	0 for this 𝐶	

► As we assume Pr(𝑃) > 0, this contradict the perfect forward secrecy

Whether or not C is
observed, P is as

likely as its
occurrence in the

plaintext space

Proof of 1.:

“⇐ ”:	Assume Pr(𝐶|𝑃) = Pr(𝐶),	then "# 𝐶 𝑃 "#(%)
"#(')

= Pr(P)

as Pr(𝐶|𝑃)𝑃(𝑃) 	= 	Pr(𝑃|𝐶)	Pr(𝐶)	it follows that Pr(𝑃)

= Pr(𝑃|𝐶)

“⇒”: Symmetrical argument

Equivalent Formulations for Perfect secrecy

15IT-Security - Chapter 2 Symmetric Encryption

Definition:

Given a probability distribution Pr on 𝒫, and Pr(𝑃) > 0	for all plaintexts 𝑃

An encryption scheme is said to provide perfect secrecy if

For each 𝑃	 ∈ 𝒫, 𝐶	 ∈ 𝒞	and 𝐾	 ∈ 𝒦	chosen uniformly at random

Pr(𝑷|𝑪) = Pr(𝑷)	 Equivalent
1. Pr(C|P) = Pr(C)
2. Pr(C|P1) = Pr(C|P2)

Equivalent Formulations for Perfect secrecy

16IT-Security - Chapter 2 Symmetric Encryption

Definition:

Given a probability distribution Pr on 𝒫, and Pr(𝑃) > 0	for all plaintexts 𝑃

An encryption scheme is said to provide perfect secrecy if

For each 𝑃	 ∈ 𝒫, 𝐶	 ∈ 𝒞	and 𝐾	 ∈ 𝒦	chosen uniformly at random

Pr(𝑷|𝑪) = Pr(𝑷)	

Proof of 2.:

“⟹ ”:	 Follows directly from 1.

If Pr(𝐶|𝑃) 	= 	Pr(𝐶)	for any 𝑃	 ∈ 𝒫, 𝐶	 ∈ 𝒞

then Pr(𝐶|𝑃1) = Pr(𝐶|𝑃2)	for any 𝑃1, 𝑃2	 ∈ 𝒫, 𝐶	 ∈ 𝒞

Equivalent
1. Pr(C|P) = Pr(C)
2. Pr(C|P1) = Pr(C|P2)

Proof of 2.:

“⇐ ”: If Pr 𝐶 𝑃1 = Pr 𝐶 𝑃2 = 𝑥	for any 𝑃1, 𝑃2	 ∈ 𝒫,

𝐶	 ∈ 	𝒞, then

Pr(𝐶) = ∑& Pr(𝐶|𝑃) Pr 𝑃 = 𝑥	∑& 𝑃𝑟(𝑃) = 𝑥	 =

Pr 𝐶 𝑃

Shannon’s Theorem:

Let |	𝒫| = |𝒞| = |	𝒦|,	and Pr(𝑃) > 	0	for all plaintexts 𝑃.

Then an encryption scheme provides perfect secrecy ⇔

1. K chosen uniformly at random for each plaintext to encrypt and

2. for each 𝑷	 ∈ 𝒫	and 𝑪 ∈ 𝒞	there is exactly one 𝑲 ∈ 𝒦	with 𝑬𝑲(𝑷) = 𝑪

Shannon’s Theorem 1949

17IT-Security - Chapter 2 Symmetric Encryption

A cipher providing perfect secrecy cannot be broken by an attacker.

Not even by one with infinite computational resources and infinite time

Proof

“⟹ “Assume encryption scheme is perfectly secure

► Let 𝑃 ∈ 𝒫	and assume there is a 𝐶 ∈ 𝒞	such that there

is no 𝐾	with 𝐸𝐾(𝑃) = 𝐶,

► then Pr(𝑃|𝐶) = 	0	and thus Pr(𝑃) 	≠ 	Pr(𝑃|𝐶)	which

contradicts the perfect secrecy.

► Consequently, there must be at least one 𝐾 such that

𝐸𝐾(𝑃) = 𝐶. As there are as many keys as ciphertexts,

there must be exactly one such 𝐾	for each 𝑃 and 𝐶.

► If 𝐾	was not chosen uniformly, then given 𝐶, there

would be some plaintexts that is more likely, than

others. This again contradicts the perfect secrecy.

Proof Sketch for Shanon’s Theorem

18IT-Security - Chapter 2 Symmetric Encryption

“⟸” Assume each key is equally likely and for each 𝑃,

𝐶 and there is exactly one 𝐾 such that 𝐸𝐾(𝑃) = 𝐶.

► Then, Pr(𝐶|𝑃) 	= &
|𝒦|
	such that for any 𝐶 and 𝑃1, 𝑃2	it

holds that Pr(𝐶|𝑃1) = 	Pr(𝐶|𝑃2) =
&
|𝒦|
,	such that the

second equivalent definition of perfect secrecy holds

● Plaintext space, ciphertext space, key space

► 𝒫 = 𝒞= 𝒦 = {0,1}n for some 𝑛 ∈ ℕ,

● Key Generation:

► Pick 𝐾 ∈ 𝒦	uniformly at random for each 𝑃 ∈ 𝒫	to encrypt

● Encryption:

● Decryption

The One-Time-Pad (OTP)

19IT-Security - Chapter 2 Symmetric Encryption

𝐶	 = 	𝑃	 ⊕ 	𝐾

𝐶	 ⊕ 	𝐾	 = 	𝑃	 ⊕ 	𝐾	 ⊕ 	𝐾	 = 	𝑃

𝑃	 = 	10111101

𝐾	 = 	00110010
⊕

=

𝐶	 = 	10001111

𝑃	 = 	10111101

𝐾	 = 	00110010

𝐶	 = 	10001111
⊕

=

Also Known as
Vernam Cipher or

 Vernam’s one-time-pad

Theorem:

The One-Time-Pad provides perfect secrecy

Perfect Secrecy of the One-Time-Pad

20IT-Security - Chapter 2 Symmetric Encryption

Proof:

► Follows directly from Shannon’s Theorem:

§ As | 𝒫| = |𝒞| = | 𝒦| per definition of the OTP, we can apply Shannon’s

Theorem

§ Key is selected uniformly at random in one-time pad ⟹ each key is

equally likely

§ Given any pair 𝐶, 𝑃	of ciphertext and plaintext there is a key K that

encrypts 𝑃 to 𝐶, namely 𝐾	 = 	𝑃	⨁	𝐶:

𝐸𝐾(𝑃) 	= 	𝑃	⨁	𝐾	 = 	𝑃	⨁	(𝑃	⨁	𝐶) 	= 	𝐶	

Advantages

● Easy to compute

► Encryption and decryption are the same

operation

► Bitwise XOR is very cheap to compute

● As secure as theoretically possible

► Given a ciphertext, all plaintexts are equally

likely

► Security independent on the attacker’s

computational resources

Properties of the One-Time-Pad

21IT-Security - Chapter 2 Symmetric Encryption

Disadvantages

● Key must be as long as plaintext

► Impractical in most realistic scenarios

► Still used for diplomatic and intelligence traffic

● Does not guarantee integrity

► One-time pad only guarantees confidentiality

► Attacker cannot recover plaintext, but can easily

change it to something else without being detected

● Insecure if keys are reused

► Attacker can obtain XOR of plaintexts

● Obviously not practical for all applications

● Introduction

► Intuition

► Formal definition

► Historic examples

Overview

22IT-Security - Chapter 2 Symmetric Encryption

● Perfect Secrecy

► Definition

► Shanon’s theorem

► One-time-pad

● Computational Security

► Attacker models

§ Knowledge

§ Goal

§ Strategy

● Practical Schemes

► Stream ciphers

► Block ciphers

► Modes of encryption

How can we
model

attackers?

What is an
encryption

scheme

Can a cipher
be perfectly

secure?

How do
modern

ciphers work
and how are
they used?

● Most encryption schemes used in practice do not provide perfect secrecy

► Stream ciphers try to simulate the OTP based on a small random seed

► Block cipher encrypt complete blocks of plaintexts instead of single bits

● When do we call such encryption schemes secure?

● How can we attack encryption schemes

Practical Modern Encryption Schemes

23IT-Security - Chapter 2 Symmetric Encryption

Computational Security

An encryption scheme is called computationally secure if

► All known attacks against the cipher are computationally infeasible

► I.e., theoretically possible but would take too much time to be practical for any

(reasonable) amount of resources

General assumption in any attack

► Attacker knows which cipher is used

► In line with Kerckhoff’s principle

Attacker Models

24IT-Security - Chapter 2 Symmetric Encryption

Attack result

► (Partial) key recovery

§ Attacker tries to retrieve (part of) the key

► (Partial) plaintext recovery

§ Attacker tries to retrieve (part of) the plaintext

Key recovery implies plaintext recovery but not

the other way round

Power of attacker

► Cipher-text-only attack

§ Attacker knows only ciphertext

► Known-plaintext attack

§ Knows some pairs of plaintext and ciphertext

► Chosen-plaintext attack

§ Can obtain ciphertext for plaintexts of his choice

► Chosen-ciphertext attack

§ Can obtain plaintext for ciphertexts of his choice

before target ciphertext is known St
re

ng
th

 o
f a

tt
ac

ke
r i

nc
re

as
es

Chapter 4

Chapter 4

● A classical eavesdropper has access to

ciphertext

● Thus, he can collect ciphertext(s) and try to

► Recover the key and/or

► Recover the plaintext

Illustration of Ciphertext-only Attack

25IT-Security - Chapter 2 Symmetric Encryption

Encryption

3

Decryption

3

3

?
?

● Attacker observes ciphertext and has access to one or more pair of plaintext and ciphertext

► E.g., as he is able to guess plaintext for some ciphertexts

§ E.g., due to Bob’s reaction on receiving the ciphertext

► Tries to recover key and/or plaintext

Illustration of Known-Plaintext Attack

26IT-Security - Chapter 2 Symmetric Encryption

Encryption

3

Decryption

3

3

?
?Example:

► Substitution cipher vulnerable to

a known plaintext attack

► One pair of plaintext / ciphertext

sufficient to break (part of) the

key

● Try out all possible keys from the key space

► Ciphertext-only setting

§ Try out each key to decrypt the ciphertext and check if resulting plaintext “makes sense”

§ Only works if valid plaintexts are recognizable for the attacker

► Known-plaintext setting

§ Try out each key to decrypt the ciphertext

§ Check if it decrypts to the known plaintext

● Ciphertext-only setting is more difficult for the attacker

► Consequently: being secure against a ciphertext-only attack is easier to achieve

● Security in a chosen-ciphertext setting is hardest to achieve

Example: Exhaustive Key Search

27IT-Security - Chapter 2 Symmetric Encryption

● Difficulty of exhaustive key search is proportional to the key size

► On average attacker will have to try out |𝒦|	
+

 keys

● And proportional to the resources of the attacker

Difficulty of Known-Plaintext Brute Force Attack

28IT-Security - Chapter 2 Symmetric Encryption

● Time-memory trade-off

► Can be used to accelerate known-plaintext

attacks

► Exploits a trade-off between time, memory and

key space size

Other Attack Strategies besides Brute Force and Frequency Analysis

29IT-Security - Chapter 2 Symmetric Encryption

● Differential cryptoanalysis

► Chosen-plaintext attack

► Attacker tries to recover key using known differences

between plaintexts and comparing them to the

differences in the ciphertexts

● Algebraic attacks

► Reduces breaking a cipher to solving a system of

linear equations with the key bits as unknowns

► Can work very well in a known-plaintext setting

● Related key attacks

► Chosen-plaintext attack

► Assumes attacker has access to chosen plaintext

encrypted with keys

► Attacker knows relations between keys

● Introduction

► Intuition

► Formal definition

► Historic examples

Overview

30IT-Security - Chapter 2 Symmetric Encryption

● Perfect Secrecy

► Definition

► Shanon’s theorem

► One-time-pad

● Computational Security

► Attacker models

§ Knowledge

§ Goal

§ Strategy

● Practical Schemes

► Stream ciphers

► Block ciphers

► Modes of encryption

How can we
model

attackers?

What is an
encryption

scheme

Can a cipher
be perfectly

secure?

How do
modern

ciphers work
and how are
they used?

● The one-time pad 𝐶 = 𝑃 ⊕𝐾	is perfectly secure

► If the key is chosen uniformly at random for each P

● Idea of stream cipher

► Replace 𝐾 with pseudo-random bit-generator PRBG

§ Seed PRBG with ”truly random” key 𝑲

§ Include a fresh initialization vector 𝑰𝑽 for each 𝑷

► Encryption/Decryption very fast

§ Key stream can be pre-generated

● The PRNG should be cryptographically secure

► We typically cannot proof that a PRBG is

cryptographically secure, we assume it is if no

attack is known

Stream Ciphers

31IT-Security - Chapter 2 Symmetric Encryption

Stream cipher
For each plaintext P select a fresh IV and set
𝑪	 = 	𝑬𝑲(𝑷) = 𝑰𝑽 ∥ 𝑷 ⊕ PRBG(𝑰𝑽, 𝑲).
PRBG(IV,K) is also referred to as key stream
The same key 𝑲	is used for multiple plaintexts

A PRBG is said to be cryptographically secure iff

There is no polynomial-time algorithm which on

input of the first k bits of the output of PRBG can

predict the next bit with probability > ½ . I.e., it

passes the next bit test.

● If the IV is ever reused with the same key

► Stream ciphers are vulnerable to a known-plaintext attack

● Why?

► Assume attacker known 𝑃1, 𝐶1
§ As 𝐶1 = 𝐸)(𝑃1) = 𝐼𝑉 ∥ 𝑃1⊕ PRBG(𝐼𝑉,𝐾)	attacker knows 𝐼𝑉 and PRBG(𝐼𝑉,𝐾)

§ Thus, if 𝐼𝑉 and 𝐾 are reused to encrypt 𝑃2, and attacker observes 𝐶2
§ Then he can decrypt 𝑃2 by 𝐶2⊕ 	𝐼𝑉 ∥ PRBG(𝐼𝑉,𝐾) 	= 0 ∥ 𝑃2	

● As, e.g., been used to attack the security architecture WPA2 for WLAN

► Known as KRACK attack

General Stream Cipher Weakness

32IT-Security - Chapter 2 Symmetric Encryption

Examples for Stream Ciphers

33IT-Security - Chapter 2 Symmetric Encryption

● Well-known insecure stream ciphers

► RC4

§ Before its break used in WLAN, TLS, …

► A5/1, A5/2

§ Supported by GSM (2G mobile networks)

► E0

§ Supported by old Bluetooth versions

► …

● Well-known (yet) unbroken stream ciphers

► SNOW 3G

§ Supported by 3G/LTE/5G networks

► CHACHA20

§ Supported by TLS, IPSec,…

► Unbroken Block ciphers in CTR Mode

§ Supported by LTE/5G networks

§ Supported by TLS, IPSec,…

► …

● Any cipher that only provides computational security can break at any point in time

► We need to be prepared and always ensure that we can easily switch from one cipher to another

● Operate on plaintext blocks of a specific length

► Called the block length b ∈ℕ of the cipher

► Plaintext space 𝒫 = {0,1}b and ciphertext space 𝒞 = {0,1}b

► For each key 𝐾 in the key space 𝒦 = {0,1}k , 𝐸𝐾 ∶ 𝒫 → 𝒞	

● Typically need to be used in a specific mode of encryption

► Specifies how plaintexts of length > 	𝑏 bits are encrypted

Block Ciphers

34IT-Security - Chapter 2 Symmetric Encryption

Later in this Chapter

Examples for Block Ciphers

35IT-Security - Chapter 2 Symmetric Encryption

● Well-known insecure block ciphers

► DES

§ Before its break used in IPSec, TLS, …

► IDEA

► …

● Well-known (yet) unbroken block ciphers

► KASUMI

§ Supported by 3G/LTE/5G networks

► AES

§ Supported by TLS, IPSec,…

► Camellia

§ Supported by TLS

► …

● Any cipher can break at any point in time

► We need to be prepared and always ensure that we can easily switch from one cipher to another

● Published in 1977 by the National Bureau of Standards*

► Designed by IBM and the NSA

● Uses a 64-bit key K and a block length of 64 bit

► But: 8 bits of the key are used as parity bits

● Effective key size is 56 bits

* called National Institute of Standards and Technology (NIST) since 1988

Example Block Cipher: DES

36IT-Security - Chapter 2 Symmetric Encryption

DESK
Plaintext
(64 bit)

Ciphertext
(64 bit)

● January 13th, 1999: DES key broken within 22 hours and 15 minutes

► In a contest sponsored by RSA Labs using

► Brute force key search using

► the Electronic Frontier Foundation’s Deep Crack custom DES cracker ...

► … and the idle CPU time of around 100,000 computers

● Since then, DES is considered insecure

● Biggest weakness still is the key length of 56 bits only!

Security of DES

37IT-Security - Chapter 2 Symmetric Encryption

● First idea to increase the key size of DES

► Use DES twice with two independently chosen keys

First Proposed Fix: 2DES

38IT-Security - Chapter 2 Symmetric Encryption

DESK’Plaintext CiphertextDESK*

Meet in the middle attack on 2DES

► Assume attacker has access to (𝑃, 𝐶), where 𝐶 = DESK* (DESK’(𝑃))

► Attacker can encrypt 𝑃 with any possible key (256 DES operations)
§ And thus, create lookup table 𝐸𝐾(𝑃) 	= 𝑍 𝐾 for	𝐾 ∈ {0,1}() of intermediate

ciphertext

► Attacker can decrypt 𝐶 with all possible keys (at most 256 DES operations)

§ And compute 𝐷𝐾(𝐶) 	= 	𝑋*, 𝐾	 ∈ {0,1}()until 𝑋*! 	= 𝑍*" is found in the lookup

table

► Then 𝐾* = 𝐾′ and 𝐾+ = 𝐾∗ with high probability

Complexity of the attack:

► 2 5 256 = 257
	
DES operations

► Effective key size only increased by one!

● Problem: this does not double the key size!

● Use DES three times in a row

● Variants

► 3-key DES: K1, K2, and K3 are pairwise different

§ Provides an effective key size of 112 bit according to NIST

► 2-key DES: K1 = K3

§ Provides and effective key size of 80 bit according to NIST

► Both variants use encryption with K1, decryption with K2 and encryption with K3

§ Setting K1=K2=K3 this allows 3DES-only capable senders to communicate with DES-

only capable receivers

3DES = ”Triple DES”

39IT-Security - Chapter 2 Symmetric Encryption

DESK1 DESK2
-1 DESK3Plaintext Ciphertext

● Goals of the NIST Call for AES

► More secure than 3DES

► More efficient than 3DES

► Support different key lengths

§ 128, 192, and 256 bit

► The block length of the cipher is 128 bit

§ Regardless of the key length

The Advanced Encryption Standard (AES)

40IT-Security - Chapter 2 Symmetric Encryption

AESK
Plaintext
(128 bit)

Ciphertext
(128 bit)

● Timeline of AES Selection

► Jan. 1997 NIST-call published

► Aug. 1998: 15 candidates presented

§ Cast-256, Crypton, DEAL, DFC, E2, Frog, HPC, Loki97,

Magenta, MARS, RC6, Rijndael, SAFER+, Serpent,

Twofish

§ Broken shortly afterwards (or during presentation)
– DEAL, Frog, HPC, Loki97, Magenta

► Aug. 1999 finalists announced

§ MARS, RC6, Rijndael, Serpent, Twofish

► Oct. 2000 Rijndael selected as AES

► Nov. 2001 AES standardized in FIPS 197

Selection Criteria

41IT-Security - Chapter 2 Symmetric Encryption

Taken from http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

● AES operates in rounds

► Input and output of each round represented as 4x4 byte matrices

Structure of AES

42IT-Security - Chapter 2 Symmetric Encryption

𝑖0 𝑖4 𝑖8 𝑖12
𝑖1 𝑖5 𝑖9 𝑖13
𝑖2 𝑖6 𝑖10 𝑖14
𝑖3 𝑖7 𝑖11 𝑖15

𝑠00 𝑠01 𝑠02 𝑠03
𝑠10 𝑠11 𝑠12 𝑠13

𝑠20 𝑠21 𝑠22 𝑠23

𝑠30 𝑠31 𝑠32 𝑠33

𝑜0 𝑜4 𝑜8 𝑜12
𝑜1 𝑜5 𝑜9 𝑜13
𝑜2 𝑜6 𝑜10 𝑜14
𝑜3 𝑜7 𝑜11 𝑜15

● Round operations

Substitute Byte (SB)

128 bit Round Key

Shift Row (SR) Mix Column (MC)

𝐴·

S ⊕

=

𝐴·

Round Key Addition (KA)

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

𝐴 =

Multiplication in GF(28)

Reminder: Multiplication in GF(28) with x8 +x4 +x3 +x+1 as irreducible Polynomial

43IT-Security - Chapter 2 Symmetric Encryption

● For example, (in hex notation) 57 • 83 = c1 in GF(28) because

► 57 = 01010111 ⋍ 𝑥6 + 𝑥4 + 𝑥2 + 𝑥 + 1

► 83 = 10000011 ⋍ 𝑥7 + 𝑥 + 1

► (𝑥6 + 𝑥4 + 𝑥2 + 𝑥 + 1)	(𝑥7 + 𝑥 + 1) 	= 	𝑥13 + 𝑥11 + 𝑥9 + 𝑥8 + 𝑥7 + 	𝑥7 + 𝑥5 + 𝑥3 + 𝑥2 + 𝑥 + x6 + x4 +

x2 + x + 1 = 	𝑥13 + 𝑥11 + 𝑥9 + 𝑥8 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 1	

► 𝑥13 + 𝑥11 + 𝑥9 + 𝑥8 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 1	modulo 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1	 = 	𝑥7 + 𝑥6 + 1	
 ⋍ 	1100	0001	

					 = 	𝑐1

Substitute Byte (SB)

44IT-Security - Chapter 2 Symmetric Encryption

Each byte 𝑏	 = 	𝑏0𝑏1𝑏2𝑏3𝑏4𝑏5𝑏6𝑏7	 is

replaced with byte in S in

column 𝑏0𝑏1𝑏2𝑏3 and row 𝑏4𝑏5𝑏6𝑏7	

35

11000100

38

S-Box

Row 2
Co

lu
m

n
4

lowest order bit here!

● The round key is always 128 bit key

► Different for each round, generated from the secret key

● Number of rounds depends on the key size

► 128 bit key: 10 rounds 192 bit key: 12 rounds 256 bit key: 14 rounds

AES Operation Overall

45IT-Security - Chapter 2 Symmetric Encryption

plaintext

KA SB SR MC* KA

MC*: no mix column operation in the last round

ciphertext

next round

● Block ciphers of block length 𝒃

► Allow us to encrypt a plaintext 𝑷 of 𝒃 bit

► How can we encrypt longer plaintexts?

Modes of Encryption

46IT-Security - Chapter 2 Symmetric Encryption

● Modes we cover here

► Electronic Code Book (ECB) mode

► Cipher Block Chaining (CBC) mode

► Counter Mode (CTR)

● Modes we may cover in exercises

► Cipher Feedback Mode (CFB)

► Output Feedback Mode (OFB)

● AEAD Modes

► Authenticated Encryption with Associated

Data (AEAD) Modes

§ E.g., Gallois Counter Mode (GCM)

● Mode of encryption

► Let 𝑷 = 	𝑷𝟏 ∥ 𝑷𝟐 ∥ 𝑷𝟑 ∥ 𝑷𝟒 ∥	555	∥ 𝑷𝒏

 with 𝑷𝒊	 ∈ {𝟎, 𝟏}𝒃 for 𝑖 = 1, … , 𝑛 − 1	

 and 𝑷𝒏	 ∈ {𝟎, 𝟏}𝒍 for some 0 < 𝑙 ≦ 𝑏

► A mode of encryption specifies how to

encrypt plaintext 𝑷 based on a 𝐛 bit block

cipher 𝑬𝑲(5)

Chapter 3

ECB Mode

Encryption: 𝐶5	 = 𝐸6 𝑃5 for 𝑖 = 1, … , 𝑛

Decryption: 𝑃5	 = 𝐷6	(𝐶5) for 𝑖 = 1, … , 𝑛

Requires padding of 𝑃7 to 𝑏 bit

Electronic Codebook Mode (ECB)

47IT-Security - Chapter 2 Symmetric Encryption

𝐸𝐾

𝑃2𝑃1 𝑃4𝑃3

𝐸𝐾 𝐸𝐾 𝐸𝐾

𝐶2𝐶1 𝐶4𝐶3

…

…

…

𝑃𝑛

𝐶𝑛

𝐸𝐾

Illustration of encryption in ECB Mode

● Problem

► Same 𝑃5 leads to same 𝐶5	
► Thus, patterns in plaintext lead

to patterns in ciphertext

► ECB mode should not be used!

Plaintext ECB-encrypted

● Requires a fresh IV for each plaintext to encrypt

► If same IV is reused on 𝑃 and 𝑃∗

§ then 𝐶1 and 𝐶&∗ reveal, whether 𝑃1	 = 𝑃&∗

► Is vulnerable to a so-called padding-oracle attack

Cipher Block Chaining Mode (CBC)

48IT-Security - Chapter 2 Symmetric Encryption

CBC Mode

IV ∶	= 	 C9	
Encryption: C:	 = E; P:⊕ C:<=	 for 𝑖 = 1, … , 𝑛

Decryption: P:	 = D; C:) ⊕ C:<=	 for 𝑖 = 1, … , 𝑛

Requires padding of P> to b bit

…

x

𝐸𝐾

𝑃2𝑃1

𝐸𝐾

𝐶2𝐶1

⊕ ⊕

x

𝐸𝐾

𝑃4𝑃3

𝐸𝐾

𝐶4𝐶3

⊕ ⊕IV

… 𝑃𝑛

…

…

𝐶𝑛

𝐸𝐾

⊕

Illustration of encryption in CBC Mode

Should not be used anymore

Properties of CTR Mode

► CTR Mode does not require padding of 𝑷𝒏 to 𝒃 bit

► Ciphertext is of the same size as plaintext

► CTR Modes turns a block cipher into a stream cipher

► CTR mode encryption and decryption can be parallelized

Counter Mode (CTR)

49IT-Security - Chapter 2 Symmetric Encryption

CTR Mode

IV public, fresh for each plaintext

Encryption: C:	 = E; IV + 𝑖 ⊕ 𝑃5 for 𝑖 = 1, … , 𝑛

Decryption: P:	 = 𝐶5 ⊕ E; IV + 𝑖 for 𝑖 = 1, … , 𝑛

Illustration of encryption in CTR Mode

𝑃1

𝐸𝐾

𝐶1

⊕

𝐼𝑉	 + 1

𝑃2

𝐸𝐾

𝐶2

⊕ 𝑃3

𝐸𝐾

𝐶3

⊕ 𝑃𝑛

𝐸𝐾

𝐶𝑛

⊕

…

…

…

…

𝐼𝑉	 + 2 𝐼𝑉	 + 3 𝐼𝑉	 + 𝑛

● Symmetric Encryption Schemes provide confidentiality

► Require a secret key shared between the communicating entities

● Perfect secrecy can be obtained by the one-time-pad

► Requires key chosen uniformly at random and as long as the plaintext for each plaintext

► Impractical to use in many situations

● Practical encryption schemes only provide computational security

► Can in theory always be broken with a brute force attack in a known plaintext setting
§ Require long keys to make brute force attack practically impossible

● Different attacker models make different assumptions with respect to

► The knowledge of the attacker (ciphertext-only, known plaintext,…)

► The goal of the attacker (plaintext recovery, key recovery)

► The approach the attacker takes (brute force, frequency analysis, differential analysis…)

Summary

50IT-Security - Chapter 2 Symmetric Encryption

● Practical symmetric encryption schemes can be divided into

► Stream ciphers, e.g., ChaCha20

► Block ciphers, e.g., AES

● Stream ciphers encrypt a plaintext by xoring it with a key stream

► Key stream is generated by
§ a (longer term) secret key that is reused for multiple plaintext

§ and fresh IV for each plaintext to encrypt

► Should never reuse IVs with the same key

● Block ciphers require the use of a mode of encryption

► Specifies how to encrypt plaintext that are longer than one block-length of the block cipher

► These modes have a strong influence of the security of the encryption scheme
§ Used with in an insecure mode, a secure block cipher may become insecure

► The effective key size of a block cipher cannot be doubled by applying the cipher twice

Summary

51IT-Security - Chapter 2 Symmetric Encryption

● More details on symmetric encryption

► Johannes Buchmann, Einführung in die Kryptographie, 6. Auflage, Springer Verlag 2016

§ Kapitel 3 - Kapitel 6

► W. Stallings, Cryptography and Network Security: Principles and Practice, 8th edition, Pearson 2022

§ Chapters 3, 4, 6, and 7

● Standard Documents

► FIPS 197: Advanced Encryption Standard

§ https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf

► FIPS 46-3: Data Encryption Standards (DES)

§ https://csrc.nist.gov/files/pubs/fips/46-3/final/docs/fips46-3.pdf

References

52IT-Security - Chapter 2 Symmetric Encryption

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
https://csrc.nist.gov/files/pubs/fips/46-3/final/docs/fips46-3.pdf

Prof. Dr.-Ing. Ulrike Meyer

IT-Security
Chapter 3: Symmetric Integrity Protection

Overview

2IT-Security - Chapter 3 Symmetric Integrity Protection

● Definition and security of integrity protection

► Intuition

► More formal definition

● Message Authentication Codes

► Based on cryptographic hash functions

► Based on symmetric ciphers

● Combining Encryption and Integrity Protection

● Based on cryptographic hash functions

► Based on symmetric ciphers

What does
integrity

protection mean

How can we get
integrity

protection?

How can we
securely combine

encryption and
integrity Protection

How can
integrity

protection be
attacked

● Manipulation of messages sent over an insecure network cannot be prevented

► Anyone between the communicating entities can change the message

§ Flip bits, delete bits, replace messages with other ones

● Encryption schemes do typically NOT enable detection of such manipulations

► See the many examples in the exercises

● Data integrity protection mechanisms aim at detecting any message manipulation by unauthorized

entities

► Can be realized in form of Modification Detection Codes (MDCs)

► Can be realized in form of Message Authentication Codes (MACs)

Intuition for Data Integrity protection

3IT-Security - Chapter 3 Symmetric Integrity Protection

Idea of Modification Detection Codes

4IT-Security - Chapter 3 Symmetric Integrity Protection

Accept

Sent Message

MDC
Function

MDC of
sent message

Received Message

MDC
function

Authenticated channel Immune to Changes

Insecure channel

Same?
Y Accept

MDC of received
message

Reject

Problem with MDCs

► Require a second

channel immune

to change

► Bob needs to be

sure that the MDC

he receives really

comes from Alice

Idea of Message Authentication Codes

5IT-Security - Chapter 3 Symmetric Integrity Protection

● Alice and Bob share a secret key

● Alice computes MAC of message using key

● Alice sends message and MAC to Bob

● Attacker may change message and/or MAC

Message

MAC function

MAC

MAC function

Same? Y Accept
Key

Reject

● Bob computes MAC of received message using key

● Compares computed MAC to received MAC

● Decides that message was received as sent if both are the same

Key

● A hash function is a function ℎ with the properties

► compression: ℎ maps an input 𝑥 of arbitrary bit-

length to an output ℎ(𝑥) of fixed bit-length 𝑛

► ease of computation: given ℎ and 𝑥, ℎ(𝑥) is easy to

compute

§ there is a polynomial-time algorithm to compute h(x)

Hash Function

6IT-Security - Chapter 3 Symmetric Integrity Protection

● A collision of a hash function is a

► pair of inputs 𝑥1, 𝑥2, with ℎ(𝑥1) = ℎ(𝑥2)

bit strings of any length: {0,1}∗

𝑛-bit strings {0,1}"

𝑥4

𝑥2 𝑥3

𝑥1⦁ ⦁

⦁⦁

𝑦1⦁
𝑦2⦁𝑦3⦁

Any hash function 𝒉 has collisions!

● Basic pigeonhole principle

► If 𝑛 pigeonholes are occupied by 𝑛 + 1 pigeons

then at least one pigeonhole is occupied with more than one pigeons

● Generalization

► If 𝑛 pigeonholes are occupied by 𝑘 / 𝑛 + 1 pigeons

then at lease one pigeonhole is occupied with more than 𝑘 pigeons

Minimal Number of Collisions of a hash function

7IT-Security - Chapter 3 Symmetric Integrity Protection

● Consequence for the minimal number of collisions

► If a hash function maps 𝑘 / 𝑛 messages to 𝑛 hash values

then there is at least one hash value to which 𝑘 or more messages hash

§ E.g., if n = 16, and 𝑘 " 𝑛 = 64, then there are 4 or more messages that hash to the same value

● A hash function is preimage resistant

► if given a randomly chosen 𝑦 = ℎ(𝑥) but not 𝑥 it is

computationally infeasible to find any pre-image 𝑥’ with ℎ(𝑥’) = 𝑦

● A hash function is second preimage resistant

► if given x, ℎ(𝑥) it is computationally infeasible to find a second pre-

image 𝑥’ ≠ 𝑥 with ℎ(𝑥’) = ℎ(𝑥)

● A hash function is collision resistant

► if it is computationally infeasible to find a pair 𝑥, 𝑥’ with 𝑥’ ≠ 𝑥 and

ℎ(𝑥’) = ℎ(𝑥)

Cryptographic Hash Function

8IT-Security - Chapter 3 Symmetric Integrity Protection

A cryptographic hash function is a preimage resistant and collision resistant hash function

Computationally infeasible

here means theoretically

computable but impractical

(except with negligible

probability) as it takes too

many resources and too much

time to compute!

● Collision resistance ⇒ 2nd pre-image resistance

Relations between the Properties

9IT-Security - Chapter 3 Symmetric Integrity Protection

● 2nd pre-image resistance ⇏ collision resistance

● Collision resistance ⇏ pre-image resistance

● Pre-image resistance ⇏ collision resistance

● 2nd pre-image resistance ⇏ pre-image resistance

● Pre-image resistance ⇏ 2nd pre-image resistance

⇒ A cryptographic hash function is always

2nd pre-image resistant as it is collision resistant

Note that some of these implications do

hold for a narrower definition of a hash

function mapping long fixed length-

messages to much shorter hashes

● Collision resistance ⇒ 2nd pre-image resistance

Example Proof of the Relations

10IT-Security - Chapter 3 Symmetric Integrity Protection

Proof by contradiction

► Assume h is collision resistant but not 2nd pre-image

resistant, then given 𝑥, ℎ(𝑥) we can find an 𝑥’ such that

ℎ(𝑥’) = ℎ(𝑥).

► Thus, we have found the collision (𝑥, 𝑥’)

► This contradicts our assumption which thus cannot hold

Collision resistance ⇏ pre-image resistance

Example Proof of the Relations

11IT-Security - Chapter 3 Symmetric Integrity Protection

Constructive proof

► Assume 𝑔 is collision resistant 𝑛-bit hash function

► Define ℎ(𝑥) = 5
1 ∥ 𝑥 if the bitlength of 𝑥 is 𝑛
0 ∥ 𝑔 𝑥 otherwiese

► Then ℎ(𝑥) is a (𝑛 + 1)-bit hash function that is collision

resistant but not pre-image resistant

A similar proof can be used to proof

that 2nd -pre-image resistance does not

imply pre-image resistance

Note that 𝑎 ∥ 𝑏 stands for the

concatenation of two bit-strings 𝑎 and 𝑏

Related Terms and Synonyms

12IT-Security - Chapter 3 Symmetric Integrity Protection

● Cryptographic hash function = Secure hash function

► pre-image resistant + collision resistant

► thereby also second-preimage resistant

● One way hash function

► pre-image resistant

● Second preimage resistant = weak collision resistant

► as it is implied by collision resistant

● Collision resistant = strong collision resistant

● Output of hash function = hash value = message digest = hash

Ideal Hash Function through Random Oracle Model

13IT-Security - Chapter 3 Symmetric Integrity Protection

● An ideal 𝑛-bit hash function ℎ would operate as follows

► Upon receipt of a message 𝑚 it has not seen before

§ Pick an 𝑛-bit value uniformly at random from {0,1}# and return it as ℎ 𝑚

► Upon receipt of a message 𝑚 it has seen before

§ Return the same value ℎ 𝑚 ,	that was picked when the message was new

● This ideal hash function is as pre-image and collision resistant as possible

● We can thus use it to determine an upper bound on

► how pre-image resistant a real-world hash function can be

► how collision resistant a real-world hash function can be

Pre-image attack: Given a hash value y

● Randomly select 𝑥 and compute ℎ(𝑥)

● Compare ℎ(𝑥) to 𝑦

► Stop if ℎ(𝑥) = 𝑦

► Return to Step 1 otherwise

● Requires 0.69 · 𝟐𝒏 = 𝑂(𝟐𝒏) hash computations to

find a pre-image with probability ½

Complexity of Attacks against Ideal Hash Function

14IT-Security - Chapter 3 Symmetric Integrity Protection

Collision attack:

● Randomly select 𝑥 and compute ℎ(𝑥), store result

● Compare each newly computed hash with the

values already stored

► Stop if ℎ(𝑥) = ℎ(𝑥’) and output (𝑥, 𝑥’)

► Return to Step 1 otherwise

● Requires 𝟏. 𝟏𝟖 · 𝟐𝒏/𝟐 = 𝑂(𝟐𝒏/𝟐) hash computations

to find a collision with probability ½

● Both statements on the complexities can be proven by the solution to flavors of the so-called Birthday Problem

The 1st birthday problem

► Given 𝑁 different balls in a jar and one fixed ball :𝑥

► How many times do we need to pull from the jar independently and uniformly at

random with put back until with probability 𝑃 we pulled :𝑥 at least once?

Solution

► If we chose one ball 𝑥, then the probability that 𝑥 ≠ :𝑥 is 1 − $
%

► The probability that we are unsuccessful 𝑘-times in a row is (1 − $
%
)𝑘

► The probability 𝑃 that we picked :𝑥 at least once if we pick 𝑘-times is thus

𝑃 = 1− (1 − $
%
)𝑘~ 1− 𝑒&

!
" (using the approximation 1 − 𝑥 ~ 𝑒&' (𝑥 ≪ 1))

► Thus 𝑘 ~ ln[1/(1 − 𝑃)]𝑁 and in particular for 𝐏 = 𝟏
𝟐
𝐰𝐞 𝐠𝐞𝐭 𝐤 ~ 𝟎. 𝟔𝟗 " 𝐍

Example Proof of Complexity of Pre-image Attack

IT-Security - Chapter 3 Symmetric Integrity Protection

Given 253 students, the

probability that at least

one of them has February

2nd as its birthday is 1/2

1st birthday problem

Birthday Paradoxon

► Given 𝑁 different balls in a jar

► How many times do we need to pull independently and uniformly at random with

put back from the jar until with probability 𝑃 we drew the same ball :𝑥 twice?

Solution

► We need to draw 𝑘 ~ 2 ln[1/(1 − 𝑃)]𝑁 times and in particular for 𝐏 =

𝟏
𝟐
𝐰𝐞 𝐠𝐞𝐭 𝐤 ~ 𝟏. 𝟏𝟖 " 𝑵 = 1.18 " 𝑵

𝟏
𝟐

Similar but Omitted: Proof of Complexity of Collision Attack

16

IT-Security - Chapter 3 Symmetric Integrity Protection

Given 23 students, the

probability that at least

two of share the same

birthday is 1/2

Birthday paradox

● MD5 and SHA-1 are not considered collision resistant anymore and should no longer be used

● SHA-2 not broken yet, but break needs to be feared

Examples for Hash Functions and their Properties

17IT-Security - Chapter 3 Symmetric Integrity Protection

Algorithm Maximum Message Size in Bit Block Size in Bit Rounds Size of Hash Value Year

MD5 264 512 64 128 1991

SHA-1 264 512 80 160 1993

SHA-2-224 264 512 64 224 2002

SHA-2-256 264 512 64 256

SHA-2-384 2128 1024 80 384

SHA-2-512 2128 1024 80 512

SHA-3-256 unlimited 1088 24 256 2015

SHA-3-512 unlimited 576 24 512

MD5

● 1993: Collision found by Boer and Bosselaers

● 1996: Attack that found a collision in a modified version of

MD5

● 2004: Wang et al. found collisions in MD5 and others

● 2005: Further make collision finding feasible on a laptop (8

hours to find a collision)

● 2006: Black et al. implemented a toolkit for collisions in MD5

● 2007: Stevens et al. find collisions in less than 10 seconds on a

on a 2.6Ghz Pentium 4

● 2009: MD5 attacks successfully used to fake certificates

● March 2011 IETF recommendation: MD5 should not be used

any more where collision resistance is needed

Example Time-Lines of Breaks of MD5 and SHA-1

18IT-Security - Chapter 3 Symmetric Integrity Protection

SHA-1

● 2004: 2nd preimage attack on SHA-1 in 2106

● 2005: Attack found by Wang et al. that finds a collision with

269 hash operations

● 2013: Attack by Stevens et al. finds identical prefix collision in

261 and chosen prefix collision in 277.1

● 2015: Attack by Stevens et al. that finds a Free-Start Collision

on 76-step SHA-1 in 250 hash operations

● 2017: Collision on SHA-1 found

● 2016/2017 SHA1 was phased out starting from 2016/17 by all

major browsers

● SHA-1 is not used anymore in the context of certificates

Overview

19IT-Security - Chapter 3 Symmetric Integrity Protection

● Definition and security of integrity protection

► Intuition

► More formal definition

● Message Authentication Codes

► Based on cryptographic hash functions

► Based on symmetric ciphers

● Combining Encryption and Integrity Protection

● Based on cryptographic hash functions

► Based on symmetric ciphers

What does
integrity

protection mean

How can we get
integrity

protection?

How can we
securely combine

encryption and
integrity Protection

How can
integrity

protection be
attacked

Modification Detection Codes

20IT-Security - Chapter 3 Symmetric Integrity Protection

Accept

Sent Message

Cryptographic
hash function

MDC of
sent message

Received Message

Cryptographic
hash function

Authenticated channel Immune to Changes

Insecure channel

Same?
Y Accept

MDC of received
message

Reject

Modification Detection Codes

can be implemented by

cryptographic hash functions

Message Authentication Codes

21IT-Security - Chapter 3 Symmetric Integrity Protection

● MACs require a secret key as additional input

● MAC functions can be constructed from cryptographic hash functions or block ciphers

Message

MAC function

MAC

MAC function

Same? Y Accept
Key

Key

Reject

● A Message Authentication Code (MAC) is a family of functions MAC𝑲 parameterized by a secret key

𝑲 with the following properties

► Ease of computation – given K and 𝒙,MAC𝑲(𝒙) is easy to compute

► Compression –MAC𝑲 maps an input 𝒙 of arbitrary finite bit-length to an output MAC𝑲(𝒙) of fixed bit-length 𝒏

► Computation resistance – for every 𝑲 and any given number of pairs (𝑥* , MAC𝑲(𝑥*)) it is without knowledge of 𝑲

computationally infeasible to compute any pair (𝒙,MAC𝑲(𝒙))with 𝒙 different from all 𝒙𝒊
§ Note that such pairs(𝑥$, MAC𝑲(𝑥$)) can typically be obtained by an attacker by eavesdropping

● MACs can be constructed from cryptographic hash functions or block ciphers

Definition of a Message Authentication Code

22IT-Security - Chapter 3 Symmetric Integrity Protection

● Let h be a cryptographic hash function, then for a message 𝑀 and key 𝐾

HMAC𝐾(𝑀) = ℎ(𝐾 ⊕ opad ∥ ℎ 𝐾 ⊕ ipad ∥ 𝑀)

where opad and ipad are constant values.

► ipad = 0x36….0x36

► opad = 0x5C…0x5C

HMAC: Bellare, Canetti, and Krawczyk 1996

23IT-Security - Chapter 3 Symmetric Integrity Protection

● HMAC is computation resistant if h is cryptographic hash function

► HMAC construction does not introduce any new risk

► ipad and opad guarantee that different keys are used in the inner and outer hash computation

§ The two keys will differ in half of the bits because of the choice of ipad and opad

● Unfortunately, no! Simple constructions like that are typically insecure

● Many hash functions (e.g., MD2, SHA-1, SHA-2) operate on blocks of 𝑀

► 𝑀 = 𝑀0 ∥ 𝑀1 ∥ … . ∥ 𝑀"

► ℎ operates on the first block 𝑀0 which is then used as first state to operate on 𝑀1,…

► Thus, ℎ(𝑀) is the initial state of ℎ(𝑀 ∥ 𝑋)

§ I.e., from known hashes of shorter messages, we can construct hashes of longer messages

► I.e., knowing ℎ(𝐾 ∥ 𝑀) we can compute ℎ(𝐾 ∥ 𝑀 ∥ 𝑋) without knowing the key

Can’t we just use ℎ(𝐾 ∥ 𝑀) as MAC?

24IT-Security - Chapter 3 Symmetric Integrity Protection

● CMAC uses a block cipher 𝐸𝐾 of block length 𝑏 = 64 or 𝑏 = 128

● A message M is split into 𝑛 blocks of length 𝑏:

𝑀 = 𝑀1 ∥ 𝑀2 ∥ … . ∥ 𝑀(

● If the last block 𝑀𝑛 is not of length 𝑏 it is padded with 10…0 until it is 𝑏 bit long

● CMAC computation is equivalent to

► Applying CBC Mode of encryption to the message with an IV of all zeros

► Except that the last block is additionally masked with

§ A sub-key K1 if Mn is of bit length b and with

§ A sub-key K2 if Mn was padded to be of full bit length b

► The resulting last ciphertext block is the CMAC of the message

CMAC: Constructing a MAC from a Block Cipher

25IT-Security - Chapter 3 Symmetric Integrity Protection

If Mn has block length b

Illustration of the CMAC Computation

26IT-Security - Chapter 3 Symmetric Integrity Protection

M1

EK

M2

EK

Mn-1

EK

Mn

EK

… K1

M1

EK

M2

EK

Mn-1

EK

Mn10…0

EK

… K2

CMAC(M)

CMAC(M)

⨁ ⨁

⨁ ⨁ ⨁

⨁

If Mn is padded to b bits

K1 and K2 are derived from K

► L= EK(0b), where 0b is the

bitstrings of b zeros

► R128 = 012010000111

► R64 = 05911011

● Then K1 is computed by

► If MSB1(L) = 0, K1 = L<<1

► Else K1 = L ⊕ Rb

● K2 is computed by

► If MSB1(K1) = 0, K2 = K1<<1

► Else K2 = (K1<<1) ⊕ Rb

● Let’s assume we have a one block message 𝑀 = 011

► then CMAC𝐾(𝑀) = 𝐸-(01110… 0 ⊕ 𝐾2)

● The one block message 𝑀’ = 01110…0 has CMAC𝐾(𝑀′) = 𝐸)(01110…0 ⊕ 𝐾1)

● So, if 𝐾1 and 𝐾2 were the same,

► then CMAC𝐾(𝑀) would be the same as CMAC𝐾 𝑀.

► Thus, an attacker could replace 𝑀 with 𝑀’ without the receiver noticing it

Rational for the Two Different Keys

27IT-Security - Chapter 3 Symmetric Integrity Protection

● Using a “pure” CBC-MAC is insecure!

► I.e., without the masking by 𝐾1 or 𝐾2 in the last step

● A CBC-MAC allows for forgery in some specific settings

► For example, let 𝑀 and 𝑃 be two one-block messages and 𝑀𝐴𝐶𝐾 be a CBC-MAC

§ 𝑀𝐴𝐶𝐾(𝑀) = 𝐸-(𝑀)

§ 𝑀𝐴𝐶𝐾(𝑃) = 𝐸-(𝑃)

► If an attacker observes 𝑀,𝑀𝐴𝐶𝐾(𝑀) and 𝑃, 𝑀𝐴𝐶𝐾 𝑃

§ he can forge a valid CBC-MAC on 𝑀 ∥ (𝑃 ⨁𝑀𝐴𝐶𝐾 𝑀)without knowing 𝐾 because:

§ 𝑴𝑨𝑪𝑲(𝑴 ∥ (𝑷 ⨁𝑴𝑨𝑪𝑲(𝑴))) = 𝐸&(𝐸& 𝑀 ⊕𝑃⊕𝑀𝐴𝐶𝐾(𝑀)) = 𝐸&(𝑃 ⨁𝑀𝐴𝐶&(𝑀) ⨁𝑀𝐴𝐶&(𝑀)) = 𝐸&(𝑃) -= 𝑴𝑨𝑪𝑲(𝑷)

● The masking with 𝐾1 and 𝐾2 solves this problem

Why Do we need the Masking with 𝐾1 and 𝐾2

28IT-Security - Chapter 3 Symmetric Integrity Protection

Challenge-based

SQN-based

Timestamp-based

● A MAC computed over a message alone

► does not protect against replay of the protected message

● Replay protection requires additional input

► Make a message sent twice distinguishable from a replayed

message

● Additional input

► Counters

§ Time stamps

§ Sequence numbers (𝑆𝑄𝑁)

► Random numbers as challenges (𝑅𝐴𝑁𝐷)

Replay Protection

29IT-Security - Chapter 3 Symmetric Integrity Protection

𝑀𝐴𝐶𝐾(𝑀 ∥timestamp)

𝑀𝐴𝐶𝐾(𝑀 ∥ SQN)

𝑀𝐴𝐶𝐾(𝑀 ∥ 𝑅𝐴𝑁𝐷)

𝑅𝐴𝑁𝐷

Replay Protection

IT-Security - Chapter 3 Symmetric Integrity Protection

Advantage Disadvantage Main Use

Timestamps No explicit initial value
needs to be known by
sender and receiver

Require time synchronization
between sender and receiver

Whenever sender and
receiver are time-
synchronized anyway

SQNs Simple, no time-
synchronization required

Requires (re-)synchronization
of SQN, Agreement on initial
value, Window of acceptable
SQNs if in-order delivery of
messages cannot be
guaranteed

Protect all traffic between
two entities once keys are
established

RAND Does not need
synchronization, requires
random number
generator

Requires receiver to challenge
the sender and thus adds
communication overhead

Mainly used as part of
authentication and key
agreement protocols,
where single messages
need to be protected
against replay

30

Overview

31IT-Security - Chapter 3 Symmetric Integrity Protection

● Definition and security of integrity protection

► Intuition

► More formal definition

● Message Authentication Codes

► Based on cryptographic hash functions

► Based on symmetric ciphers

● Combining Encryption and Integrity Protection

● Based on cryptographic hash functions

► Based on symmetric ciphers

What does
integrity

protection mean

How can we get
integrity

protection?

How can we
securely combine

encryption and
integrity Protection

How can
integrity

protection be
attacked

Combining Integrity Protection and Encryption

32IT-Security - Chapter 3 Symmetric Integrity Protection

Encrypt, then MAC: 𝐸).(M)	∥	𝑀𝐴𝐶)/(𝐸).(M))	

● Encrypt plaintext with 𝐾1

● Compute MAC on encrypted plaintext with 𝐾2

Encrypt and MAC: 𝐸-'(M)	∥	𝑀𝐴𝐶)/(M)

● Encrypt plaintext with 𝐾1

● Compute MAC on plaintext with 𝐾2

● MAC may reveal information on M

● MAC can only be checked AFTER decryption

MAC, then Encrypt: 𝐸-'(M ∥	𝑀𝐴𝐶)/(M))	

● Encrypt plaintext with 𝐾1

● Compute MAC on encrypted plaintext with 𝐾2

● MAC can only be checked AFTER decryption

Special authenticated modes of encryption

● E.g., Galois Counter Mode (GCM)

● E.g., Counter mode with CBC MAC (CCM)

● Typically take an encrypt then MAC approach

● Mode of encryption that also provides integrity protection

► Authenticated Encryption with Associated Data (AEAD) Mode

§ Allows for additional data to be integrity protected but not encrypted

● Based on a block cipher with 128-bit blocklength

● GCM can be used as MAC alone

► called GMAC then

● Properties

► Can use IVs of arbitrary length

► Easy to implement very efficiently in hardware

► Very good software performance

Example: Galois Counter Mode of Encryption (GCM)

33IT-Security - Chapter 3 Symmetric Integrity Protection

Data blocks to protect

𝑨𝟏 ∥ … ∥ 𝑨𝒎 ∥ 𝑷𝟏 ∥ … ∥ 𝑷𝒏

𝑨𝒊 (𝑖 = 1, … ,𝑚) are to be

integrity protected only

𝑷𝒊 (𝑖 = 1, … , 𝑛) are to be integrity

protected and encrypted

Illustration of GCM Encryption and Integrity Protection Operation

34IT-Security - Chapter 3 Symmetric Integrity Protection

P1

EK

C1

⊕

Y1

P2

EK

C2

⊕

Y2

P3

EK

C3

⊕

Y3Y0

EK

● H

A1

⊕
● H ● H ● H

⊕ ⊕

len(A) ∥ len(C)

● H

⊕

⊕ Tag

Data blocks to protect

𝑨𝟏 ∥ 𝑷𝟏 ∥ 𝑷𝟐 ∥ 𝑷𝟑
𝑨𝟏 integrity protected

𝑷𝒊 (𝑖 = 1,… , 3) integrity

protected and encrypted

𝒀𝟎 Initial counter value

𝒀𝒊 = 𝒀𝒊2𝟏 + 𝟏

𝑯 = 𝑬𝑲(𝟎𝟏𝟐𝟖)

● = Multiplication in GF(2128)

Illustration of GCM Decryption and Integrity Verification Operation

35IT-Security - Chapter 3 Symmetric Integrity Protection

P1

EK

C1

⊕

Y1

P2

EK

C2

⊕

Y2

P3

EK

C3

⊕

Y3Y0

EK

● H

A1

⊕
● H ● H ● H

⊕ ⊕

len(A) ∥ len(C)

● H

⊕

⊕ Tag

GCM in Formulars

36IT-Security - Chapter 3 Symmetric Integrity Protection

Data to be protected

𝑴 = 𝑨𝟏 ∥ … ∥ 𝑨𝒎 ∥ 𝑷𝟏 ∥ … ∥ 𝑷𝒏

Initialization:

𝑌0 Initial counter value

𝑌𝑖 = 𝑌425 + 1

𝐻 = 𝐸-(0567) wheer 0567 = 0⋯0

● = Multiplication in GF(2128)

Encryption: 𝐶𝑖	 = 	𝐸𝐾(𝑌4) ⊕ 	𝑃𝑖 for 𝑖 = 1, … , 𝑛

Integrity Protection: 𝑇0 = 	0

 𝑇𝑖 = (𝑇789⊕𝐴𝑖) ● 𝐻 for 𝑖 = 1, … ,𝑚

 𝑇9:4 = (𝑇:;789⊕𝐶𝑖)● 𝐻 for 𝑖 = 1, … , 𝑛

𝑇:;(;9 = (𝑇:;(⊕ (𝑙𝑒𝑛(𝐴) ∥ 𝑙𝑒𝑛(𝐶))) ● 𝐻

𝐺𝑀𝐴𝐶𝐾(𝑀) = 𝑇:;(;9 ⊕ 𝐸𝐾(𝑌0)

Note: if 𝑃𝑛 is not of full block length, then 𝐶𝑛 is not of full block length
If 𝐴𝑚 or 𝐶𝑛 are not of full block length, they are padded with zeros in the 𝐺𝑀𝐴𝐶 computation

Z128

● GF(2128) is the finite field with 2128 elements

► It is unique up to isomorphism

● GCM uses the irreducible polynomial 𝑓(𝑥) = 1 + 𝑥 + 𝑥2 + 𝑥7 + 𝑥128

● Identify each 128-bit string 𝑎 = 𝑎0… 𝑎127 with the polynomial 𝑎(𝑥) = ∑7?@9AB 𝑎𝑖𝑥𝑖

● Multiplication of 𝑎 and 𝑏 in GF(2128) is then defined as

► bit string representation of 𝑎 𝑥 / 𝑏(𝑥) mod f:

(∑7?@9AB 𝑎𝑖𝑥𝑖) ·(∑7?@9AB 𝑏𝑖𝑥𝑖) mod 𝑓

Reminder: Multiplication in GF(2128)

37IT-Security - Chapter 3 Symmetric Integrity Protection

● Message Authentication Codes provide integrity protection

► MACs can be constructed from cryptographic hash functions: HMAC

► MACs can be constructed from block ciphers: CMAC

► Simple constructions like ℎ(𝑀 ∥ 𝐾) or CBC-MAC are insecure

● Cryptographic hash functions

► Are pre-image resistant and collision resistant

► Finding a pre-image with probability ½ requires at most 𝑂(𝟐𝒏) hash computations for an ideal hash function

► Finding a second pre-image with prob. ½ requires at most 𝑂(𝟐𝒏) hash computations

► Finding a collision with prob. ½ requires at most at most 𝑂(𝟐𝒏/6) hash computations

● Replay protection requires additional input to an integrity protection mechanism

► E.g., a counter, a time stamp, or a random number selected by the receiver

Summary

38IT-Security - Chapter 3 Symmetric Integrity Protection

● Securely combining encryption and integrity protection

► Requires an encrypt-then-MAC type of an approach

§ Special modes of encryption which also provide integrity protection use this as well

► Other approaches are insecure or unnecessarily expensive

● The GCM Mode of encryption is an example for an AEAD cipher

► Provides encryption and integrity protection

► Makes use of CTR mode for encryption

► Can additionally protect the integrity of data which is not encrypted

Summary

39IT-Security - Chapter 3 Symmetric Integrity Protection

● Johannes Buchmann, Einführung in die Kryptographie, Springer Verlag 2016

► Chapter 11 on Hash Functions and Message Authentication Codes

● W. Stallings, Cryptography and Network Security: Principles and Practice, 8th edition, Pearson 2022

§ Chapters 12: Message Authentication Codes

● Specifications

► HMAC: NIST Specification FIPS 198-1

§ https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.198-1.pdf

► CMAC:

► GCM and GMAC NIST Special Publication 800-38D

§ https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

References

40IT-Security - Chapter 3 Symmetric Integrity Protection

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.198-1.pdf

Prof. Dr.-Ing. Ulrike Meyer

IT-Security
Chapter 4: Asymmetric Cryptography

Public key encryption, Digital Signatures, Diffie-Hellman Key Agreement

● In the security mechanisms we covered so far

► Alice and Bob needed to share the same secret key

● In this chapter we learn how asymmetric cryptosystems work

► Alice can share a single public key with multiple other parties and keeps a private key to herself

► In an asymmetric encryption scheme,

§ anyone in possession of Alice’s public key can encrypt messages for Alice

§ but only Alice can (with the private key) decrypt messages

► In a digital signature scheme

§ only Alice can sign a messages

§ anyone in possession of the public key can verify a signature on a message

Overall Lecture Context

2IT-Security - Chapter 4 Asymmetric Cryptography

Overview

3IT-Security - Chapter 4 Asymmetric Cryptography

● Public Key Encryption Schemes

► Intuition

► RSA as encryption scheme

● Diffie-Helman Key Agreement

► Basic idea

► Man-in-the-middle attack

● Digital Signatures

► Intuition on integrity protection with digital

signatures

► RSA as signature scheme

► Digital signature standard

● Basic Number Theory

► Finite Fields, greatest common divisor,

Fermat’s theorem

► Factorization

► Discrete Logarithms

● Quantum Computers

Addition: ℤ! × ℤ!➝ ℤ! , $𝑎 + '𝑏 ∶= 𝑎 + 𝑏

Then, for all $𝑎, '𝑏 ∈ ℤ! it holds that

'𝑎 + '𝑏 = $𝑏 + '𝑎

($𝑎 + '𝑏) + ̅𝑐 = '𝑎 + ('𝑏 + ̅𝑐)

'0 +'𝑎 = '𝑎

'𝑎 + 𝑛 − 𝑎 = '𝑛 = '0

Modular Arithmetic and Residue Class Rings

4IT-Security - Chapter 4 Asymmetric Cryptography

Multiplication: ℤ!	× ℤ!	➝ ℤ!	, '𝑎 • '𝑏 ∶= 𝑎𝑏

Then, for all $𝑎, '𝑏 ∈ ℤ!	it holds that

'𝑎 • '𝑏 = '𝑏 • '𝑎

($𝑎 • '𝑏) • ̅𝑐 = '𝑎 • ('𝑏 • ̅𝑐)

'1 • '𝑎 = '𝑎

'𝑎 is called invertible mod𝑛 if there is an �̅�

∈ ℤ!	such that '𝑎 • �̅� = '1

Let ℤ𝒏	 = {$𝟎, $𝟏, $𝟐, …, 𝒏 − 𝟏} with '𝑘 = 𝑥 ∈ ℤ 𝑥 mod𝑛 = 𝑘}

Thus, (ℤ𝒏	, +, •) forms a commutative ring with 1

For ease of reading, we
will denote !𝑘 as 𝑘 mod 𝑛
in the rest of this lecture

Example: Addition and Multiplication in ℤ𝟔

5IT-Security - Chapter 4 Asymmetric Cryptography

+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

• 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 1 2 3 4 5

2 0 2 4 0 2 4

3 0 3 0 3 0 3

4 0 4 2 0 4 2

5 0 5 4 3 2 1

● Invertible in ℤ𝟔:

► 1, 5

● Not invertible in ℤ𝟔:

► 0, 2, 3, 4

● Not all elements of ℤ𝟔 \ {0}

are invertible

⇒(ℤ𝟔 , +, •) is a ring but not

a finite field

Example: Addition and Multiplication in ℤ𝟓

6IT-Security - Chapter 4 Asymmetric Cryptography

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

• 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

● Invertible in ℤ𝟓:

► 1, 2, 3, 4

● Not invertible in ℤ𝟓:

► 0

● All elements of ℤ𝟓 \{0} are

invertible

⇒(ℤ𝟓 , +, •) is a finite field

Let 𝐠𝐜𝐝(𝒏, 𝒌) denote the greatest common divisor of 𝒏 and 𝒌

Then there are integers 𝒙, 𝒚 such that 𝒙𝒏 + 𝒚𝒌 = 𝐠𝐜𝐝(𝒏, 𝒌)

Extended Euclidian Algorithm

7IT-Security - Chapter 4 Asymmetric Cryptography

Euclidian algorithm computes gcd(𝑛, 𝑘)

Input: integers 𝑘, 𝑛 with 𝒏 > 𝒌 > 1

Set 𝑟0 = 𝑛 , 𝑟1 = 𝑘

WHILE 𝑟!"# > 0

Compute 𝑞!"$, 𝑟!"# with 𝑟𝑖 = 𝑞!"$ 2 𝑟!"$ + 𝑟!"#

END(WHILE)

RETURN gcd(𝑛, 𝑘) = 𝒓𝒊"𝟏

Extended Euclidian algorithm

Additionally computes 𝑥, 𝑦

Set 𝑢0 = 𝑣1 = 1, 𝑢1 = 𝑣0 = 0

WHILE 𝑟!"# > 0

Compute 𝑢!"#= 𝑢! – 𝑞!"$ 2 𝑢!"$

Compute 𝑣!"#= 𝑣!– 𝑞!"$ 2 𝑣!"$

END(WHILE)

RETURN 𝒙 = 𝒖𝒊"𝟏 and y = 𝒗𝒊"𝟏

Example

8IT-Security - Chapter 4 Asymmetric Cryptography

Euclidian algorithm to compute gcd(595, 408)

Set 𝑟0 = 595 , 𝑟1 = 408

𝑟0 = q1 2 𝑟1 + 𝑟2

595 = 1 2 408 + 187

𝑟1 = q2 2 𝑟2 + 𝑟3

408 = 2 ⋅ 187 + 34

𝑟2 = q3 2 𝑟3 + 𝑟4

187 = 5 ⋅ 34 + 𝟏𝟕

𝑟2 = q3 2 𝑟3 + 𝑟5
34 = 2 2 17 + 𝟎

⇒ 𝐠𝐜𝐝(𝟒𝟎𝟖, 𝟓𝟗𝟓) = 17

Extended Euclidian algorithm additionally computes 𝑥, 𝑦

Set 𝑢0 = 𝑣1 = 1, 𝑢1 = 𝑣0 = 0

𝑢2 = 𝑢0 − 𝑞1 𝑢1 𝑣2 = 𝑣0 − 𝑞1 𝑣1

𝑢2 = 1 – 1 2 0 = 1 𝑣2 = 0 − 1 2 1 = −1

𝑢3 = 𝑢1 − 𝑞2 𝑢2 v3 = 𝑣1 − 𝑞2 𝑣2

𝑢3 = 0 – 2 2 1 = −2 𝑣3 = 1 − 2 2 (−1) = 3

𝑢4 = 𝑢2 − 𝑞3 𝑢3 v4 = 𝑣2 − 𝑞3 𝑣3

𝑢4 = 1 – 5 2 (−2) = 11 𝑣4 = −1 − 5 2 3 = −16

⇒			𝟏𝟏 2 𝟓𝟗𝟓 + (−𝟏𝟔) 2 𝟒𝟎𝟖 = 𝟏𝟕

Observation: gcd(𝑛, 𝑘) = gcd(𝑛 − 𝑘, 𝑘)

Proof:

► If 𝑑 divides 𝑛 and 𝑘 , then there are 𝑟, 𝑠 with 𝑛 = 𝑟𝑑 and 𝑘 = 𝑠𝑑

► Thus 𝑛 − 𝑘 = (𝑟 − 𝑠)𝑑, so that 𝑑 also divides 𝑛 − 𝑘

► Thus, any divisor of 𝑛 and 𝑘 also divides 𝑛 − 𝑘

► Vice verse if 𝑑|𝑘 and 𝑑| 𝑛 − 𝑘, then there are 𝑤, 𝑡 with 𝑛 − 𝑘 = 𝑤𝑑 and 𝑘 = 𝑡𝑑

► Thus 𝑛 = 𝑛 − 𝑘 + 𝑘 = (𝑤 + 𝑡)𝑑 and any divisor of 𝑛 − 𝑘 and 𝑘 also divides 𝑛

Consequence: gcd 𝑛, 𝑘 = gcd 𝑛 mod 𝑘 , 𝑘 ⇒ gcd 𝑛, 𝑘 = gcd 𝑟2, 𝑘 = gcd 𝑟2, 𝑟𝟑 …

Applying this repeatedly until the remainder 𝑟&'(= 0 gives us 𝑟&') = gcd 𝑟&*), 𝑟& = gcd 𝑛, 𝑘

Correctness of the Euclidian Algorithm

9IT-Security - Chapter 4 Asymmetric Cryptography

Existence of Multiplicative Inverses

10IT-Security - Chapter 4 Asymmetric Cryptography

𝒂 ∈ ℤ! is invertible mod𝑛 ⇔ 𝒂 and 𝑛 are relatively prim ⇔ 𝐠𝐜𝐝 𝒏, 𝒂 = 1

Proof of “⇒” : Assume a is invertible

⇒ there is an integer 𝑥 such that 𝑥𝑎 = 1mod𝑛

⇒ there is an integer 𝑘 such that 𝑥𝑎 = 1 + 𝑘𝑛

⇒ there is an integer k such that 𝑥𝑎 + – 𝑘 𝑛 = 1

Now if there was an integer 𝑑 s.t. 𝑑|𝑎 and 𝑑|𝑘

⇒ 𝑑| 𝑥𝑎 + – 𝑘 𝑛 and thus: 𝑑| 1

⇒ 𝑑 = 1 and thus 𝑎 and 𝑛 are relatively prime

Proof of “⇐”: Assume 𝑎 and 𝑛 are relatively prime.

Then gcd(𝑎, 𝑛) = 1

⇒ there are integers 𝑥, 𝑦 such that 𝑥𝑎 + 𝑦𝑛 = 1

⇒ 𝑥𝑎 = 1 − 𝑦𝑛 = 1 mod 𝑛

⇒ 𝑥 is the inverse of 𝑎 mod 𝑛

ℤ!∗ ≔ Set of invertible elements in ℤ!	

For 𝑝 prime, ℤ,∗ = ℤ, \ {0} and (ℤ, , + , •) is a field

● The number ℤ!∗ of invertible elements of ℤ! is called 𝜑 𝒏

● For a prime number 𝑝 it holds that 𝜑(𝒑) = 𝒑 − 1

► All elements of ℤ) \ {0} are invertible mod 𝒑

⇒ 𝜑(𝒑) = 𝒑 − 1

● If 𝑛 = 𝑝𝑞where 𝑝 and 𝑞 are two different prime numbers, then

𝜑 𝒏 = (𝒑 − 1)(𝒒 − 1)

► Not invertible: 𝑝, 2𝑝, 3𝑝, … , (𝑞 − 1)𝑝, 𝑞𝑝 → 𝑞 elements

► Not invertible: q, 2𝑞, … , (𝑝 − 1)𝑞 → another 𝑝 − 1 elements

► The other 𝑛 – 𝑞 − (𝑝 − 1) = 𝑛 – 𝑞 − 𝑝 + 1 elements are invertible

⇒𝜑 𝒏 = (𝒑 − 1)(𝒒 − 1)

Euler’s 𝞅 function

11IT-Security - Chapter 4 Asymmetric Cryptography

Examples:

ℤ5
* = {1, 2, 3, 4},

ℤ4
* = {1, 3},

ℤ10
* = {1, 3, 7, 9}

Euler’s theorem:

For any 𝑎 ∈ ℤn
*: 𝑎-(!) = 1 mod 𝑛

Euler’s Theorem

12IT-Security - Chapter 4 Asymmetric Cryptography

Proof:

► If 𝑎, 𝑏 ∈ ℤn
∗, then 𝑎 2 𝑏 ∈ ℤn

∗

► Multiplying all elements of ℤn
∗ with some 𝑎 ∈ ℤn

∗ just

reorders them:

§ Assume 𝒙 is the product of all different 𝒙1, … , 𝒙𝜑 𝑛 ∈ ℤn
∗

§ Then, for any 𝑎 ∈ ℤn
: 𝑎𝑥1𝑎𝑥2…𝑎𝑥(,) = 𝑎*(,)𝑥 = 𝑥

– otherwise 𝑎𝑥𝑖 = 𝑎𝑥𝑗 for some 𝑖 ≠ j

§ Multiplying the above equation with 𝑥*+ on both sides yields

𝑎,(.) = 1mod 𝑛

Consequence:

For any 𝑎 ∈ ℤn
*and any integer 𝑠 it holds that

𝑎- ! 0') = 𝑎 mod 𝑛

Generalization:

Let 𝑛 = 𝑝𝑞 where 𝑝 and 𝑞 are two different prime numbers then

for all 𝑎 ∈ ℤ! it holds that 𝑎- ! ') = 𝑎 mod 𝑛

Generalization of Euler’s Theorem

13IT-Security - Chapter 4 Asymmetric Cryptography

► Consequently, 𝑟𝑝 = 𝑠𝑞 such that 𝑞 | 𝑟

► So, there is an integer 𝑙 with 𝑟 = 𝑙𝑞

► Thus, 𝑎, . 0+ = 𝑎 + 𝑟𝑝 = 𝑎 + 𝑙𝑞𝑝 = a + 𝑙𝑛

⇒ 𝑎* , "$ = 𝑎 mod 𝑛

Proof: For 𝑎 = 0 the equation obviously holds

For all invertible 𝑎 ∈ ℤ,	we already proofed it on the last slide

So, lets assume an 𝑎 ∈ ℤ,	that is not invertible

► Then it is either divisible by 𝑝 or by 𝑞 (or both but then 𝑎 = 0).

► Let’s assume 𝑎 is not divisible by 𝑝 but divisible by 𝑞.

► Then, 𝑎1*+ = 1mod 𝑝 and 𝑎2*+ = 0mod 𝑞

► Thus, 𝑎, . 0+ = (𝑎1*+)2*+𝑎 = 𝑎 mod 𝑝 and 𝑎, . 0+ = (𝑎2*+)1*+𝑎 = 𝑎 mod 𝑞

► Thus, there are integers 𝑟 and 𝑠 with 𝑎, . 0+ = 𝑎 + 𝑟𝑝 and 𝑎, . 0+ = 𝑎 + 𝑠𝑞

Hardness of Factorization

► No known polynomial time algorithms for

factorization on classical computers

► Best current algorithms for classical

computers have sub-exponential run-time

§ Pollard’s Rho Method

§ Quadratic Sieve

§ Number Sieve

§ …

The Factorization Problem

14IT-Security - Chapter 4 Asymmetric Cryptography

Definition

Given a composite integer 𝑛, find a non-

trivial factor of 𝑛

● The security of many asymmetric cryptosystems is based on the hardness of the discrete

logarithm problem or the decisional Diffie-Hellman problem

● Relation between the two problems

► If in a group the discrete logarithm problem can be solved, the DDH problem can also be solved

The Discrete Logarithm Problem

15IT-Security - Chapter 4 Asymmetric Cryptography

Definition DL Problem

Given a cyclic group 𝐺, a generator 𝑔 ∈

𝐺, and 𝑔𝑥 but not 𝑥, find the discrete

logarithm 𝑥.

Definition Decisional Diffie-Hellman Problem

Given Given a cyclic group 𝐺, a generator 𝑔 ∈ 𝐺,

and 𝑔𝑥 , 𝑔𝑦 , 𝑔1 but not 𝑥, y, z, decide if 𝑔𝑥 y = 𝑔𝑧
⇒

Overview

16IT-Security - Chapter 4 Asymmetric Cryptography

● Public Key Encryption Schemes

► Intuition

► RSA as encryption scheme

● Diffie-Helman Key Agreement

► Basic idea

► Man-in-the-middle attack

● Digital signature schemes

► Intuition

► RSA as signature scheme

► Digital signature standard

● Basic Number Theory

► Finite Fields, greatest common divisor,

Fermat’s theorem

► Factorization

► Discrete Logarithms

● Quantum Computers

Note: The definition of an encryption scheme presented in Chapter 2 also holds for asymmetric encryption!

Intuition Public Key Encryption

17IT-Security - Chapter 4 Asymmetric Cryptography

Encryption
algorithm

Ciphertext

Plaintext

Decryption
algorithm

Ciphertext

Insecure channel

Bob’s Public Key

Plaintext

Bob’s Private Key

● Alice wants to send a confidential

plaintext to Bob

● Alice has an authentic copy of Bob’s

public key

● Alice uses Bob’s public key to

encrypt plaintext to ciphertext

● Bob uses his private key to decrypt

ciphertext to plaintext

● Decryption is ”difficult” without the

private key

● First asymmetric encryption scheme invented in 1977

► By Ron Rivest, Adi Shamir, and Leonard Adleman at MIT

► Original idea of asymmetric encryption goes back to Diffie and

Hellman, though

● Patented from 1983 to 2000

● Supports different key lengths and variable block sizes

► Currently, 2048 bit keys are considered sufficient

► Implies a block length of 2048 bit

● Requires plaintext blocks to be represented as integers

► Requires a coding scheme that converts bit strings in integers

RSA

18IT-Security - Chapter 4 Asymmetric Cryptography

Public Key

► Randomly select two different large prime

numbers 𝑝, 𝑞

► Set 𝑛 ∶= 𝑝𝑞

► Chose 𝑒 ∈ ℤ, such that 𝑒 is invertible mod 𝜑 𝑛

► Set public key to (𝑛, 𝑒)

Private Key

► Compute 𝑑 ∈ ℤ, such that 𝑒𝑑 = 1mod 𝜑 𝑛

§ ∃ integer 𝑘 such that 𝑒𝑑 = 1 + 𝑘 𝜑 𝑛

► Set private key to 𝑑

RSA Key Generation

19IT-Security - Chapter 4 Asymmetric Cryptography

Side Notes

► Large prime numbers can be found by

§ Choosing random numbers of appropriate size

§ Testing for primality with probabilistic primality

tests

► If the desired bit length of the modulus is 𝑘 than

𝑝 and 𝑞 should be 𝑘/2-bit prime numbers

► Choose 𝑒 ∈ ℤ,	randomly; check if gcd(𝑒, 𝑛) = 1

► Compute 𝑑 from 𝑒 with the Extended Euclidian

Algorithm

RSA Operation

20IT-Security - Chapter 4 Asymmetric Cryptography

Encryption

For a public RSA key 𝑝𝑘 = (𝑒, 𝑛),

𝐸𝑝𝑘 ∶ ℤ𝑛 → ℤ𝑛

𝐸𝑝𝑘 (𝑚) = 𝑐 = 𝑚3 𝑚𝑜𝑑 𝑛

Decryption

For the corresponding private RSA key 𝑠𝑘 = 𝑑

𝐷𝑠𝑘 ∶ ℤ𝑛 → ℤ𝑛
𝐷𝑠𝑘 𝑐 = 𝑐4 = 𝑚 𝑚𝑜𝑑 𝑛

Small Example:

Key generation:

Let 𝑝 = 3, 𝑞 = 5, then 𝑛 = 𝑝𝑞 = 15

𝜑(𝑛) = 2 2 4 = 8

Chose 𝑒 = 3 , then 𝑒 is invertible mod 𝜑(𝑛) as 8 and 3

are relatively prime

Setting 𝑑 = 3 we get 𝑒𝑑 = 9 = 1 mod 8

Encryption of 𝒎 = 𝟕:

𝑚𝑒 mod 𝑛 = 73mod 15 = 343 mod 15 = 13

Decryption of 𝒄 = 𝟏𝟑:

𝑐𝑑 mod 𝑛 = 132 mod 15 = 2197 mod 15 = 7

Correctness of RSA

For any ciphertext 𝑐 ∈ ℤ!	:

𝑐3 =𝑚43mod 𝑛 = 𝑚- ! 5') mod 𝑛 = 𝑚 mod 𝑛

● RSA Encryption and Decryption: 𝒙𝑘 mod 𝒏

● “Naïve” modular exponentiation

► Requires 𝑘 modular multiplications

► Problem: the size of the exponent is of the

same order as the size of the modulus 𝒏

► Naïve modular exponentiation is not

efficient

Efficient Modular Exponentiation

21IT-Security - Chapter 4 Asymmetric Cryptography

● More efficient modular exponentiation

● Idea: Use the binary representation of 𝑘

► 𝑘 = ∑ 𝑘!2! = 𝑘9 + 2(𝑘$ + 2(𝑘# + ⋯) ⋯)

where𝑘! ∈ {0,1}

► Then we get 𝑥: = ∏𝑥:' #'

► So, all we need to do is square and multiply

Example

► 𝑘 = 37 = 1 + 2# + 2;

► So 𝑥<= = 𝑥 2 𝑥#(2 𝑥#) = ((((𝑥#)#)#𝑥)#)#𝑥

► Two multiplications by 𝑥 and 5 squares

Theorem:

Let 𝑝, 𝑞 be prime numbers and 𝑛 = 𝑝 n 𝑞

Then 𝑛 can be efficiently factorized iff 𝜑 𝑛 can be computed efficiently

RSA Security (1)

22IT-Security - Chapter 4 Asymmetric Cryptography

Factorizing 𝑛 is equivalent to computing 𝜑 𝑛

Proof:

“⟹ ”: If 𝑛 can be efficiently factorized then 𝑝 and 𝑞 can

efficiently be computed from 𝑛 and therefore

𝜑(𝑛) = (𝑝 − 1) n (𝑞 − 1) is efficiently computable

“⟸“: If 𝜑(𝑛) is known, then one can compute 𝑝 and q

from the two equations 𝑛 = 𝑝 n 𝑞 and 𝜑(𝑛) = (𝑝 − 1) n (𝑞 − 1)

Theorem:

Let 𝑝, 𝑞 be prime numbers and 𝑛 = 𝑝 n 𝑞 and (𝑒, 𝑛) a public RSA key and 𝑑 the

corresponding private key. Then d can be efficiently computed from (𝑒, 𝑛) iff 𝑛 can

be factorized efficiently.

RSA Security (2)

23IT-Security - Chapter 4 Asymmetric Cryptography

Computing 𝑑 is equivalent to factorizing 𝑛

Proof:
“⟹ ”: There is a probabilistic polynomial-time algorithm that

computes 𝑝 and 𝑞 from 𝑑, 𝑒, and 𝑛

“⟸“: clear: if we can factorize 𝑛 we have 𝑝 and 𝑞 and can

compute 𝜑(𝑛) and can thus compute 𝑑 as the inverse of e

mod 𝜑(𝑛)

Summary:

► Compute a private RSA key 𝑑 from public key (𝑒, 𝑛) is equivalent to factorizing 𝑛

► Factorizing 𝑛 is equivalent to computing 𝜑(𝑛)

RSA Security (3)

24IT-Security - Chapter 4 Asymmetric Cryptography

It is still unclear if there is a way to decrypt RSA-encrypted messages
without knowledge of the private key d

Recall Hardness of Factorization:

► For classical computers, there is currently no polynomial-time algorithm for factorization

Recall from Chapter 2: chosen plaintext attack against a cipher

► Attacker can obtain ciphertext for plaintexts of its choice

Chosen Plaintext Attack Against RSA

25IT-Security - Chapter 4 Asymmetric Cryptography

Example: RSA can always be attacked in a chosen plaintext setting

► Any attacker with access to the public key (𝑒, 𝑛) can generate ciphertexts for plaintexts

of its choice

§ Attacker choses 𝑚 and computes 𝑐 = 𝑚7 mod 𝑛

For deterministic asymmetric ciphers we always need to consider a chosen plaintext setting as realistic

Semantic Security

26IT-Security - Chapter 4 Asymmetric Cryptography

Definition: Semantic Security

► Assume a challenger choses two plaintexts 𝑚$ and 𝑚#

► He encrypts the plaintexts with a public key 𝑝𝑘 𝑐$ = 𝐸): 𝑚$ and 𝑐# = 𝐸):(𝑚#)

► He then provides 𝑚$, 𝑚# , 𝑐$, 𝑐# and 𝑝𝑘 to an adversary

► Then the public key encryption schemes is said to be semantically secure

§ if the adversary cannot guess with a probability larger than ½ which ciphertext encrypts which

plaintext

Deterministic asymmetric ciphers like (textbook) RSA are not semantically secure

● The Optimal Asymmetric Encryption Padding OAEP

► Converts message 𝑀 into encoded messages 𝐸𝑀

► Uses random seed to make RSA semantically secure

● Notations

► 𝑀: bit-string message to encrypt

► ℎ: hash function

► 𝑠𝑒𝑒𝑑: random seed, same length as output of ℎ

► 𝐿: optional label, empty string by default

► MGF: mask generation function

► Padding with zeros:

§ let 𝑛 be a 𝑘 -byte modulus, then 𝑘 − |𝑀| − 2|ℎ(𝐿)| − 2

bytes of zero bytes are used as padding

Turning RSA into a Semantically Secure Cipher with OAEP

27IT-Security - Chapter 4 Asymmetric Cryptography

ℎ(𝐿) 0 … . 0 0𝑥01 𝑀

𝑠𝑒𝑒𝑑

0𝑥00 𝑚𝑎𝑠𝑘𝑒𝑑𝑆𝑒𝑒𝑑 𝑚𝑎𝑠𝑘𝑒𝑑𝑀’

𝑴’ =

⊕

⊕

𝑬𝑴 =

MFG

MFG

● Idea

► Whenever RSA is used,

§ keys must be generated

► Whoever implements these key generation

§ can manipulate the code such that keys

generated with it include a backdoor

► This backdoor allows him to

§ retrieve the private key corresponding to a

public key generated with his implementation

Backdoors in Key Generation

28IT-Security - Chapter 4 Asymmetric Cryptography

● Underlining Model

► Manufacturer (Attacker)

§ Designer of the backdoor

§ Integrates the backdoor in the key generation code

► User (Victim)

§ In possession of a device or piece of code for key generation, e.g.

for RSA, manipulated by the manufacturer

§ Can observe public and private keys generated by his device

► External attacker

§ Can observe public keys used by the user

Naïve RSA Backdoor

► Key generation code with backdoor

§ Fix a prime number 𝒑

§ Choose a second prime number 𝒒 at random

§ Set 𝒏 = 𝒒𝒑

§ Select 𝒆 relatively prime to 𝝋(𝒏) and 𝒅 such that

𝒆𝒅 = 𝟏𝐦𝐨𝐝𝝋(𝒏)

Backdoor for RSA Key Generation

29IT-Security - Chapter 4 Asymmetric Cryptography

Unfortunately

► External attacker that observes two public keys

(𝒆, 𝒏) and (𝒆′, 𝒏′) can compute 𝒑 = gcd(𝒏, 𝒏′)

§ Thus, any external attacker that suspects this

backdoor can check for it

► User can check if the code/devices has this

backdoor in the same way

Exploiting the backdoor

► If manufacturer sees that user uses (𝒆, 𝒏)

§ compute 𝒒 by 𝒏/𝒑, from 𝒒, 𝒑, 𝒆 compute 𝒅

Backdoor for RSA Key Generation

30IT-Security - Chapter 4 Asymmetric Cryptography

Better RSA Backdoor

► Manufacturer’s RSA key pair (𝑬, 𝑵) and 𝑫

► Key generation code with backdoor

§ Pick random prime numbers 𝒑 and 𝒒 and set 𝒏

= 𝒑𝒒

§ Compute 𝒆 = 𝒑𝑬𝑚𝑜𝑑 𝑵

§ Check if 𝒆 is invertible mod𝜑(𝒏)

§ If yes, compute the inverse 𝒅 and output (𝒆, 𝒏), 𝒅

§ If no, pick a new prime number 𝒑 and start again

Exploiting the backdoor

► If manufacturer sees that client uses (𝒆, 𝒏)

► Compute 𝒆𝑫 𝑚𝑜𝑑 𝑵 = 𝒑 and can use this to

compute 𝒒 and then 𝒅

External attacker and user

► Cannot check for this backdoor as they do not

have the private key 𝑫

► To the user 𝒆 looks as if it was randomly picked

Backdoors like this exist for the key generation operations of many public key cryptosystems

Overview

31IT-Security - Chapter 4 Asymmetric Cryptography

● Public Key Encryption Schemes

► Intuition

► RSA as encryption scheme

● Diffie-Helman Key Agreement

► Basic idea

► Man-in-the-middle attack

● Digital signature schemes

► Intuition

► RSA as signature scheme

► Digital signature standard

● Basic Number Theory

► Finite Fields, greatest common divisor,

Fermat’s theorem

► Factorization

► Discrete Logarithms

● Quantum Computers

● Alice uses her private key to generate a signature on the message

● Anyone in possession of Alice’s public key can verify the signature

● Difficult to generate a message, signature pair that is accepted by the signature verification

► Without access to the private key

Intuition Digital Signatures

32IT-Security - Chapter 4 Asymmetric Cryptography

Signature

Accept

Alices’s private key

Reject

Alice’s public key

Signature
Generation

Signature
Verification

A digital signature scheme consists of

► A key generation algorithm that

§ generates a public key 𝑝𝑘 for signature verification

§ generates a private key 𝑠𝑘 for signature generation

► A family of signature generation algorithms sig𝑠𝑘 that

§ takes a message 𝑀 as input and outputs the signature sig𝑠𝑘(𝑀)

► A family of signature verification algorithms ver𝑝𝑘 that

§ takes a message 𝑀 and a signature sig𝑠𝑘(𝑀) as input and

§ returns success or failure

Definition Digital Signature Scheme

33IT-Security - Chapter 4 Asymmetric Cryptography

Key generation as in RSA Encryption

Public Key

► Randomly select two large prime numbers 𝑝, 𝑞

► Set 𝑛 ∶= 𝑝𝑞

► Chose 𝑒 ∈ ℤ, such that 𝑒 is invertible mod

𝜑 𝑛

► Set public key 𝑝𝑘 = (𝑛, 𝑒)

Private Key

► Compute private key 𝑠𝑘 = 𝑑 ∈ ℤ, such that

𝑒𝑑 = 1mod 𝜑 𝑛

Naïve RSA Signatures (Insecure!)

34IT-Security - Chapter 4 Asymmetric Cryptography

Signature generation

► signature 𝑠 on message 𝑚: 𝑠 = 𝑚4 mod 𝑛

Signature verification

► 𝑠3 = 𝑚43 ≟ 𝑚

Vulnerable to existential forgery

► Attacker can choose signature s and compute

𝑚 = 𝑠3 and then claim that (𝑚, 𝑠) is a valid

signature

Key generation as in Naïve RSA

Signature generation

► Let h be a publicly known cryptographic

hash function

► Signature 𝑠 on 𝑚 is 𝑠 = ℎ(𝑚)4

Signature verification

► On receipt of (�𝑚, ̅𝑠) verifier checks if

ℎ(�𝑚) ≟ ̅𝑠3 𝑚𝑜𝑑 𝑛

RSA Signature Scheme

35IT-Security - Chapter 4 Asymmetric Cryptography

Secure against existential forgery

► Attacker cannot find a message 𝑚 such that

ℎ 𝑚 = 𝑠3 as ℎ is pre-image resistant

Hashing before signing is also required for security
reasons in many other asymmetric signature schemes

Attacks on Digital Signatures

36IT-Security - Chapter 4 Asymmetric Cryptography

Power of attacker

► Key-Only Attack: Attacker only in possession of

the public verification key

► Known-Message Attack: Attacker observes

some message/signature pairs; tries to

generate another valid pair

► Chosen-Message Attack: Attacker can choose

messages and can make the signer sign them;

tries to generate another valid pair

Attack result

► Total break: (partial) recovery of the signature key

► Universal forgery: forge signatures on any

message of the attacker's choice

► Selective forgery: forge a signature on a specific

chosen message

► Existential forgery: merely results in some valid

message/signature pair not already known to the

adversary St
re

ng
th

 o
f a

tt
ac

ke
r i

nc
re

as
es

● Adopted as standard by NIST in 1994

● Standardized in FIPS 186

● Security is based on the DDH assumption

► Related to but strong than the Discrete Logarithm problem

● Can be defined over different cyclic groups for which DDH

assumption seems to hold, e.g.

► Cyclic sub-groups of order 𝑞 of ℤ)∗ , where p and q are prime

numbers where 𝑞 divides (𝑝 − 1)

● Variants for other cyclic groups exist

► E.g. ECDSA on specific elliptic curves over a finite field

Digital Signature Algorithm

37IT-Security - Chapter 4 Asymmetric Cryptography

Public parameters

► Two prime number p, q with q|(p-1)

► x ∈ ℤ1∗ such that 𝑔:= 𝑥
!"#
$ mod p ≠ 1

§ The smallest interger 𝑖 or which 𝑔- = 1𝑚𝑜𝑑 𝑝 is 𝑖 = 𝑞

§ Thus, 𝑔 generates a sub group of order q in ℤ.∗

► Cryptographic hash function ℎ

Private key

► Chose 𝑎 ∈ {1,… , 𝑞 − 1} uniformly at random and set 𝑠𝑘 = 𝑎

Public key

► Set A = 𝑔9 mod 𝑝 as public key 𝑝𝑘

Key Generation for DSA

38IT-Security - Chapter 4 Asymmetric Cryptography

Example

Parameters

► 𝑝 = 11, 𝑞 = 5

► Select 𝑥 = 2, then 𝑔 = 4

Private key

► Chose a = 3

Public key

► Set A = 𝑔? mod 𝑝 = 4< mod 11 = 9

Signature generation on message 𝑚

► Chooses k ∈ {1, … , 𝑞 − 1} uniformly at random

► Signer computes

r = (𝑔: mod 𝑝) mod 𝑞

s = 𝑘*+ ℎ 𝑚 + 𝑎𝑟 mod 𝑞

► Signature∶ sig𝑠𝑘 𝑚 = (𝑟, 𝑠)

DSA Operation

39IT-Security - Chapter 4 Asymmetric Cryptography

Signature verification

► Upon receipt of 𝑚, 𝑟, 𝑠 the verifier

► Checks if r ∈ {1, … , 𝑞 − 1} and s ∈ 1, … , 𝑞 − 1

► Computes 𝑢$ = ℎ 𝑚 𝑠@$mod 𝑞 , 𝑢# = 𝑟𝑠@$mod 𝑞

► Computes v = 𝑔A/ 𝐴A(mod 𝑝 mod 𝑞

► Accept signature if 𝑣 = 𝑟, reject otherwise

● Upon receipt of 𝑚, 𝑟, 𝑠 the verifier computes

v = 𝑔A/ 𝐴A(mod 𝑝 mod 𝑞

= 𝑔B C D0/ 𝐴ED0/ mod 𝑝 mod 𝑞

= 𝑔B C D0/ "?ED0/mod 𝑝 mod 𝑞

= 𝑔D0/ (B C "?E)mod 𝑝 mod 𝑞

= 𝑔D0/ D:mod 𝑝 mod 𝑞

= 𝑔D0/ D:mod 𝑝 mod 𝑞

= 𝑟

Correctness of Verification

40IT-Security - Chapter 4 Asymmetric Cryptography

g	was	selected	such	that	𝒈𝒒 = 1 mod 𝒑,	 thus
𝒈𝑘 mod 𝒑 = 𝒈𝒌 𝑚𝑜𝑑 𝒒mod 𝒑

Assume 𝒌 is used to sign two known messages 𝒎𝟏 and once for 𝒎𝟐, then

𝒓 = (𝒈𝒌𝑚𝑜𝑑 𝒑) 𝑚𝑜𝑑 𝒒 (same for both messages)

𝒔𝟏 = 𝒌@𝟏 ℎ 𝒎𝟏 + 𝒂𝒓 𝑚𝑜𝑑 𝒒

𝒔𝟐 = (𝒌@𝟏(ℎ(𝒎𝟐) + 𝒂𝒓)) 𝑚𝑜𝑑 𝒒

Thus, 𝒔𝟏 − 𝒔𝟐 = 𝒌
@𝟏(ℎ(𝒎𝟏) − ℎ(𝒎𝟐)) 𝑚𝑜𝑑 𝒒

and therefore: 𝒌 = (𝒔𝟏 − 𝒔𝟐)*𝟏(ℎ(𝒎𝟏) – ℎ(𝒎𝟐)) 𝑚𝑜𝑑 𝒒

And thus, 𝒂 = 𝒓*𝟏 𝒔𝟏𝒌 – ℎ 𝒎𝟏 𝑚𝑜𝑑 𝒒

I.e., private key 𝒂 can be computed by anyone observing the messages

and signatures if the same 𝑘 is used twice

Reusing 𝑘 leads to a total break of DSA

41IT-Security - Chapter 4 Asymmetric Cryptography

● MACs can provide

► Message integrity

► Origin authentication

● Require verifier to share a secret key with

MAC producer

MACs versus Digital Signatures

42IT-Security - Chapter 4 Asymmetric Cryptography

● Signature Schemes can provide

► Message integrity

► Origin authentication

► Broadcast authentication

► Non-repudiation

● Require verifier to obtain an authentic

copy of public key of signer

Overview

43IT-Security - Chapter 4 Asymmetric Cryptography

● Public Key Encryption Schemes

► Intuition

► RSA as encryption scheme

● Diffie-Helman Key Agreement

► Basic idea

► Man-in-the-middle attack

● Digital signature schemes

► Intuition

► RSA as signature scheme

► Digital signature standard

● Basic Number Theory

► Finite Fields, greatest common divisor,

Fermat’s theorem

► Factorization

► Discrete Logarithms

● Quantum Computers

● Oldest public key mechanism

► Invented in 1976

● Is a key establishment protocol by which two parties can

► Establish a symmetric secret key K

► Based on publicly exchanged values

● Security based on hardness of discrete logarithm problem

► Any polynomial-time algorithm that solves the DL problem also solves the

computational DH-problem:

§ Given a prime number 𝑝, a generator 𝑔 of ℤ1∗ , 𝑔9, 𝑔C find 𝐾 = 𝑔9C

► It is unknown if the computational DH-problem can be solved without

solving the DL problem

Diffie-Hellman (DH) Key Agreement

44IT-Security - Chapter 4 Asymmetric Cryptography

Public parameters

► Prime number 𝑝, generator 𝑔 of ℤ)∗

Private values

► Private DH-value of Alice

§ 𝑎 ∈ {2,… , 𝑝 − 2} chosen uniformly at random

► Private DH-value of Bob

§ 𝑏 ∈ {2,… , 𝑝 − 2} chosen uniformly at random

Public values

► Public DH-value of Alice 𝐴 = 𝑔? mod 𝑝

► Public DH-value of Bob 𝐵 = 𝑔G mod 𝑝

Diffie-Hellman Key Agreement

45IT-Security - Chapter 4 Asymmetric Cryptography

Choose 𝑎
Compute 𝐴 = 𝑔9 mod 𝑝

Choose 𝑏
Compute 𝐵 = 𝑔C mod 𝑝

𝐴

𝐵
Compute K= 𝐴C mod 𝑝

Compute K= 𝐵9 mod 𝑝

As 𝐴A mod 𝑝 = 𝑔BA = 𝑔AB = 𝐵B mod 𝑝

Alice and Bob now share the secret key K = 𝒈𝒂𝒃

Result

► A shares 𝑲𝟏 with attacker

§ but thinks she shares it with B

► B shares 𝑲𝟐 with attacker

§ but thinks he shares it with A

► A and B do not share key

§ but they think they do

⇒ Attacker can eavesdrop!

Man-in-the-Middle Attack

46IT-Security - Chapter 4 Asymmetric Cryptography

Choose 𝑎
Compute 𝐴 = 𝑔9

Choose 𝑐
Compute 𝐶 = 𝑔D

𝐴

𝐵

Compute𝑲𝟏 = 𝐴E
Compute𝑲𝟐 = 𝐵DCompute𝑲𝟏 = 𝐷9

𝐶

Choose 𝑏
Compute 𝐵 = 𝑔C

Choose 𝑑
Compute 𝐷 = 𝑔E𝐷

Compute𝑲𝟐 = 𝐶C

B thinks this
comes from A

A thinks this
comes from B

All computations are done mod 𝑝 and 𝑎, 𝑏, 𝑐, 𝑑 are chosen from {2,… , 𝑝 − 2}

Symmetric Cryptography

► More efficient

§ Often used to encrypt large amounts of data

► Higher number of secret keys required

§ 𝑛(𝑛 − 1)/2 keys required to enable pairwise

confidential communication between n parties

► Secret keys need to be distributed

§ Need to ensure confidentiality and

authenticity

Symmetric vs. Asymmetric Cryptography

47IT-Security - Chapter 4 Asymmetric Cryptography

Asymmetric Cryptography

► Less efficient

§ Rarely used to encrypt longer messages

► Lower number of private keys required

§ 𝑛 keys required in order to enable pairwise

confidential communication between n parties

► Only public keys need to be distributed

§ Need to ensure authenticity of public keys but

not confidentiality

In practice, the best of both worlds is often combined: asymmetric cryptography is used to
establish secret keys which are then used for symmetric encryption and integrity protection

Overview

48IT-Security - Chapter 4 Asymmetric Cryptography

● Public Key Encryption Schemes

► Intuition

► RSA as encryption scheme

● Diffie-Helman Key Agreement

► Basic idea

► Man-in-the-middle attack

● Digital signature schemes

► Intuition

► RSA as signature scheme

► Digital signature standard

● Basic Number Theory

► Finite Fields, greatest common divisor,

Fermat’s theorem

► Factorization

► Discrete Logarithms

● Quantum Computers

● 1994 Peter Shor developed two polynomial time quantum algorithms

► A factorization algorithm that can factorize large compound numbers

► A discrete logarithm algorithm that can compute the discrete logarithm 𝑥 of 𝑔𝑥 𝑚𝑜𝑑 𝑝 for a given prime

number 𝑝 and generator 𝑔

● All classical asymmetric schemes can be broken with a large enough quantum computer, e.g.

► RSA signature scheme and RSA encryption scheme

► DSA

► Diffie-Helman Key Agreement

► Elliptic Curve Cryptosystems lice ECDSA, ECDH

● Lead to NIST calls for quantum secure encryption, signature, and key agreement schemes

► New post quantum algorithms selected in 2022

Quantum Computers and Traditional Asymmetric Schemes

49IT-Security - Chapter 4 Asymmetric Cryptography

● Grover’s algorithm (1996) enables breaking symmetric encryption schemes like AES in 𝑂(𝟐𝒏/𝟐)

where n is the bit length of the key

► Thus, it is currently believed that doubling the key size for symmetric encryption suffices

● No known algorithm to find collisions for hash functions faster than on classical computers yet

► Cryptographic hash functions are currently believed not to be affected by quantum computers

Quantum Computers and Traditional Symmetric Schemes

50IT-Security - Chapter 4 Asymmetric Cryptography

● Asymmetric encryption schemes: confidentiality

► Most prominent example: RSA

§ Security depends on hardness of factorization

● Digital signature schemes: integrity protection

► Most prominent examples: RSA, DSS

§ Security of DSS depends hardness of computing discrete logarithms

► All signature schemes require hashing before signing

► Provide non-repudiation and broadcast integrity protection

§ which cannot be provided by symmetric integrity protection via MACs

Summary

51IT-Security - Chapter 4 Asymmetric Cryptography

● Diffie-Helman Key Agreement: establish secret key

► Can be used to establish a shared secret key for a symmetric scheme

► Is itself an asymmetric scheme

► Security depends on hardness of discrete logarithm

► Is in its basic version vulnerable to a man-in-the-middle attack

● All asymmetric schemes require authentic public keys

► Need to be able to obtain authentic copy of the public keys of other entities

● All classical asymmetric schemes can be broken by large enough quantum computers

Summary

52IT-Security - Chapter 4 Asymmetric Cryptography

● Johannes Buchmann, Einführung in die Kryptographie, Springer Verlag 2016

► Chapter 8

● W. Stallings, Cryptography and Network Security: Principles and Practice, 8th edition, Pearson 2022

► Chapter 9: Public Key Encryption and RSA

► Chapter 10: Other Public Key Cryptosystems
§ Diffie Hellman

► Chapter 13: Digital Signatures

References

53IT-Security - Chapter 4 Asymmetric Cryptography

Prof. Dr.-Ing. Ulrike Meyer

IT-Security
Chapter 5: Authentication and Key Establishment

● In the last chapters we covered

► Symmetric and asymmetric mechanisms to provide

► Integrity protection

§ Message Authentication Codes and digital signatures schemes

► Confidentiality

§ Symmetric and asymmetric encryption schemes

● All these mechanisms require keys to be distributed

► to the authentic entities

● In this chapter we learn how to

► authenticate entities, i.e., check that they are who they claim to be

► establish keys between different entities

Overall Lecture Context

2IT-Security - Chapter 5: Authentication and Key Establishment

Overview

3IT-Security - Chapter 5: Authentication and Key Establishment

● Building Blocks for Entity Authentication

► Definition of Entity Authentication

► MAC-based authentication

► Signature-based authentication

● Key Distribution with trusted Third Parties

► Key Distribution Centers

► Certificates and Public Key Infrastructures

● Authenticated Session Key Establishment

► Definitions around session key establishment

► Authenticated Diffie Hellman variants

► Session key establishment w-o DH

► Session Key derivation principles

● Password-based authentication

► Password-based user authentication

► Password-based authenticated key

establishment

► Dictionary attacks on password-based

authentication

Unilateral entity authentication of A to B

► A (claimant) proofs its identity to B (verifier)

► B is assured that A is currently interacting with B

Definition of Entity Authentication

4IT-Security - Chapter 5: Authentication and Key Establishment

Mutual authentication

► A authenticates to B and B authenticates to A

Objectives

► Correctness: A can always successfully

authenticate to B

► Resistance against transferability: After A

authenticated to B successfully, B cannot

authenticate as A to C (∗)

► Resistance against impersonation: C ≠ A cannot

make B believe that it is A (∗)

All three objectives still hold

► if an attacker has observed multiple

authentication instances between A and B

(∗) Except for with negligible probability: guessing is of course always possible

● Assume A and B have agreed upon a secret password when they last met

● Now A authenticates to B with the following protocol

Example

5IT-Security - Chapter 5: Authentication and Key Establishment

Hi, I’m Alice!

Oh, really? Proof it!

PasswordCorrect?

► Yes!

Resistant against transferability?

► Yes, at least if Alice does not use the password in multiple places

Resistant against impersonation?

► No! The password is sent in the clear so any eavesdropper can impersonate Alice after the first run of the protocol

Idea:

► B generates a fresh challenge

§ E.g., a random number or a time stamp (implicit challenge)

► A proofs its identity by computing a response that

§ Depends on the challenge and a secret

§ Secret can be a secret key shared with B, a private key of A,…

Challenge-Response Authentication

6IT-Security - Chapter 5: Authentication and Key Establishment

Hi, I’m Alice!

Oh, really? Here’s my Challenge

Response

Response Calculation must

guarantee that the objectives hold

Example Building Bocks for Unilateral Entity Authentication based on shared key K

7IT-Security - Chapter 5: Authentication and Key Establishment

𝑅𝐴𝑁𝐷

𝑀𝐴𝐶𝐾(𝑅𝐴𝑁𝐷)

Alice BobAlice Bob

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥
𝑀𝐴𝐶𝐾(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)

► Alice computes a 𝑀𝐴𝐶 on timestamp

► Sends timestamp and 𝑀𝐴𝐶 to Bob

► Bob verifies 𝑀𝐴𝐶 by computing 𝑀𝐴𝐶 on received

timestamp and comparing it to received 𝑀𝐴𝐶

► Bob checks if 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 is in an acceptable range

around Bob’s current time

► Bob selects a random number RAND as challenge

and sends it to Alice

► Alice computes a MAC on RAND using K

► Bob verifies that the received MAC corresponds to

the one he computes using RAND as input

Check 𝑀𝐴𝐶
Verify 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 is current

Check 𝑀𝐴𝐶 by computing it
on sent 𝑅𝐴𝑁𝐷

Requires time
synchronization

𝐾 𝐾 𝐾 𝐾

Unilateral authentication of A to B based on a private key 𝑠𝑘 of Alice assuming Bob knows Alice’s public key 𝑝𝑘

Example Building Bocks for Unilateral Entity Authentication

8IT-Security - Chapter 5: Authentication and Key Establishment

𝑅𝐴𝑁𝐷

𝑠𝑖𝑔𝑠𝑘(𝑅𝐴𝑁𝐷)

Alice BobAlice Bob

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥
sig𝑠𝑘(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)

► Alice computes a signature on the current

timestamp (implicit challenge) using 𝑠𝑘

► Sends the 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 and the signature to Bob

► Bob verifies signature with 𝑝𝑘 and checks if

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 is in an acceptable range

► Bob selects a random number 𝑅𝐴𝑁𝐷 as challenge

and sends it to Alice

► Alice computes a signature on 𝑅𝐴𝑁𝐷

► Bob verifies that the received signature is a

signature on the sent 𝑅𝐴𝑁𝐷

Check sig𝑠𝑘 with 𝑝𝑘
Verify 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 is current Verify 𝑠𝑖𝑔𝑠𝑘 𝑅𝐴𝑁𝐷

on sent 𝑅𝐴𝑁𝐷 with 𝑝𝑘

𝑝𝑘𝑝𝑘

● Mutual authentication of A to B and B to A based on a shared secret key K

Example Building Bocks for Mutual Entity Authentication

9IT-Security - Chapter 5: Authentication and Key Establishment

𝑅𝐴𝑁𝐷𝐵

𝑀𝐴𝐶𝐾(𝑅𝐴𝑁𝐷𝐴 ∥ RANDB) ∥ RANDA

Alice BobAlice Bob

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥
𝑀𝐴𝐶𝐾(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥ 𝐼𝐷𝐴)

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥
𝑀𝐴𝐶𝐾(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥ 𝐼𝐷𝐵) 𝑀𝐴𝐶𝐾(𝑅𝐴𝑁𝐷𝐵 ∥ RANDA)

Does work with signatures just as well

𝐾 𝐾 𝐾 𝐾

Simply combining the building blocks for unilateral authentication MAY NOT be SECURE

Example for Insecure Building Blocks for Mutual Authentication

10IT-Security - Chapter 5: Authentication and Key Establishment

𝑅𝐴𝑁𝐷

𝑀𝐴𝐶𝐾 𝑅𝐴𝑁𝐷

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥
𝑀𝐴𝐶𝐾(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥
𝑀𝐴𝐶𝐾(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝)

► Attacker could claim to be Bob and just reflect

Alice’s message to Alice

► Not impersonation resistant

► Need messages of Alice and Bob to be different

► Attacker could start a second run of the protocol by

reflecting RAND back to Bob

► Wait for Bob’s reply

► Then reflect the MAC computed by Bob back to Bob

𝑅𝐴𝑁𝐷

𝑀𝐴𝐶𝐾(𝑅𝐴𝑁𝐷)

Bob thinks this
is a new

authentication
started by Alice

Alice will see
that the

timestamp of
Bob is a little

behind hers but
may accept this

● Making A and B compute MACs on different messages, where each message contains input

controlled by the other part protects these building blocks from reflection attacks

Protection against Reflection Attacks

11IT-Security - Chapter 5: Authentication and Key Establishment

𝑅𝐴𝑁𝐷𝐵
? ? 	∥ 𝑅𝐴𝑁𝐷	?𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥

𝑀𝐴𝐶𝐾(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥ 𝐼𝐷𝐴)

𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥
𝑀𝐴𝐶𝐾(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ∥ 𝐼𝐷𝐴)

► Attacker can only reflect message including Alice’s

ID which will be detected by Alice

► Attacker can only reflect with the random number

in Bob’s order not in the order expected from Alice

Can’t compute
𝑀𝐴𝐶𝐾(𝑅𝐴𝑁𝐷𝐵 ∥ 𝑅𝐴𝑁𝐷)

𝑀𝐴𝐶𝐾(𝑅𝐴𝑁𝐷𝐵 ∥ 𝑅𝐴𝑁𝐷)

Overview

12IT-Security - Chapter 5: Authentication and Key Establishment

● Building Blocks for Entity Authentication

► Definition of Entity Authentication

► MAC-based authentication

► Signature-based authentication

● Key Distribution with trusted Third Parties

► Key Distribution Centers

► Certificates and Public Key Infrastructures

● Authenticated Session Key Establishment

► Definitions around session key establishment

► Authenticated Diffie Hellman variants

► Session key establishment w-o DH

► Session Key derivation principles

● Password-based authentication

► Password-based user authentication

► Password-based authenticated key

establishment

► Dictionary attacks on password-based

authentication

► Authentication exchange typically only guarantees that

one specific message originates from a particular entity

► If hash of previously sent messages is included, these

can be authenticated as well

► But: what about future messages exchanged? And what

about encryption?

● Could keep signing messages if signatures are used

► Very inefficient

● Could keep computing MACs with key K on all

messages

► Key K would be used repeatedly on lots of traffic

Entity Authentication Alone is useless!

13IT-Security - Chapter 5: Authentication and Key Establishment

Solution: Session Keys

► Establish new session keys for integrity

protection and encryption

► Thus, create independence across

communication sessions

► Limit amount of data protected under

the same key

A session key establishment protocol is a protocol

► that establishes a shared secret key between two

parties

Session Key Establishment Protocols

14IT-Security - Chapter 5: Authentication and Key Establishment

There are two types of key establishment protocols

► Key transport protocols

§ Key generated by one party, securely transported to the

other party

► Key agreement protocols

§ shared key is derived from input of bother parties, e.g.

like in the Diffie-Hellman key agreement protocol

Examples

► Simple key transport protocol

§ Assume A and B share a long-term key 𝐾

§ A selects a session key 𝑆𝐾

§ Computes 𝐸𝐾(𝑆𝐾) and sends it to B

§ B decrypts 𝐸𝐾(𝑆𝐾)with K and thus obtains 𝑆𝐾

► Diffie-Hellman key agreement (Chapter4)

§ Each party selects a random private value

§ Computes a public value based on private one

§ Parties exchange the public values

§ Each computes that key as function of own

private and other party’s public value

Authenticated key Establishment

► Entity authentication (see above)

► Implicit key authentication: a party is

assured that no other party but a

particular second party may gain access

to the established key

Objectives of Key Establishment Protocols

15IT-Security - Chapter 5: Authentication and Key Establishment

Additional Objectives

► Key freshness: a party is assured that the key is newly

generated and not a replayed old key

► Perfect forward secrecy: a future compromise of long-

term keys does not compromise past session keys

► Protection against known-key attacks: the

compromise of a past session key does not allow

§ a passive adversary to compromise future session keys

§ an active attacker to impersonate a party in the future

Explicit key authentication

► Implicit key authentication

► Key confirmation: a party is assured

that a second party has possession of

the established key
The objectives can hold for none, only one or both parties

● When analyzing the efficiency of protocols, we consider

► Number of messages exchanged between parties

► Bandwidth required by the messages (total number of bits transmitted)

► Complexity of computations that need to be carried out by the parties

► Possibility for pre-computation to reduce the online load during protocol

execution

Efficiency Considerations

16IT-Security - Chapter 5: Authentication and Key Establishment

Simple key transport protocol

► Assume A and B share a long-term key 𝐾

► A selects a session key 𝑆𝐾

► Computes 𝐸𝐾(𝑆𝐾) and sends it to B

► B decrypts 𝐸𝐾(𝑆𝐾) with K and thus obtains 𝑆𝐾

Example: Simple key transport protocol

17IT-Security - Chapter 5: Authentication and Key Establishment

Properties

► Implicit key authentication

§ Yes, from both parties’ point of view

► Key freshness

§ Yes, from A’s point of view

§ No from B’s point of view

► Perfect forward secrecy

§ No

► Protection against known keys

§ Past session keys have no influence on new future

ones

► Authenticated key establishment

§ No! No entity authentication (replay possible)

Choose 𝑆𝐾	
Computes 𝐸𝐾(𝑆𝐾)

𝐸𝐾(𝑆𝐾)

Decrypts 𝐸𝐾(𝑆𝐾)

𝐾𝐾

Simple key transport protocol

► Assume A and B share a long-term key 𝐾

► A selects a session key 𝑆𝐾

► Computes 𝐸𝐾(𝑆𝐾) and sends it to B

► B decrypts 𝐸𝐾(𝑆𝐾) with K and thus obtains 𝑆𝐾

Example: Simple key transport protocol

18IT-Security - Chapter 5: Authentication and Key Establishment

Properties

► Implicit key authentication

§ Yes, from both parties’ point of view

► Key freshness

§ Yes, from A’s point of view

§ No from B’s point of view

► Perfect forward secrecy

§ No

► Protection against known keys

§ Past session keys have no influence on new ones

► Authenticated key establishment

§ No! No entity authentication (replay possible)

Choose 𝑆𝐾	
Computes 𝐸𝐾(𝑆𝐾)

𝐸𝐾(𝑆𝐾)

Decrypts 𝐸𝐾(𝑆𝐾)

𝐾𝐾

► Implicit key authentication

§ No

► Key freshness

§ Yes, from both parties’ point of view

► Perfect forward secrecy

§ Yes, future keys completely independent

► Protection against known keys

§ Past session keys have no influence on future

ones

► Authenticated key establishment

§ No! No entity authentication (replay possible), no

implicit key authentication

Diffie-Hellman Key Agreement

19IT-Security - Chapter 5: Authentication and Key Establishment

Choose random 𝑎
Compute 𝐴 = 𝑔(mod 𝑝

Choose random 𝑏
Compute 𝐵 = 𝑔) mod 𝑝

𝐴

𝐵
Compute K= 𝐴) mod 𝑝

Compute K= 𝐵(mod 𝑝

As 𝐴+ mod 𝑝 = 𝑔,+ = 𝑔+, = 𝐵, mod 𝑝

Alice and Bob now share the secret key K = 𝒈𝒂𝒃

► Implicit key authentication

§ No

► Key freshness

§ Yes, from both parties’ point of view

► Perfect forward secrecy

§ Yes, future keys completely independent

► Protection against known keys

§ Yes, past session keys have no influence on future

ones

► Authenticated key establishment

§ No! No entity authentication (replay possible), no

implicit key authentication

Diffie-Hellman Key Agreement

20IT-Security - Chapter 5: Authentication and Key Establishment

Choose 𝑎
Compute 𝐴 = 𝑔(mod 𝑝

Choose 𝑏
Compute 𝐵 = 𝑔) mod 𝑝

𝐴

𝐵
Compute K= 𝐴) mod 𝑝

Compute K= 𝐵(mod 𝑝

As 𝐴+ mod 𝑝 = 𝑔,+ = 𝑔+, = 𝐵, mod 𝑝

Alice and Bob now share the secret key K = 𝒈𝒂𝒃

● Implicit key authentication

► Public DH value has been

signed by the desired

second party

► Only that party (if any) will

be able to compute K

● But: no entity authentication

► Old messages could be

replayed

► Parties do not get

guarantee that other party

interacts right now

Diffie-Hellman Key Agreement with Implicit Key Authentication

21IT-Security - Chapter 5: Authentication and Key Establishment

𝑨 ∥ 𝒔𝒊𝒈𝑨

𝑩 ∥ 𝒔𝒊𝒈𝑩

Public key: 𝑝𝑘𝐴
Private key: 𝑠𝑘𝐴
Public key Bob: 𝑝𝑘𝐵

Public key: 𝑝𝑘𝐵
Private key: 𝑠𝑘𝐵
Public key of Alice: 𝑝𝑘𝐴

Pick 𝒂 ∈
ℙ
{2,… , 𝑝 − 2}

Compute 𝑨 = 𝒈𝒂mod 𝒑
Compute 𝒔𝒊𝒈𝑨 = 𝒔𝒊𝒈𝒔𝒌𝑨(𝐴) Verify 𝑠𝑖𝑔𝐴 with 𝑝𝑘𝐴

Pick 𝒃 ∈
ℙ
{2,… , 𝑝 − 2}

Compute 𝑩 = 𝒈𝒃mod 𝒑
Compute 𝒔𝒊𝒈𝑩 = 𝒔𝒊𝒈𝒔𝒌𝑩 𝐵
Compute 𝑲 = 𝑨𝒃𝑚𝑜𝑑 𝒑

Verify 𝑠𝑖𝑔𝐵 with 𝑝𝑘𝐵
Compute 𝑲 = 𝑩𝒂𝑚𝑜𝑑 𝒑

● Mutual authentication between

Alice and Bob

► See slide 8

► A and B act as random values

here

● Implicit key authentication

► Alice is assured that B is from B

so only Bob can compute K (and

herself)

► Same holds for Bob

Ø Authenticated key agreement

Authenticated Diffie-Hellman Key Agreement with Signatures

22IT-Security - Chapter 5: Authentication and Key Establishment

𝑨

𝑩 ∥ 𝒔𝒊𝒈𝑩

Public key: 𝑝𝑘𝐴
Private key: 𝑠𝑘𝐴
Public key Bob: 𝑝𝑘𝐵

Public key: 𝑝𝑘𝐵
Private key: 𝑠𝑘𝐵
Public key of Alice: 𝑝𝑘𝐴

𝒔𝒊𝒈𝑨

Pick 𝒂 ∈
ℙ
{2,… , 𝑝 − 2}

Compute 𝑨 = 𝒈𝒂mod 𝒑

Pick 𝒃 ∈
ℙ
{2,… , 𝑝 − 2}

Compute 𝑩 = 𝒈𝒃mod 𝒑
Compute 𝒔𝒊𝒈𝑩 = 𝒔𝒊𝒈𝒔𝒌𝑩(𝐵 ∥ 𝐴)

Verify 𝑠𝑖𝑔𝐵 with 𝑝𝑘𝐵
Compute 𝒔𝒊𝒈𝑨 = 𝒔𝒊𝒈𝒔𝒌𝑨(𝐴 ∥ 𝐵)
Compute 𝑲 = 𝑩𝒂𝑚𝑜𝑑 𝒑

Verify 𝑠𝑖𝑔𝐴 with 𝑝𝑘𝐴
Compute 𝑲 = 𝑨𝒃𝑚𝑜𝑑 𝒑 Works with a shared key and MACs as well!

Example Session Key Establishment without DH

23IT-Security - Chapter 5: Authentication and Key Establishment

𝑹𝑨𝑵𝑫𝑨

𝑀𝐴𝐶𝑆𝐾(𝑅𝐴𝑁𝐷B ∥ 𝑅𝐴𝑁𝐷A) ∥ 𝑅𝐴𝑁𝐷B

Shared secret key 𝐾

Pick a random number
𝑹𝑨𝑵𝑫𝑨

Pick a random number 𝑹𝑨𝑵𝑫𝑩

Compute
𝑺𝑲 = 𝐻𝑀𝐴𝐶𝑲(𝑅𝐴𝑁𝐷𝐴 ∥ RANDB)

Compute
𝑺𝑲 = 𝐻𝑀𝐴𝐶𝑲(𝑅𝐴𝑁𝐷𝐴 ∥ RANDB)

Verify 𝑀𝐴𝐶 received

Verify 𝑀𝐴𝐶 received

Shared secret key 𝐾

𝑀𝐴𝐶𝑆𝐾(𝑅𝐴𝑁𝐷𝐴 ∥ 𝑅𝐴𝑁𝐷B)

● Implicit key authentication

► Yes!𝐾 required to compute

𝑆𝐾

● Key freshness

► Yes, for both parties

● Perfect forward secrecy

► No! If K broken and exchange

recorded, then SK broken

● Protection against known keys

► Past session keys have no

influence on future ones

● Authenticated key establishment

► Yes!

Session Key Derivation: Key Hierarchies

24IT-Security - Chapter 5: Authentication and Key Establishment

Example Hierarchy● Key establishment protocols

► establish a session key 𝑆𝐾 based on long term

credentials and session specific random numbers

● 𝑆𝐾 often used to derive additional keys, e.g.

► Integrity key and an encryption key

► Different keys for different directions

► A key derivation key for future derivations

● Results in key hierarchy

► Key derivation should be efficient

► A break of a lower layer key does not break

higher layer keys or keys on the same layer

Key establishment protocol

Long-term
credentials

𝑺𝑲

𝑬𝑲𝟏 𝑰𝑲𝟏 𝑬𝑲𝟐 𝑰𝑲𝟐 𝑲𝑫𝑲

𝑫𝑲𝟏 𝑫𝑲𝟐

𝑀𝐴𝐶&'(𝑘𝑒𝑦𝑙𝑎𝑏𝑒𝑙)

𝑀𝐴𝐶'('(𝑘𝑒𝑦𝑙𝑎𝑏𝑒𝑙)

RANDs

Overview

25IT-Security - Chapter 5: Authentication and Key Establishment

● Building Blocks for Entity Authentication

► Definition of Entity Authentication

► MAC-based authentication

► Signature-based authentication

● Key Distribution with trusted Third Parties

► Key Distribution Centers

► Certificates and Public Key Infrastructures

● Authenticated Session Key Establishment

► Definitions around session key establishment

► Authenticated Diffie Hellman variants

► Session key establishment w-o DH

► Session Key derivation principles

● Password-based authentication

► Password-based user authentication

► Password-based authenticated key

establishment

► Dictionary attacks on password-based

authentication

Facilitating Key Distribution with Trusted Third Parties

26IT-Security - Chapter 5: Authentication and Key Establishment

Symmetric Case: Key Distribution Centers

► Each client shares a secret key with the key

distribution center

► The key distribution center helps to establish

keys between its clients

Asymmetric Case: Certification Authorities

► Each client has the public key of a certification

authority pre-installed

► The certification authority helps to distribute

authentic copies of public keys

Assumption so far: Alice and Bob

► Either already share a secret (long-term) key

► Or have an authentic copy of each other’s public keys

Trusted Third Party

► Mediator to reduce the number of pre-installed keys required

Example: Key Transport with a KDC

27IT-Security - Chapter 5: Authentication and Key Establishment

𝐼𝐷𝐴 ∥ 𝐼𝐷𝐵 ∥ 𝑵𝑨 ∥ 𝑵𝑩 𝐸'. 𝐾𝐴𝐵 ∥ 𝐼𝐷) ∥ 𝑵𝑨 ∥ 𝐸'/ 𝐾𝐴𝐵 ∥ 𝐼𝐷*∥ 𝑵𝑩

KDC

Alice Bob

𝐼𝐷𝐵 ∥ 𝑵𝑩

𝐸'/ 𝐾𝐴𝐵 ∥ 𝐼𝐷*∥ 𝑵𝑩

𝐼𝐷𝐴 :𝐾/
𝐼𝐷𝐵 :𝐾0
𝐼𝐷𝐶 :𝐾1

⋮

● KDC shares a long-term secret key 𝐾/ with

Alice and 𝐾0 with Bob

● Upon request, KDC generates a session key

𝐾𝐴𝐵 for Alice and Bob

● 𝐸𝐾 here stands for an AEAD encryption with 𝐾

● 𝑁𝐵 and	𝑁𝐴 authenticates KDC to Bob and Alice

respectively

● Inclusion of 𝐼𝐷𝐵 in 𝐸2& 𝐾𝐴𝐵 ∥ 𝐼𝐷0 ∥ 𝑵𝑨

gives Alice implicit key authentication of 𝐾𝐴𝐵

● Inclusion of 𝐼𝐷𝐴 in 𝐸2' 𝐾𝐴𝐵 ∥ 𝐼𝐷/∥ 𝑵𝑩 gives

Bob implicit key authentication of 𝐾𝐴𝐵

● No perfect forward secrecy, no key freshness,

protection against known key attacks

Facilitating Key Distribution with Trusted Third Parties

28IT-Security - Chapter 5: Authentication and Key Establishment

Symmetric Case: Key Distribution Centers

► Each client shares a secret key with the key

distribution center

► The key distribution center helps to establish

keys between its clients

Asymmetric Case: Certification Authorities

► Each client has the public key of a certification

authority pre-installed

► The certification authority helps to distribute

authentic copies of public keys

Assumption so far: Alice and Bob

► Either already share a secret (long-term) key

► Or have an authentic copy of each other’s public keys

Trusted Third Party

► Mediator to reduce the number of pre-installed keys required

● Certification Authority

► Sings a certificate for each of its clients

► Certificate

§ owner ID: identifier of the owner of the public key

§ public key of owner

§ issuer ID: identifier for the CA that issued the certificate

§ Validity period: not before, until dates defining when this

certificate becomes valid and when it expires

§ Signature of the issuing CA on all of the content of the

certificate, binds public key to owner ID

● Anyone in possession of the public key of the CA

► Can verify the authenticity of the public key of the owner

Certification Authorities and Public Key Infrastructures

29IT-Security - Chapter 5: Authentication and Key Establishment

Certificate

owner ID

public key of owner

issuer ID

validity period

signature of issuer

● Anyone in possession of the public key of the CA

► Can verify the authenticity of the public key of the owner

● Certificate verification entails

► checking the validity period of the certificate

► checking that the owner ID is as expected

§ E.g., in the context of web does the domain name included as

identifier in the certificate match the host name part of the

URL of the visited website

► checking the signature on the certificate with the public

key of the issuer

► checking the revocation status of the certificate

Certificate Verification

30IT-Security - Chapter 5: Authentication and Key Establishment

Certificate

owner ID

public key of owner

issuer ID

validity period

signature of issuer

Certificates may need to be revoked before they expire

► Due to stolen devices, precaution after malware infection,…

► Due to lost passwords unlocking private keys

Certificate Revocation Approaches

31IT-Security - Chapter 5: Authentication and Key Establishment

Certificate revocation lists = CRLs

► Issuing CA periodically publishes a signed CRL

► CRL includes serial numbers of all revoked

unexpired certificates

► Disadvantage: revocation only as timely as

period used to publish CRLs

Online Certificate Status Protocol = OSCP

► Protocol to obtain immediate feedback on

the revocation status of certificates

► Advantage: very timely revocation possible

► May add additional overhead and requires

connectivity to the OSCP server

● Hierarchies of certification authorities

► A root CA signs certificates for the public keys of

second level CAs

► Second level CAs sign certificates of clients

► More levels possible

Chains of Certificates

32IT-Security - Chapter 5: Authentication and Key Establishment

Certificate
owner ID

public key of owner

issuer: CA ID

validity period

signature of CA

CA Certificate
CA ID

public key of CA

issuer: Root CA ID

validity period

signature Root CA

Root CA Certificate
Root CA ID

public key of Root

issuer: Root CA ID

validity period

signature of issuer

Get certificate

Get certificate

verify

verify

● Check validity period of each certificate

● Check revocation status on each certificate

● Verify signature on each certificate in the chain

● Check if root CA is trusted for this application

● Check if owner ID is as expected

Verifying Chains of Certificates

33IT-Security - Chapter 5: Authentication and Key Establishment

Certificate
owner ID

public key of owner

issuer: CA ID

validity period

signature of CA

CA Certificate
CA ID

public key of CA

issuer: Root CA ID

validity period

signature Root CA

Root CA Certificate
Root CA ID

public key of Root

issuer: Root CA ID

validity period

signature of issuer

Get certificate

Get certificate

verify

verify

● 𝑐𝑒𝑟𝑡𝐵 / 𝑐𝑒𝑟𝑡𝐴: chain of

certificates starting

with a certificate for A

/ B, where the last one

is the root certificate

Example Secure Authenticated DH with Chain of Certificates

34IT-Security - Chapter 5: Authentication and Key Establishment

𝑨

𝑩 ∥ 𝒔𝒊𝒈𝑩∥ 𝒄𝒆𝒓𝒕𝑩

Public key: 𝑝𝑘𝐴
Private key: 𝑠𝑘𝐴
Public key of root CA: 𝑝𝑘𝑟𝑜𝑜𝑡

𝒔𝒊𝒈𝑨 ∥ 𝒄𝒆𝒓𝒕𝑨

Pick 𝒂 ∈ ℝ{2,… , 𝑝 − 2}
Compute 𝑨 = 𝒈𝒂mod 𝒑

Pick 𝒃 ∈ ℝ{2,… , 𝑝 − 2}
Compute 𝑩 = 𝒈𝒃mod 𝒑
Compute 𝒔𝒊𝒈𝑩 = 𝒔𝒊𝒈𝒔𝒌𝑩(𝐵 ∥ 𝐴)

Verify chain of certificates 𝒄𝒆𝒓𝒕𝑩
Verify 𝑠𝑖𝑔𝐵 with 𝑝𝑘𝐵 extracted

from B’s certificate
Compute 𝒔𝒊𝒈𝑨 = 𝒔𝒊𝒈𝒔𝒌𝑨(𝐴 ∥ 𝐵)
Compute 𝑲 = 𝑩𝒂𝑚𝑜𝑑 𝒑 Verify chain of certificates 𝒄𝒆𝒓𝒕𝑨

Verify 𝑠𝑖𝑔𝐴 with 𝑝𝑘A extracted from A’s certificate
Verify 𝑠𝑖𝑔𝐴 with 𝑝𝑘𝐴
Compute 𝑲 = 𝑨𝒃𝑚𝑜𝑑 𝒑

Public key: 𝑝𝑘𝐵
Private key: 𝑠𝑘𝐵
Public key of root CA: 𝑝𝑘𝑟𝑜𝑜𝑡

Overview

35IT-Security - Chapter 5: Authentication and Key Establishment

● Building Blocks for Entity Authentication

► Definition of Entity Authentication

► MAC-based authentication

► Signature-based authentication

● Key Distribution with trusted Third Parties

► Key Distribution Centers

► Certificates and Public Key Infrastructures

● Authenticated Session Key Establishment

► Definitions around session key establishment

► Authenticated Diffie Hellman variants

► Session key establishment w-o DH

► Session Key derivation principles

● Password-based authentication

► Password-based user authentication

► Password-based authenticated key

establishment

► Dictionary attacks on password-based

authentication

Three main flavors used in practice

Password-based Authentication

36IT-Security - Chapter 5: Authentication and Key Establishment

• Certificate-based server
authentication

• Password-based user
authentication

• Vulnerable to dictionary
attacks if password file
stolen

Used, e.g., in
HTTPs

• MAC-based authenticated
key exchange

• MAC-key derived from
password

• Vulnerable to dictionary
attacks

Used, e.g., in 4-
Way-Handshake
in WPA2 WLAN

• Password-Authenticated
Diffie Hellman

• Protected against
Dictionary attacks

• Same (one-time) password
entered on both devices

Used, e.g., Secure
Authentication of
Equals in WPA3

Three main flavors used in practice

Password-based Authentication

37IT-Security - Chapter 5: Authentication and Key Establishment

• Certificate-based server
authentication

• Password-based user
authentication

• Vulnerable to dictionary
attacks if password file
stolen

Used, e.g., in
HTTPs

• MAC-based authenticated
key exchange

• MAC-key derived from
password

• Vulnerable to dictionary
attacks

Used, e.g., in 4-
Way-Handshake
in WPA2 WLAN

• Password-Authenticated
Diffie Hellman

• Protected against
Dictionary attacks

• Same password entered on
both devices

Used, e.g., Secure
Authentication of
Equals in WPA3

Advance
ITSec

Lecture

Password Length and Bit-Equivalence

38IT-Security - Chapter 5: Authentication and Key Establishment

● Assume users can chose 𝑛 character passwords

► small letters = 26 and capital letters = 26

► numbers = 10, special characters except for space = 32

● Then there are 𝟗𝟒𝒏 theoretically possible passwords

► n = 8 ⇒ ≈ 2-. possible passwords ≙ random secret key

of 52 bit

► n = 16 ⇒ ≈ 2/01 possible passwords ≙ random secret

key of 104 bit

● Users tend NOT to select passwords randomly!

► Mainly because they cannot remember random

passwords longer than 8 characters

► And on average only one of these

User-selected Passwords

Potential Passwords Passwords Selected by Users

● Distribution of 4-Digit PINs in a data base of 32 Million

Banking PINS

● Enforcing rules on the password selection reduces the

overall number of possible passwords

► E.g., if 8 characters are used and at least one of them

needs to be an upper case letter, one a lower case letter

one a number and one a special character

► Longer passwords required

● General recommendation

► Use random passwords and a password manager

Classic Example: User’s self-selected Banking PINs 2012

39IT-Security - Chapter 5: Authentication and Key Establishment

Password-based User and Certificate-based Server Authentication

40IT-Security - Chapter 5: Authentication and Key Establishment

𝑃𝑎𝑠𝑠𝑤𝑜𝑟𝑑
𝐹𝑖𝑙𝑒

𝑨

𝑺 ∥ 𝒔𝒊𝒈𝑺

Public key of Server
𝑝𝑘𝑆

Public key: 𝑝𝑘S
Private key: 𝑠𝑘𝑆Pick 𝒂 ∈

ℙ
{2,… , 𝑝 − 2}

Compute 𝑨 = 𝒈𝒂mod 𝒑

Pick 𝒔 ∈
ℙ
{2,… , 𝑝 − 2}

Compute 𝑺 = 𝒈𝒔mod 𝒑
Compute 𝑲 = 𝑨𝒔𝑚𝑜𝑑 𝒑
Compute 𝒔𝒊𝒈𝑆 = 𝒔𝒊𝒈𝒔𝒌𝑺(𝑆 ∥ 𝐴)

Verify 𝑠𝑖𝑔𝑆 with 𝑝𝑘𝑆
Compute 𝑲 = 𝑺𝒂𝑚𝑜𝑑 𝒑

user, 𝑬𝑲(𝒑𝒘𝒅)

Server authenticated by a
unilaterally authenticated DH key
exchange; User authenticates to
server with pwd, pwd protected

with fresh key K

Contains usernames
and passwords

Decrypt pwd, compare
to stored pwd

Storing Passwords in Password Files (1)

41IT-Security - Chapter 5: Authentication and Key Establishment

Encrypted?

► No immediate access

► But: encryption key needs to be stored

somewhere

► Decryption adds overhead

User 𝒑𝒘𝒅
Alice D^6as$%kjahG
Bob (*&)A8a;sdifh

User 𝒑𝒘𝒅 𝑬𝑲(𝒑𝒘𝒅)
Alice D^6as$%kjahG Svl0EKlmp76XcePiC+wL7g
Bob (*&)A8a;sdifh 1YE/i6MU4lBEnmbq/Wn1Zw

Key

a57987a344d32336

In the clear?

► If attacker gains access to the file, break

is immediate

Storing Passwords in Password Files (2)

42IT-Security - Chapter 5: Authentication and Key Establishment

Store 𝐡 𝒑𝒘𝒅 using a cryptographic hash function

► Attacker only learns hashes from file

► Cannot compute pre-images of the hashes

► But: what if multiple users use same pwd?

Better: store random salt and 𝐡 𝒑𝒘𝒅 ∥ 𝒔𝒂𝒍𝒕

► Now users using the same passwords will

have different hashes

User 𝒑𝒘𝒅 salt 𝑺𝑯𝑨𝟐𝟓𝟔
Alice D^6as$%kjahG c25559cad0aca1566d4ba7609759e2de824c8af9e1e0b27891e99ac495e77877

Bob (*&)A8a;sdifh f69f1260b38daf282d8d729df34e40c0bdf0fb634f72fe7c17b09054d96c5724

Clare (*&)A8a;sdifh f69f1260b38daf282d8d729df34e40c0bdf0fb634f72fe7c17b09054d96c5724

Alice D^6as$%kjahG (*daw 3bcc5a93e5510780f3ce13b8f673758cee1e246963be321ced2d6f2d74054558

Bob (*&)A8a;sdifh &OGa8 373d0dd007c4409bdc5a05e6174e5322e88cc16d736d71c99a8876f01c70a9d9

Clare (*&)A8a;sdifh 6YY34 5ee7d56e09d86f7d262fc0d68f27861644252c1dbd80cb59bbd6cedf6c080831

● Dictionary

► List of commonly used passwords

● Dictionary attack

► Try out all passwords in the dictionary

Dictionary Attacks on Password Files

43IT-Security - Chapter 5: Authentication and Key Establishment

Attack on a stolen password file with salts

► Compute 𝐡 𝒑𝒘𝒅 ∥ 𝒔𝒂𝒍𝒕 for any 𝑠𝑎𝑙𝑡 in

the password file and any 𝑝𝑤𝑑 in the

dictionary

► Compare computed hashes with stored

ones
Attack on a stolen password files w/o salts

► Pre-compute 𝐡 𝒑𝒘𝒅 for any 𝑝𝑤𝑑 in the

dictionary

► Compare computed hashes with stored

ones Needs to be done only once

Salts are pwd-file specific

● Secret key generated by a

shared password

● Note that the key is only as

strong as the password

► K will be 128 bit but will

be as easily guessable as

the pwd

Authentication and Key Agreement with Password-Generated MAC Keys

44IT-Security - Chapter 5: Authentication and Key Establishment

𝑹𝑨𝑵𝑫𝑨

𝑀𝐴𝐶𝑆𝐾(𝑅𝐴𝑁𝐷B ∥ 𝑅𝐴𝑁𝐷A) ∥ 𝑅𝐴𝑁𝐷B

𝐾 = ℎ(𝑝𝑤𝑑)

Pick a random number
𝑹𝑨𝑵𝑫𝑨

Pick a random number 𝑹𝑨𝑵𝑫𝑩

Compute
𝑺𝑲 = 𝐻𝑀𝐴𝐶𝑲(𝑅𝐴𝑁𝐷𝐴 ∥ RANDB)

Compute
𝑺𝑲 = 𝐻𝑀𝐴𝐶𝑲(𝑅𝐴𝑁𝐷𝐴 ∥ RANDB)

Verify 𝑀𝐴𝐶 received

Verify 𝑀𝐴𝐶 received

𝑀𝐴𝐶𝑆𝐾(𝑅𝐴𝑁𝐷A ∥ 𝑅𝐴𝑁𝐷B)

𝐾 = ℎ(𝑝𝑤𝑑)

Dictionary Attack on Password-Authenticated Key Agreement

45IT-Security - Chapter 5: Authentication and Key Establishment

● Record the message flow

► 𝑅𝐴𝑁𝐷𝐴 , 𝑅𝐴𝑁𝐷𝐵

► 𝑀𝐴𝐶𝑆𝐾(𝑅𝐴𝑁𝐷B ∥ 𝑅𝐴𝑁𝐷A)

● For pwd in the dictionary

► compute 𝑲 = 𝒉(𝒑𝒘𝒅)

► compute SK from recorded RANDs

► Check if

𝑀𝐴𝐶𝑺𝑲(𝑅𝐴𝑁𝐷B ∥ 𝑅𝐴𝑁𝐷A) =

𝑀𝐴𝐶𝑆𝐾(𝑅𝐴𝑁𝐷B ∥ 𝑅𝐴𝑁𝐷A) recorded

► If yes: pwd = pwd

► Else: try next pwd in dictionary

𝑹𝑨𝑵𝑫𝑨

𝑀𝐴𝐶𝑆𝐾(𝑅𝐴𝑁𝐷B ∥ 𝑅𝐴𝑁𝐷A) ∥ 𝑅𝐴𝑁𝐷B

𝐾 = ℎ(𝑝𝑤𝑑)

Pick 𝑹𝑨𝑵𝑫𝑨

Pick 𝑹𝑨𝑵𝑫𝑩

Compute 𝑺𝑲 =
𝐻𝑀𝐴𝐶𝑲(𝑅𝐴𝑁𝐷𝐴 ∥ RANDB)

Compute 𝑺𝑲 =
𝐻𝑀𝐴𝐶𝑲(𝑅𝐴𝑁𝐷𝐴 ∥ RANDB)

Verify 𝑀𝐴𝐶 received

Verify 𝑀𝐴𝐶 received

𝑀𝐴𝐶𝑆𝐾(𝑅𝐴𝑁𝐷A ∥ 𝑅𝐴𝑁𝐷B)

𝐾 = ℎ(𝑝𝑤𝑑)

● Entity authentication requires

► an unforgeable proof that the other entity is active in the current protocol

► session key establishment

§ Ensures continuous authentication of the authenticated entity

● Entity authentication can be

► unilateral or mutual

► be based on

§ secret keys using message authentication codes

§ or public/private key pairs

● Key Establishment protocols

► can be key agreement or key transport protocols

Summary

46IT-Security - Chapter 5: Authentication and Key Establishment

Potential properties of key establishment protocols

► entity authentication

► implicit key authentication

► key confirmation

► key freshness

► perfect forward secrecy

► protection against known key attacks

Summary

47IT-Security - Chapter 5: Authentication and Key Establishment

authenticated key establishment
explicit key authentication

● Trusted third parties can help to

► reduce the amount of pre-stored keys that need to be exchanged

► Key distribution centers are TTPs that

§ help their clients establish symmetric keys

► CAs are TTP that

§ help to distribute authentic copies of their clients’ public keys

● End-users are often authenticated with the help of passwords

► The larger the alphabet and the longer the password the stronger the password is

● End-users tend to pick specific passwords more often than others

► Can compile a dictionary of often picked passwords

Summary

48IT-Security - Chapter 5: Authentication and Key Establishment

● W. Stallings, Cryptography and Network Security: Principles and Practice, 8th edition, Pearson 2022

► Chapter 15: Cryptographic Key Management and Distribution

► Chapter 16: User Authentication

● RFC 5869 HMAC-based Extract-and-Expand Key Derivation Function (HKDF)

References

49IT-Security - Chapter 5: Authentication and Key Establishment

Prof. Dr.-Ing. Ulrike Meyer

IT-Security
Chapter 6: Network Security Protocols

on Network and Transport Layer

● In the past lectures we have learned how to

► Protect confidentiality with symmetric or asymmetric encryption

► Protect integrity (including replay) with MACs or digital signatures

► Establish session keys between authenticated entities

● In this chapter we will learn how these mechanisms are used in network security protocols

● In particular, we will study and compare IPSec, and TLS

Overall Lecture Context

2IT-Security - Chapter 6 Network Security Protocols

Overview

3IT-Security - Chapter 6 Network Security Protocols

IPSec

► Primary use cases

► Security services offered

► Authentication and key agreement

► IP Payload of IP packet protection

TLS

► Primary use case

► Security services offered

► Authentication and key agreement

► TCP payload protection

Comparison of the protocols

► Differences

► Communalities in mechanisms used

► Overlaps in use cases

Comparison of the protocols

► Differences

► Communalities in mechanisms used

► Overlaps in use cases

Overview

4IT-Security - Chapter 6 Network Security Protocols

IPSec

► Main use case

► Security services offered

► Authentication and key agreement

► Payload or packet protection

TLS

► Main use case

► Security services offered

► Authentication and key agreement

► Payload protection

Overview IPSec Part

5IT-Security - Chapter 6 Network Security Protocols

Introduction

► Historical notes

► Security services offered by IPSec

► Transport Mode and Tunnel Mode

► Primary Use Cases

Encapsulating Security Payload Protocol ESP

► Encryption and Integrity Protection

► ESP Header

► MAC computation

Authentication Header Protocol AH

► Integrity Protection in the two modes

► ESP Header

► MAC computation

► Supported algorithms in AH and ESP

► Replay protection in AH and ESP

Authentication and Key Agreement with IKEv2

► The concept of security associations

► Overview on detailed discussion of IKEv2

► IP packet processing with IPSec

► Example use cases

● IPsec is a protocol family

● Originally comprising

► ISAKMP for transporting key management messages

► IKEv1 for authenticated key agreement carried over ISAKMP

► ESP/AH protocol for encryption and integrity protection

● Recommended today

► IKEv2 for authentication and key agreement

► ESP/AH protocol for encryption and integrity protection

● We focus on the latest versions of these protocols

IPSec over the Years

6IT-Security - Chapter 6 Network Security Protocols

● Authenticated Session Key Exchange

► Using the Internet Key Exchange Protocol

► Based on pre-shared keys or based on certificates

● IP packet level encryption and/or IP packet level integrity protection

► Including replay protection

► Using the Encapsulating Security Payload Protocol

► And/or using the Authentication Header Protocol

► Transport mode

§ Protection of IP payload of all IP packets exchanged between two IPsec-enabled hosts

► Tunnel mode

§ Protection of complete IP packets routed between IPsec-enabled gateways

Security Services offered by IPSec

7IT-Security - Chapter 6 Network Security Protocols

Usable on top of IPv4 and IPv6
Transparent to higher layer protocols

Tunnel Mode and Transport Mode and Primary Use Cases

8IT-Security - Chapter 6 Network Security Protocols

IPSec

IPSec

Transport mode between any two individual nodes

Tunnel mode, e.g., for securely connecting the networks of two branches of a company

VPN Use Case

9IT-Security - Chapter 6 Network Security Protocols

IPSec

IPSec in tunnel mode is also used to connect remote hosts to an internal network

Tunnel Mode and Transport Mode and Primary Use Cases

10IT-Security - Chapter 6 Network Security Protocols

IPSec

IPSec

Transport mode

Tunnel mode, e.g., for securely connecting the networks of two branches of a company

IP header PayloadIP header Payload

IP header IP payload

IP header Payload

IP header IP payload

VPN Use Case

11IT-Security - Chapter 6 Network Security Protocols

IPSec

IPSec in tunnel mode is also used to connect remote hosts to an internal network

IP header IP header Payload

IP header IP payload

IP header IP payload

Overview IPSec Part

12IT-Security - Chapter 6 Network Security Protocols

Introduction

► Historical notes

► Security services offered by IPSec

► Transport Mode and Tunnel Mode

► Primary Use Cases

Encapsulating Security Payload Protocol ESP

► Encryption and Integrity Protection

► ESP Header

► MAC computation

Authentication Header Protocol AH

► Integrity Protection in the two modes

► ESP Header

► MAC computation

► Supported algorithms in AH and ESP

► Replay protection in AH and ESP

Authentication and Key Agreement with IKEv2

► The concept of security associations

► Overview on detailed discussion of IKEv2

► IP packet processing with IPSec

► Example use cases

● Encapsulating Security Payload protocol

► Transport mode between two IPsec-enabled hosts

§ Encryption of IP payload

§ Integrity protection of IP payload

§ Replay protection of IP packets

► Tunnel mode between two IPsec-enabled gateway

§ Encryption of IP packets including IP headers routed through the gateway

§ Integrity protection of IP packets including IP headers routed through the gateway

§ Replay protection of IP packets

Encryption and Integrity Protection offered by ESP

13IT-Security - Chapter 6 Network Security Protocols

IP-Header ESP-Header IP Payload Part of ESP-
Trailer MAC

integrity protected

encrypted

IP-Header ESP-Header IP-Header IP Payload Part of ESP-
Trailer MAC

integrity protected

encrypted

IP-Header IP Payload IP packet to be protected

ESP-protected packet

ESP-protected packet

ESP header

► Security Parameter Index (SPI): 32-bit

§ Identifies a security association (SA)

§ Specified what keys and algorithms to use

► Sequence number: 32-bit number per packet

§ Used for replay protection

ESP trailer

► Padding field: 0-255 padding bits

► Padding length: 8-bit length field

► Next header: 8-bit filed indicating type of payload

encrypted in the encrypted payload

► MAC: message authentication code

Payload of an ESP Protected IP Packet

14IT-Security - Chapter 6 Network Security Protocols

Security Parameter Index

Sequence Number

Encrypted Payload

Padding Padding
Length Next Header

MAC

32 bit

ESP header

ESP trailer

en
cr

yp
te

d

MAC not computed on IP header

MAC Computation

15IT-Security - Chapter 6 Network Security Protocols

Security Parameter Index

Sequence Number

Encrypted Payload

Padding Padding
Length Next Header

MAC

32 bit

en
cr

yp
te

d MAC

Key

Overview IPSec Part

16IT-Security - Chapter 6 Network Security Protocols

Introduction

► Historical notes

► Security services offered by IPSec

► Transport Mode and Tunnel Mode

► Primary Use Cases

Encapsulating Security Payload Protocol ESP

► Encryption and Integrity Protection

► ESP Header

► MAC computation

Authentication Header Protocol AH

► Integrity Protection in the two modes

► ESP Header

► MAC computation

► Supported algorithms in AH and ESP

► Replay protection in AH and ESP

Authentication and Key Agreement with IKEv2

► The concept of security associations

► Overview on detailed discussion of IKEv2

► IP packet processing with IPSec

► Example use cases

● Authentication Header Protocol

► Transport mode between two IPsec enabled hosts

§ Integrity protection of the complete IP packet, including the header

Integrity Protection offered by AH

17IT-Security - Chapter 6 Network Security Protocols

IP-Header AH IP Payload

Integrity protected

► Tunnel mode between two IPsec-enabled gateway

§ Integrity protection of the complete IP packet, including the new IP header

IP-Header AH IP Header IP Payload

IP-Header IP Payload IP packet to be protected

AH-protected packet

AH-protected packet

Integrity protected

Authentication Header

18IT-Security - Chapter 6 Network Security Protocols

Next
Header

Payload
Length

Reserved

Security Parameter Index

Sequence Number

MAC

32 bitNext header field

► 8-bit field, indicates type of header following the AH header

§ IP header in tunnel mode, first header in IP payload in transport mode

Payload length

► 8-bit field defining length of authentication header

§ Depending on MAC algorithm, length of authentication data varies

Security Parameter Index (SPI)

► 32-bit identifier of a security association (SA)

► Specified what keys and algorithms to use

Sequence number

► 32-bit sequence number incremented with each packet, used for replay protection

● Authentication header fields included in MAC-computation

● Non-mutable fields of outer IP header included in MAC-computation

► Mutable fields such as TTL, Header Checksum, Fragment Offset etc. can and should not be protected

MAC Computation

19IT-Security - Chapter 6 Network Security Protocols

IP
header

IP
Payload

Next
Header

Payload
Length

Reserved

Security Parameter Index

Sequence Number

MAC

MAC

Key

IPsec supports both IPv4 and IPv6!

Recap: Mutable Fields in the IPv4 Header

20IT-Security - Chapter 6 Network Security Protocols

Version Header
Length

Type of
Service Packet Length

ID Flags Fragment Offset

Time to Live Prot = TCP Header Checksum

Source IP Address

Destination IP Address

IP Options (optional)

TCP Header

TCP Segment

IP Header

Payload

32 bit

Mutable fields are set to zero for the MAC calculation in AH

Recommendations change over time, latest ones currently from 2017

XCBC is a predecessor of CMAC that differs in the generation of the masking keys

Most recent MAC algorithm support for AH RFC 8221

21IT-Security - Chapter 6 Network Security Protocols

Name Status

AUTH_NONE MUST NOT

AUTH_HMAC_MD5_96 MUST NOT

AUTH_HMAC_SHA1_96 MUST- (=expected to be phased out soon)

AUTH_DES_MAC MUST NOT

AUTH_KPDK_MD5 MUST NOT

AUTH_AES_XCBC_96 SHOULD for IoT / MAY otherwise

AUTH_AES_128_GMAC MAY

AUTH_AES_256_GMAC MAY

AUTH_HMAC_SHA2_256_128 MUST

AUTH_HMAC_SHA2_512_256 SHOULD

Recommendations change over time, latest ones currently from 2017

Same as for AH except for the first one

Most recent MAC algorithm support for ESP RFC 8221

22IT-Security - Chapter 6 Network Security Protocols

Name Status

AUTH_NONE MUST (in comb. with combined enc/integ.) / MUST NOT

AUTH_HMAC_MD5_96 MUST NOT

AUTH_HMAC_SHA1_96 MUST- (=expected to be phased out soon)

AUTH_DES_MAC MUST NOT

AUTH_KPDK_MD5 MUST NOT

AUTH_AES_XCBC_96 SHOULD for IoT / MAY otherwise

AUTH_AES_128_GMAC MAY

AUTH_AES_256_GMAC MAY

AUTH_HMAC_SHA2_256_128 MUST

AUTH_HMAC_SHA2_512_256 SHOULD

Most recent Encryption algorithm support for ESP RFC 8221

23IT-Security - Chapter 6 Network Security Protocols

Name Status

ENCR_DES_IV64 MUST NOT

ENCR_DES MUST NOT

ENCR_3DES SHOULD NOT

ENCR_BLOWFISH MUST NOT

ENCR_3IDEA MUST NOT

ENCR_DES_IV32 MUST NOT

ENCR_NULL MUST

ENCR_AES_CBC MUST

ENCR_AES_CCM SHOULD (provides integrity as well)

ENCR_AES_GCM MUST (provides integrity as well)

ENCR_CHACHA20_POLY1305 SHOULD (provides integrity as well)

Recommendations change over time, latest ones currently from 2017

● SQN included in ESP and AH header

● Window of acceptable SQNs of size W at receiver

● SQN checking at receiver

► If SQN is in current window

§ and not yet marked: mark and process further

§ and already marked: drop packet

► If SQN is lower than left boarder of window

§ drop packet, log event

► If SQN is higher than current right boarder

§ mark as received, move window to include SQN as right boarder, process

packet further

Replay Protection in ESP and AH

24IT-Security - Chapter 6 Network Security Protocols

Recommended window size

► Should be ≥ 32

► Recommends default 64

Overview IPSec Part

25IT-Security - Chapter 6 Network Security Protocols

Introduction

► Historical notes

► Security services offered by IPSec

► Transport Mode and Tunnel Mode

► Primary Use Cases

Encapsulating Security Payload Protocol ESP

► Encryption and Integrity Protection

► ESP Header

► MAC computation

Authentication Header Protocol AH

► Integrity Protection in the two modes

► ESP Header

► MAC computation

► Supported algorithms in AH and ESP

► Replay protection in AH and ESP

Authentication and Key Agreement with IKEv2

► The concept of security associations

► Overview on detailed discussion of IKEv2

► IP packet processing with IPSec

► Example use cases

Authentication and Key Agreement

26IT-Security - Chapter 6 Network Security Protocols

Security Association

► Identified uniquely by a 32-bit Security Parameter Index SPI

► Security protocol type: determines if the SA is for IKE, AH or ESP usage

► Algorithm information: Encryption and / or MAC algorithms, keys

► Replay Window: Current start point and size of replay window

► SQN: Current Value of the sequence number SQN

► IPSec Mode: Indicates if SA is usable for transport mode, tunnel mode or both

► SA lifetime: Lifetime of the security association

§ lifetime can be based on time, byte count, or both

The Internet Key Management Protocol IKEv2

► Supports authentication and key agreement between two IPsec-enabled peers

§ Establishes at least two pairs of security associations (SAs) between the peers

§ One IKE-SA pair to protect the authentication and key agreement itself

§ One IPSec-SA pair to use with ESP and / or AH in tunnel or transport mode later

► Peer starting the protocol is called the initiator, the other peer is called responder

Authentication and Key Agreement

27IT-Security - Chapter 6 Network Security Protocols

Initiator Responder
Initiate authentication, DH agreement, IKE SAs

Authenticate DH, Negotiate IPsec SAs and Traffic Selectors

IKE v2 Exchange: Complete Overview

28IT-Security - Chapter 6 Network Security Protocols

HDR, SA-I1, KE-I, N-I

HDR, SA-R1, KE-R, N-R, [CERTREQ]

HDR, SK-I{ID-I, [CERT,] [CERTREQ,] [ID-R], AUT-I, SA-I2, TS-I, TS-R}

HDR, SK-R{ID-R, [CERT,] AUT-R, SA-R2, TS-I, TS-R}

Select IKE-SA

Generate Keys

Generate Keys

HDR: header, contains SPIs
SA-I1: SAs offered for IKE
SA-R2: SA selected
KE-I, KE-R: public DH values
N-I, N-R: nonces

CERTREQ: certificate request
CERT: certificate
ID-I, ID-R: identifier
AUT-I, AUT-R: sign. or MAC
SA-I2: SA offered for IPsec

SA-R2: SA selected for IPsec
TS-I, TS-R: traffic selectors
SK-I, SK-R: encrypted with SKe

and integrity protected with
SK-a

Initiator Responder

IKE v2 Exchange: Authentication and Key Agreement

29IT-Security - Chapter 6 Network Security Protocols

HDR, SA-I1, KE-I, N-I

HDR, SA-R1, KE-R, N-R

HDR, SK-I{ID-I, AUT-I, SA-I2, TS-I, TS-R}

HDR, SK-R{ID-R, AUT-R, SA-R2, TS-I, TS-R}

Select IKE-SA

Generate Keys

Generate Keys

Initiator Responder

Variant of the secure authenticated DH

● DH values KE-I and KE-R exchanged in the clear

● Keys for encryption and integrity protection during

IKE exchanged and further key derivation for IPSec

SAs derived from nonces and DH values

● Authenticated by AUT-I and AUT-R using digital

signatures or pre-shared keys

► AUT-I = sign(h(message 1 ∥ N-R ∥MACSKp-i(ID-I)) or

AUT-I = MAC(message 1 ∥ N-R ∥MACSKp-i(ID-I))

► AUT-R = sign(h(message 2 ∥ N-I ∥MACSKp-r(ID-R)) or

AUT-R = MAC(message 2 ∥ N-I ∥MACSKp-r(ID-R))

● Message 3 and 4 encrypted and integrity protected

IKE v2 Exchange: IKE-SA Negotiation

30IT-Security - Chapter 6 Network Security Protocols

HDR, SA-I1, KE-I, N-I

HDR, SA-R1, KE-R, N-R

HDR, SK-I{ID-I, AUT-I, SA-I2, TS-I, TS-R}

HDR, SK-R{ID-R, AUT-R, SA-R2, TS-I, TS-R}

Select IKE-SA

Generate Keys

Generate Keys

Initiator Responder
● Initiator sends proposals for IKE-SAs in message 1

● Responder selects IKE-SA and includes selection in message 2

● Proposal and selection protected against manipulation with

AUT-I and AUT-R

IKE v2 Exchange: IPSec-SA Negotiation

31IT-Security - Chapter 6 Network Security Protocols

HDR, SA-I1, KE-I, N-I

HDR, SA-R1, KE-R, N-R

HDR, SK-I{ID-I, AUT-I, SA-I2, TS-I, TS-R}

HDR, SK-R{ID-R, AUT-R, SA-R2, TS-I, TS-R}

Select IKE-SA

Generate Keys

Generate Keys

Initiator Responder
● Initiator sends proposals for IPSec-SAs in message 3

● Responder selects IPSec-SA, includes selection in message 4

● Proposal and selection protected against manipulation with

integrity protection (and encryption) by SK-I and SK-R

IKE v2 Exchange: Negotiation of Traffic Selectors

32IT-Security - Chapter 6 Network Security Protocols

HDR, SA-I1, KE-I, N-I

HDR, SA-R1, KE-R, N-R

HDR, SK-I{ID-I, AUT-I, SA-I2, TS-I, TS-R}

HDR, SK-R{ID-R, AUT-R, SA-R2, TS-I, TS-R}

Select IKE-SA

Generate Keys

Generate Keys

Initiator Responder
● Initiator sends proposals for Traffic Selectors in message 3

● Responder includes selected Traffic Selectors in message 4

● Proposal and selection protected against manipulation with

SK-I and SK-R

Traffic selectors are stored in a Security Policy Database

Traffic selectors specify

► Set of source IP addresses (one, list, range, wildcard)

► Set of destination IP addresses (one, list, range, wildcard)

► Transport layer protocol number (one, list, range, wildcard)

► Source and destination port (one, list, or wildcard)

Traffic selectors determine

► Whether inbound and outbound IP packets are protected, bypassed,

or dropped

► If packet is to be protected, corresponding traffic selector points to

the SA to use, if non exists yet, a new one is generated with IKE

Traffic Selectors and Security Policy Database

33IT-Security - Chapter 6 Network Security Protocols

IP
header

IP
payload

SPD
apply SA

bypass IPSec

drop

Encryption algorithms currently recommended for IKEv2 (RFC 8247)

► ENCR_AES_CBC MUST

► ENCR_AES_CCM SHOULD (supports integrity protection simultaneously)

► ENCR_AES_GCM SHOULD (supports integrity protection simultaneously)

► ENCR_CHACHA20_POLY1305 SHOULD (supports integrity protection simultaneously)

Integrity protection algorithms currently recommended for IKEv2 (RFC8247)

► AUTH_HMAC_SHA2_512_256 SHOULD

► AUTH_HMAC_SHA2_256_128 MUST

Supported Algorithms

34IT-Security - Chapter 6 Network Security Protocols

Recommendations change over time!

● Many VPNs use IPsec between the VPN Client and Server

► Including the Cisco AnyConnect VPN Client used by RWTH

● Connections between WLAN access points and authentication

servers

► E.g., in Eduroam IPSec is used to protect the transfer of session keys

from the authentication server to the WLAN access point

● Connections between backbone components in mobile systems

► E.g., between base stations and backbone components or between

backbone components that exchange subscriber information

Examples of where else IPsec is used today

35IT-Security - Chapter 6 Network Security Protocols

IPsec

IPsec

IPsec

Comparison of the protocols

► Differences

► Communalities in mechanisms used

► Overlaps in use cases

Overview

36IT-Security - Chapter 6 Network Security Protocols

IPSec

► Main use case

► Security services offered

► Authentication and key agreement

► Payload or packet protection

TLS 1.3

► Main use case

► Security services offered

► Handshake Protocol

► Payload protection with record protocol

● Secure Socket Layer SSL

► Predecessor of TLS, first version developed by Netscape in

1994

● Transport Layer Security TLS

► Standardized by the IETF

► TLS 1.0 and TLS 1.1 should not be used any more

► TLS 1.2 still in use but has many weakness and only very

few unbroken configurations

● TLS 1.3 standardized in RFC 8446 in 2018

● We focus on TLS 1.3

Transport Layer Security Protocols over the Years

37IT-Security - Chapter 6 Network Security Protocols

TLS version support of the top 150 000 visited
websites according to the Alexa list (May 2023)

https://www.ssllabs.com/ssl-pulse/

● Transport layer protection of application traffic between a client and a server

● Most important use case

► HTTP over TLS = HTTPs

● Other uses include

► SMPT over TLS = SMTPs

► DNS over TLS = DoT

Primary Use Case of TLS

38IT-Security - Chapter 6 Network Security Protocols

TCP SYN

TCP SYN ACK

TCP ACK and TLS Client Key ExchangeApplication (HTTP,…)

TLS

TCP

IP

Data Link

Physical

Server Key Exchange, Parameters, Authentication, Data

Client Authentication and Data

● Authenticated session key agreement

► Using the TLS Handshake protocol

► Supports three key agreement methods

§ PSK-only

§ PSK-authenticated DH

§ Signature authenticated DH

● Encryption and integrity protection

► Of application data, part of the

handshake, alert and change cipher spec

messages

► Using the TLS Record Protocol

Security Services offered by TLS 1.3

39IT-Security - Chapter 6 Network Security Protocols

TLS Handshake

TLS Record protocol

Application

Alert

TCP

Note: we focus on TLS 1.3 here
Most resources on the Web are still on TLS 1.2

● {} encrypted and integrity

protected handshake messages

● [] encrypted and integrity

protected application data

(different keys used)

● Only sent if certificate-based

client authentication required

● Only sent if DH is

authenticated with server

signature

Authentication and Key Agreement: TLS 1.3 Handshake Overview

40IT-Security1 - Chapter 7 Network Security Protocols

Client.Hello
Supported algos
Client-DH and/or PSK-label
Client.RAND

Server.Hello
Selected algos
Server.DH and/or selected PSK-label
Server.RAND

{Certificate Request}
{Server.Certificate}
{Certificate.Verify}
{Finished}
[Application Data]{Client.Certificate}

{Certificate.Verify}
{Finished}

[Application Data]

● In Client.Hello, client offers

► several DH-values for several

groups and/or

► several PSK-labels identifying

PSKs

► Encryption and integrity

protection algorithms it

supports

● and includes

► a fresh random number

Client.RAND

Authentication and Key Agreement: TLS Handshake Key Exchange Phase (1)

41IT-Security1 - Chapter 7 Network Security Protocols

Client.Hello
Supported algos
Client-DH and/or PSK-label
Client.RAND

Server.Hello
Selected algos
Server.DH and/or selected PSK-label
Server.RAND

{Certificate Request}
{Server.Certificate}
{Certificate.Verify}
{Finished}
[Application Data]{Client.Certificate}

{Certificate.Verify}
{Finished}
[Application Data]

● In Sever.Hello, server includes

► DH-values for the selected

group and/or

► PSK-label of selected PSK

► Selected enc. and int. algos

● Client and Server can now

► Compute the DH-Key and/or

► Identify and retrieve the PSK

to use

► Derive session keys from DH-

Key and / or PSK

Authentication and Key Agreement: TLS Handshake Key Exchange Phase (2)

42IT-Security1 - Chapter 7 Network Security Protocols

Client.Hello
Supported algos
Client-DH and/or PSK-label
Client.RAND

Server.Hello
Selected algos
Server.DH and/or selected PSK-label
Server.RAND
{Certificate Request}
{Server.Certificate}
{Certificate.Verify}
{Finished}
[Application Data]

{Client.Certificate}
{Certificate.Verify}

{Finished}
[Application Data]

Derive Session Keys

Derive Session Keys

● PSK-label identifies PSK to use

● Each Finished message

► Includes MAC on hash of all

handshake messages so far

► MAC is computed with session

key derived in last step

► MAC ensures that any changes

to data in the Hello messages

are protected against

manipulation

TLS 1.3 Handshake PSK-Only Key Exchange

43IT-Security1 - Chapter 7 Network Security Protocols

Client.Hello
Supported algos
PSK-label
Client.RAND

Server.Hello

Selected algos
PSK-label
Server.RAND
{Finished}
[Application Data]

{Finished}
[Application Data]

Check MAC on
Finished message

Check MAC on
Finished message

● Server sends

► Certificate request if client is to be

authenticated with a certificate

► its own Server.Certificate including

a chain of certificates

► Certificate.Verify message with a

signature on the hash of all

handshake messages with server’s

private key

► Finished message as before

● If requested Client sends

► Client.Certificate and

Certificate.Verify

TLS 1.3 Handshake DHE (with signatures) Key Exchange

44IT-Security1 - Chapter 7 Network Security Protocols

Client.Hello
Supported algos
Client-DH
Client.RAND

Server.Hello
Selected algos
Server.DH
Server.RAND
{Certificate Request}
{Server.Certificate}
{Certificate.Verify}
{Finished}
[Application Data]

{Client.Certificate}
{Certificate.Verify}
{Finished}
[Application Data]

Check Signature on
Certificate.Verify

with public key from
Server.Certificate

Check Signature on
Certificate.Verify

with public key from
Client.Certificate

● Same as PSK-only

● But session keys derived from

PSK and DH-key

TLS1.3 Handshake PSK with DHE Key Exchange

45IT-Security1 - Chapter 7 Network Security Protocols

Client.Hello
Supported algos
Client-DH and PSK-label
Client.RAND

Server.Hello
Selected algos
Server.DH and selected PSK-label
Server.RAND
{Finished}
[Application Data]

{Finished}

[Application Data]

PSK-only and PSK with DHE-key

► can also be used after a full

handshake with DHE and

signatures to resume

► In this case, the first

message from the client

may already contain data

§ Referred to as 0-RTT

Application Data protectionTLS-Handshake/alert protection

Separate Keys for the different

directions

► Counters, IV etc. can be

selected independently

Session Key Generation

46IT-Security - Chapter 6 Network Security Protocols

PSK DH-Key

HMAC-based Key
Derivation Function

K11 K12 K21 K22

Client to Server Keys

Server to Client Keys

Different Label
per key

Kxy: Session key for AEAD
ciphers

DHE and
PSK with DHE

PSK-only and
PSK with DHE

Client.RAND
Server.RAND

Base Key

● The record protocol is responsible for

► Taking messages to be transmitted and

fragmenting data into blocks of 214 bytes or less

§ Called TLS Plaintext records

► Protecting the records and transmitting them

► Verifying integrity protection on received data,

decrypting received data

► Reassembling and delivering data to higher layers

● Supports three main content types for the

plaintext records

► handshake , application-data, alert

TCP Payload Protection with the TLS Record Protocol

47IT-Security - Chapter 6 Network Security Protocols

Handshake, Alert or Application data

Frag 1

Plaintext Record n

⋯

Ciphertext Record 1 Ciphertext Record n⋯

Type Length Frag 1

Plaintext Record 1

Frag n

Type Length Frag n

Type Length Frag 1 Type Length Frag n

AEAD Cipher AEAD Cipher

● Specifies two different types of alerts

► Closure alerts

§ Closure-notify: Notifies receiver that sender will close connection now,

receiver should ignore any traffic received after this message

§ user-canceled

► Error alerts

§ unexpected-message

§ bad-record-mac: MAC on record layer did not check out correctly

§ handshake-failure: parameters could not be agreed upon

§ ….

Alert protocol

48IT-Security - Chapter 6 Network Security Protocols

● The TLS RFC itself only specifies that

► TLS servers and clients need to check that the

signature provided in the Certificate.Verify

message can be verified with the public key in

the certificate

TLS and Certificate Validation

49IT-Security - Chapter 6 Network Security Protocols

● Verifying the certificates received additionally

requires the receiver to

► Check if the root CA is trusted in the context of

the application invoking TLS

► Check that the identity included in the certificate

corresponds to the identity of the server

► Verifying the signatures on all certificates in the

provided chain up to a trusted root certificate

► Verifying that each certificate in the chain is

currently valid and has not been revoked

● All Ciphers supported by TLS 1.3 are AEAD ciphers

Supported Algorithms in Handshake and Data Protection

50IT-Security - Chapter 6 Network Security Protocols

Supported AEAD Ciphers

TLS_AES_128_GCM_SHA256

TLS_AES_256_GCM_SHA384

TLS_CHACHA20_POLY1305_SHA256

TLS_AES_128_CCM_SHA256

TLS_AES_128_CCM_8_SHA256

Comparison of the protocols

► Differences

► Communalities in mechanisms used

► Overlaps in use cases

Overview

51IT-Security - Chapter 6 Network Security Protocols

IPSec

► Main use case

► Security services offered

► Authentication and key agreement

► Payload or packet protection

TLS

► Main use case

► Security services offered

► Authentication and key agreement

► Payload protection

IPSec TLS

IP-packet level protection Protection of TCP Segments

Host-to-host protection of IP communication Transport layer protection invoked by a specific
application

Application independent protection of communication
between individual hosts or complete networks

Communication between browser and web server and
other client/server-style applications

Can be transparent to end users; no need to understand
/ configure IPsec

Requires end users to check if certificate has been
issued to desired server

Highly configurable; Can be restricted to protect IP
packets to / from individual host as well as complete
networks

Invoked by a specific application running between client
and server for all traffic of this application

Authentication and key agreement based on two-sided
authenticated Diffie-Hellman

Authentication and key agreement based on a server-
side only or mutually authenticated Diffie-Hellman

Authentication can be based on secret keys or
public/private key pairs

Authentication based on public / private key pair of
server and optional public / private key pair of client,
alternatively a pre-shared secret key can be used since
TLS 1.3

Comparison of IPSec and TLS

52IT-Security - Chapter 6 Network Security Protocols

IPSec

► Internet Key Exchange Protocol IKEv2

§ Specified in RFC RFC 7296

► Security Architecture for IP

§ Specified in RFC 4301

► Encapsulating Security Payload Protocol ESP

§ Specified in RFC 4303

► Authentication Header Protocol AH

§ Specified in RFC 4302

Base Specifications and References

53IT-Security - Chapter 6 Network Security Protocols

TLS 1.3

► TLS 1.3 RFC 8446

► Includes the handshake, record layer, and alert

protocols

Book Chapter

► W. Stallings, Cryptography and Network Security:

Principles and Practice, 8th edition, Pearson 2022

§ Chapter 17: Transport-Level Security

§ Chapter 20: IP Security

● IPSec offers encryption and integrity protection for IP packets

● IPSec supports two modes

► Transport mode for IP-packet protection directly between packet origin and final destination

► Tunnel mode for protection of IP-packets involving intermediate nodes such as security gateways

● IPSec comprises

► The ESP protocol for encryption and integrity protection of the payload of the protected packet

► The AH protocol for integrity protection of the entire protected packet (including the header)

● IKEv2 offers authentication and key agreement for IPSec

► Based on a secure authenticated Diffie-Hellman key exchange (provides key confirmation)

► Key exchange can be authenticated with the help of signatures or message authentication codes

► Also negotiates which traffic is going to be protected with which protocols and algorithms

Summary

54IT-Security - Chapter 6 Network Security Protocols

● TLS 1.3 offers

► Server-side or mutual authentication between client and server

► Session key establishment

► Encryption and integrity protection of TCP segments

● Handshake protocol in TLS 1.3

► Based on ephemeral DH exchange and signatures

► Based on a pre-shared key alone

► Based on ephemeral DH and pre-shared-key

● Record protocol in TLS 1.3

► Supports only AEAD ciphers

Summary

55IT-Security1 - Chapter 7 Network Security Protocols

Prof. Dr.-Ing. Ulrike Meyer

IT-Security
Chapter 7: Security of Selected Classical Applications

E-Mail, DNS, Remote Login

● Many applications can be protected using TLS

► Most prominent example HTTP over TLS = HTTPs

► Also FTPs, SIPS, SRTP ,…

● Some distributed applications, however, cannot easily use TLS end-to-end

► Email: asynchronous, no handshake between sender and receiver possible

► DNS: connectionless, runs on UDP, caching necessary for performance reasons

► …

● Secure versions of some applications have been developed in parallel to the first TLS version

► SSH: secures one of the oldest internet applications, namely remote login

Overall Lecture Context

2IT-Security - Chapter 7 Security of Selected Classical Applications

Overview

3IT-Security - Chapter 7 Security of Selected Classical Applications

DNS Security

► DNS System

► Threats

► DNSSec

► DoT / DoH

Email Security

► Email Architecture

► Threats

► End-to-end protection

§ PGP and S/MIME

► Backbone protection

§ SMTPs

§ …
Remote Login with SSH

► Primary use case

► Security services offered

► TCP payload protection

Overview

4IT-Security - Chapter 7 Security of Selected Classical Applications

DNS Security

► DNS System

► Threats

► DNSSec

► DoT / DoH

Email Security

► Email Architecture

► Threats

► End-to-end protection

§ PGP and S/MIME

► Backbone protection

§ SMTPs

§ …
Remote Login with SSH

► Primary use case

► Security services offered

► TCP payload protection

Classical Email Architecture (Simplified)

5IT-Security - Chapter 7 Security of Selected Classical Applications

Email Client
SMTP Client

Email Client
IMAP Client

Sender Receiver

Mail Transfer Agent
SMTP Server

Mail Transfer Agent
SMTP Client

Sender’s Mail Server

Mail Access Agent
IMAP Server

Mail Transfer Agent
SMTP Server

Receiver’s Mail Server

SMTP

SMTP

IMAP

Emails may be relayed
via multiple MTAsNote: sending /receiving email is asynchronous

SMTP:

Simple Mail Transfer Protocol

IMAP:

Internet Message Access Protocol

Alternative: Web Email Architecture (Simplified)

6IT-Security - Chapter 7 Security of Selected Classical Applications

Email Client
HTTP Client

Email Client
HTTP Client

Sender Receiver

Mail Transfer Agent
HTTP Server

Mail Transfer Agent
SMTP Client

Sender’s Mail Server

Mail Access Agent
HTTP Server

Mail Transfer Agent
SMTP Server

Receiver’s Mail Server

HTTP

SMTP

HTTP

Emails may be relayed
via multiple MTAsHTTP used to send emails to and receive emails from Mail servers

SMTP:

Simple Mail Transfer Protocol

HTTP:

Hypertext Transfer Protocol

Email Threats

7IT-Security - Chapter 7 Security of Selected Classical Applications

Eavesdropping and Manipulation

► During transfer

§ Between email clients and mail servers, between mail servers

► On storage at mail server

§ Emails stored in cleartext

Email Spoofing

► Attacker submits an email to some mail server

► Claims the email is from Bob

Bob

Email from Bob

● TLS allows us to protect TCP connections

► SMTPs: SMTP over TLS

§ protects email transfer from sender to email server

§ protects email transfer between email servers

► IMAPs: IMAP over TLS

§ protects email transfer from email server to receiver

► Alternatively: HTTPs HTTP over TLS

§ protects email transfer from sender to email server

§ protects email transfer from email server to receiver

ØHop-by-hop protection of confidentiality and integrity

Ø No non-repudiation

ØEmails still stored in the clear on mail server

Protecting Emails with TLS

8IT-Security - Chapter 7 Security of Selected Classical Applications

SMTPs
or

HTTPs

IMAPs
or

HTTPs
SMTPs

End-to-end protection with TLS not possible

Approach used by S/MIME and PGP

► Signs hash of message 𝑚 with own private key 𝒔𝒌𝑺

► Sender generates symmetric key 𝐾

► Encrypts mail and signature with 𝐾

► Encrypts 𝐾 with receiver’s public key 𝒑𝒌𝑹

► Sends encrypted message and encrypted key as mail to

its mail server

End-to-End Protection

9IT-Security - Chapter 7 Security of Selected Classical Applications

𝒔𝒌𝑺, 𝒑𝒌𝑹 𝒔𝒌𝑹, 𝒑𝒌𝑺

𝑬𝒑𝒌𝑹(𝑲) ∥ 𝑬𝑲 𝒎 ∥ 𝒔𝒊𝒈𝒔𝒌𝑺 (𝒉 𝒎

Threats covered

► Eavesdropping – symmetric encryption

► Manipulation – digital signature

► Repudiation – digital signature

Main Conceptional Difference between S/MIME and PGP

10IT-Security - Chapter 7 Security of Selected Classical Applications

Distribution of public keys

► S/MIME: certificates signed by CAs, Trusted CAs configured

in email client

► PGP: Web of trust

§ PGP users sign certificates for other PGP users

§ Each user decides which keys to trust

● Each PGP user

► assigns introducer trust level to other users

► assigns certificate trust level 0 ≤ w ≤ 1 to

each introducer trust level

PGP Web of Trust

11IT-Security - Chapter 7 Security of Selected Classical Applications

Introducer Trust

Unknown

Partial trust

Full trust

No trust

Certificate Trust

0

𝑥

𝑦

0

User Introducer Trust

Clare Partial trust

Dave No trust

Tom Partial trust

Fred Full trust

Certificate Certificate Trust level

𝐶𝑒𝑟𝑡(𝑝𝑘#$%)&'()* 𝑥
𝐶𝑒𝑟𝑡(𝑝𝑘#$%)+(,* 0
𝐶𝑒𝑟𝑡(𝑝𝑘#$%)-$. 𝑥

Example with 𝒙 = ½ and 𝒚 = 𝟏

Key legitimacy is computed from certificate trust levels

► Let 𝑁/ 𝑁0 be the number of certificates of certificate trust value 𝑥 (𝑦)

► Then the key legitimacy is computed by

Key Legitimacy

12IT-Security - Chapter 7 Security of Selected Classical Applications

Certificate Certificate Trust level

𝐶𝑒𝑟𝑡(𝑝𝑘#$%)&'()* 1/2
𝐶𝑒𝑟𝑡(𝑝𝑘#$%)+(,* 0
𝐶𝑒𝑟𝑡(𝑝𝑘#$%)-$. 1/2
𝐶𝑒𝑟𝑡(𝑝𝑘-*1)+(,* 0
𝐶𝑒𝑟𝑡(𝑝𝑘2'3)4)*1 1

public key Key legitimacy

𝑝𝑘#$% 1

𝑝𝑘-*1 0

𝑝𝑘2'3 1

key legitimacy = +
1 𝑖𝑓 𝑥 0 𝑁%+ 𝑦 0 𝑁& ≥ 1
0 𝑖𝑓 𝑥 0 𝑁%+ 𝑦 0 𝑁& < 1

User Introducer Trust

Clare Partial trust

Dave No trust

Tom Partial trust

Fred Full trust

But: mail servers and mail clients still accept unprotected messages

Ø Email spoofing still possible und extensively used e.g. in phishing attacks

Threats covered

13IT-Security - Chapter 7 Security of Selected Classical Applications

Hop-by-hop protection with TLS End-to-end with S/MIME or PGP

Eavesdropping on transfer – Symmetric
encryption

Eavesdropping on transfer and in storage
– Symmetric encryption

Manipulation on transfer – MACs Integrity protection on transfer and in
storage – Digital Signature

Non-repudiation – Digital Signature

Typical SMTP Exchange between Client and Server

14IT-Security 1 - Chapter 8 Security of Selected Classical Applications

TCP connection establishment

HELO: domain-name or IP of client
250: ok

MAIL FROM: xxx@yyy

250: ok

220: ready

RCPT TO: aaa@bbb

250: ok

DATA

ServerClient

354: start mail input, end with <CRLF>.<CRLF>

Line 1

Last line

<CRLF>.<CRLF>

E
Email
Starting with header lines
Including
From, To, CC…

● SMTP commands / responses

● Email message

► Email header lines

§ From header line

§ To header line

§ …

► Email Body

● MAIL FROM and From header

line may differ

⋮

Example: Spoofed From Header Line

15IT-Security - Chapter 7 Security of Selected Classical Applications

TCP connection establishment

HELO: client.somedomain.de
250: ok

MAIL FROM: malory@somedomain.de

250: ok

220: ready

RCPT TO: aaa@bbb

250: ok

DATA

ServerClient

354: start mail input, end with <CRLF>.<CRLF>

From: “Spoofed, Adam" <spoofed@itsec.rwth-aachen.de>

To: "Meyer, Ulrike" <meyer@umic.rwth-aachen.de>

….
.
.

Subject: Important

Domain Key Identified Mail

► Mail server signs mail header lines and body

► Thereby ”authenticates” from header line

► Signature checked by receiving mail server

► Allows receiving mail server to discard unsigned

messages with from email address of domain

that is know to be signing

Further Protocols between Mail Servers

16IT-Security - Chapter 7 Security of Selected Classical Applications

Sender Policy Framework

► Allows to specify hosts that are allowed to send

mail on behalf of the domain

§ In HELO and MAIL FROM SMTP commands

► Emails from other SMTP clients trying to sent

email on behalf of the domain can than be blocked

DMARC

► Complements SPF and DKIM by a DNS-based

mechanism to distribute policies on

§ How emails claiming to come from a domain are to

be handled

§ How to receive reports on domain abuse

Threat to Availability: SPAM

17IT-Security - Chapter 7 Security of Selected Classical Applications

● SPAM stands for “SPiced hAM”

► Any unsolicited commercial

email is SPAM

● Sent by attackers by

► Directly connecting to

recipient’s email server

► Using open email relays

► Using malware-infected

client machines

https://www.youtube.com/watch?v=duFierM1yDg

● In a phishing attack and attacker tries to

► lure a user into revealing private information

● Classical attack path

► Attacker sends phishing email to victim, often with

spoofed sender address to lure user into trusting it

► Email includes link to phishing website

► Phishing website is a clone of an original website

► User enters private information into phishing website

believing it’s the original website

► Phishing websites sends private information to a

database controlled by the attacker

● What private information?

► E.g. username / password, credit card number,…

Email Spoofing in Classical Phishing Attacks

18IT-Security - Chapter 7 Security of Selected Classical Applications

2) Write 3) sends

Attacker Phishing Email Victim

1) Create

Identical Clone

Includes
link to

Original website

Databse

5) Stores phished
credentials

4) Clicks on Link
enters credentials

Phishing website

Overview

19IT-Security - Chapter 7 Security of Selected Classical Applications

DNS Security

► DNS System

► Threats

► DNSSec

► DoT / DoH

Email Security

► Email Architecture

► Threats

► End-to-end protection

§ PGP and S/MIME

► Backbone protection

§ SMTPs

§ …
Remote Login with SSH

► Primary use case

► Security services offered

► TCP payload protection

Main purpose:

Map domain names to IP addresses

DNS System – Overview

20IT-Security - Chapter 7 Security of Selected Classical Applications

One of the oldest Internet applications (1987)

► Consists of thousands of DNS servers

► DNS servers can be queried by applications

§ via DNS client in the operating system: stub resolver

► Each host has a DNS server preconfigured

§ Via DHCP or Manually

Stub resolver

www.rwth-aachen.de ?137.226.107.63

www.rwth-aachen.de ?

137.226.107.63

DNS Server

www.rwth-aachen.de ?

137.226.107.63

Application

● Tree-structured name space

► starting from unnamed root domain

● Over 1400 top-level domains: TLDs

► generic: e.g., .org, .edu, .mil, .com,…

► country: e.g., .de, .uk, .es, .cn, …

► new TLDs: e.g., .tourism, .museum,…

► Internationalized domain name, e.g. .mockba

● Leaf domains may refer to single hosts or a

collection of hosts

● Zone

► Connected part of the domain name space

► child does not need to belong to zone of parent

DNS System – Domain Name Space

21IT-Security - Chapter 7 Security of Selected Classical Applications

root

edu de

rwth-aachen

www itsec

git

com museum

domain name
git.itsec.rwth-aachen.de

Some part of the domain name tree

zone

● A DNS resolver sends a DNS query to a DNS Server

● A DNS server answers with a DNS response

● Queries and responses use the same format

DNS Queries and Responses

22IT-Security - Chapter 7 Security of Selected Classical Applications

DNS clients are called resolvers!

DNS Resolver DNS Server

query

response

Query ID: 16 bit, same in query and response Flags

Questions # RRs in Answer Section

RRs in Authority Section # RRs in Additional Information Section

Question(s): domain name and type of answer desired

Answer section: RRs answering the question

Authority section: RRs of name servers responsible for domain name in answer

Additional information section: additional RRs, e.g., IP address of name servers

In practice only 1
question per query is

supported

dig www.tu-darmstadt.de
RR stands for resource record

● DNS distributes information on domain names as RRs

● Structure of RRs

● domain name

► to which the RR applies

● TTL in seconds

► indicates how long RR

should be cached

● class: IN for Internet

Resource records

23IT-Security - Chapter 7 Security of Selected Classical Applications

domain name time-to-live class type value

Type Meaning Value

A IPv4 address of a host 32 bit

AAAA IPv6 address of a host 128 bit

MX Mail exchange Domain name of mail server accepting
email for this domain

NS Name Server Domain name of an authoritative
name server for this domain

CNAME Canonical Name Maps the domain name (alias) to an
other domain name (canonical name)

PTR Pointer Used mainly for reverse lookups

SOA Start of authority Administrative information on a zone

Example

24IT-Security - Chapter 7 Security of Selected Classical Applications

Example: Typical Address Resolution

25IT-Security - Chapter 7 Security of Selected Classical Applications

Local
DNS server

Root DNS server

“de” DNS server
f.nic.de

www.rwth-aachen.de

de NS f.nic.de,
f.nic.de A 81.91.164.5

www.rwth-aachen.de A 137.226.107.63

www.rwth-aachen.de

137.226.107.63

www.rwth-aachen.de

rwth-aachen.de NS zs2.rz.rwth-aachen.de
zs2.rz.rwth-aachen.de A 134.130.5.9

www.rwth-aachen.de

rwth-aachen.de DNS server
zs2.rz.rwth-aachen.de

Stub resolver

Example: Typical Address Resolution

26IT-Security - Chapter 7 Security of Selected Classical Applications

Local
DNS server

Root DNS server

“de” DNS server
f.nic.de

www.rwth-aachen.de

de NS f.nic.de,
f.nic.de A 81.91.164.5

www.rwth-aachen.de A 137.226.107.63

www.rwth-aachen.de

137.226.107.63

www.rwth-aachen.de

rwth-aachen.de NS zs2.rz.rwth-aachen.de
zs2.rz.rwth-aachen.de A 134.130.5.9

www.rwth-aachen.de

rwth-aachen.de DNS server
zs2.rz.rwth-aachen.de

Stub resolver

Queries local
DNS server
recursively

Queries
other DNS

servers
iteratively

Caching at DNS Servers

27IT-Security - Chapter 7 Security of Selected Classical Applications

Local
DNS server

www.rwth-aachen.de

137.226.107.63

Stub resolver

name TTL Class Type Value

www.rwth-aachen.de 600 IN A 137.226.107.63

zs2.rz.rwth-aachen.de 600 IN A 134.130.5.9

rwth-aachen.de 86400 IN NS zs2.rz.rwth-aachen.de

f.nic.de 600 IN A 81.91.164.5

de 86400 IN NS f.nic.de

DNS servers cache all RRs they learn from responses for as TTL seconds

Cache of Local DNS server after receiving all responses

Caching accelerates future queries

► same queries as well as queries that may reuse part of the information obtained

● Threats to availability

► Flood DNS server with fake queries or responses

► Thereby make it unresponsive for legitimate queries

● Threats to integrity such as

► Provide incorrect RRs to resolvers

§ E.g., by making DNS servers cache fake RRs: Cache Poisoning Attacks

§ E.g., by making client machines connect to malicious DNS servers

● Threats to confidentiality

► DNS queries are unencrypted

§ Anyone eavesdropping between client and local DNS server learns queries

§ Local DNS server learns queries

DNS Threats Overview

28IT-Security - Chapter 7 Security of Selected Classical Applications

Chapter 8

Idea:

► Make victim DNS server query another DNS

server for RR to be faked

► Send a fake response to victim DNS server

► Only successful if attacker can

§ spoof IP address of queried DNS server

§ guess correct query ID

§ (guess correct source port of victim’s query)

§ be faster than real name server

Example Attack Threatening Integrity: Cache Poisoning

29IT-Security - Chapter 7 Security of Selected Classical Applications

NS of g.cn

g.cn A

g.cn A 6.6.6.6

cache

g.cn A 209.85.133.160

ignore

Victim NS

Victim Client

g.cn A

g.cn A 6.6.6.6

g.cn A

g.cn A 6.6.6.6

● Goal of DNSSec

► Protect authenticity of resource records in an end-to-end fashion

► Enable distribution of authentic copies of public keys

► Still allow for caching

► Still allow DNS to run on top of UDP

● Using TLS to protect authenticity of DNS RRs

► Would require DNS to run on top of TCP

► Unnecesssary overhead

§ for one single round of query and response need TCP three-way handshake and TLS handshake

► Would make caching impossible as direct connection to authoritative name server required

DNSSec

30IT-Security - Chapter 7 Security of Selected Classical Applications

New RR types introduced by DNSSec

► RRSig RR: used to carry signatures on a

specific other RR referred to by domain

name and type

► DNSKEY RR: used to carry public ZSKs

and KSK of zones

► DS RR: (Delegation Signature RR): used

to carry a hash of a KSK

► NSEC RR: used to help to authenticate

negative DNS responses

DNSSec New RRs and Keys

31IT-Security - Chapter 7 Security of Selected Classical Applications

Two types of keys used in DNSSec

► Zone Signing Key ZSK

§ Used to sign resource records of a zone

§ Can be changed without involving parent zone

► Key Signing Key KSK

§ Used to sign DNSKEY RRs containing a ZSK

§ Distributed in DNSKEY RRs as well

§ Requires a DS RR in the parent domain and an RRsig

RR that carries a signature on the DS RR signed with

the zone’s ZSK

Zone File with DNSSec Resource Records

32IT-Security - Chapter 7 Security of Selected Classical Applications

Zone

DNSKEY ZSK

RRSig

MX

RRSig

NS

RRSig

A

RRSig

A

RRSig

AAAA

RRSig

AAAA

RRSig
⋯ ⋯

DS KSK

RRSig

Parent Zone

DNSKEY ZSKDNSKEY KSK

RRSig

DS KSK MX

RRSig

NS

RRSig

A

RRSig

A

RRSig

AAAA

RRSig

AAAA

RRSig
⋯ ⋯

RRSig

Grand Parent Zone

DNSKEY ZSKDNSKEY KSK

RRSig

DS KSK MX

RRSig

NS

RRSig

A

RRSig

A

RRSig

AAAA

RRSig

AAAA

RRSig
⋯ ⋯RRSig

DNSKEY KSK

● DNSKEY RR contains

► a public key of a zone

► Key flag that indicates if the key is a KSK (key flag 257) or a ZSK (key flag 256)

► algorithm field that indicates for which algorithm the key can be used

de. 4408 IN DNSKEY 257 3 8

AwEAAbntyidABgdzt4jx+CVx8RgxEcJYdBFoihl3Ay87saAJsJXCVo6X

yGJWDHlgNFJrVzKL6ePIQ2vtnb/R4opICz1TTLB92MFiWJs6gKlBBHtx

z1+etiRAAWLgakExShzkmWmrFciMpTDIjNMEclpl4diuqgnnqiAtO4jw 97t/C69H ; key-id =39227

New RR Types (1)

33IT-Security 1 -- Chapter 9 DNS Security

● DS RR (Delegation Signature RR) contains

► hash of a KSK, indication of hash algorithm used

► A key tag that points to the KSK, an algorithm field that indicates the algo for which KSK can be used, algo

identifier of hash algo used

de. 82597 IN DS 39227 8 2

AAB73083B9EF70E4A5E94769A418AC12E887FC3C0875EF206C3451DC 40B6C4FA

New RR Types (2)

34IT-Security 1 -- Chapter 9 DNS Security

● RRSIG RR contains

► a signature on a hash

► A type covered field that indicates the type of RR covered by the signature

► Algorithm field, that indicates the algorithm used

► A key tag that points to the key used to generates the signature

► Indication of the validity period of this signature, the signer’s name

► Original TTL of signed RR

de. 5320 IN RRSIG DNSKEY 8 1 7200 20170601120000 20170511120000 39227 de.

HMN5YPRBCtkSxWlR8/eW/3Kqy5AyVSbq/Zbx4fRKbSawf+v7rXHEqXnx

CFS4DlaDWdOs0bOWLfMH748NW8YA1ZT6DSFKecuEkTHzLL4IbFzZcBgG

KuJkp7wmiaamuW2PPGhutuqUcJ3CPy357OpuCJcT0qJh5nkkEURtZGj+

gZCFNWjKIBvnLwDMGkFtdHsiW1DBUJA41KeF3Cbsvk9iJZnkxB+k6mlr

a6A/G7+2fk6JuG4w7TBTfbBAa12VOHMzydwg2IMyweQOu3LssFR/WMF6

h8k7SaOJhwE6WjhVuHhAUxsvnN7TVPF9Ihb2FXMj1j0ckGwBZ4Y/SL7X /JLXhQ==

New RR Types (3)

35IT-Security 1 -- Chapter 9 DNS Security

DNSSec Signature Validation

36IT-Security - Chapter 7 Security of Selected Classical Applications

Zone

DNSKEY ZSK

RRSig

MX

RRSig

NS

RRSig

A

RRSig

A

RRSig

AAAA

RRSig

AAAA

RRSig
⋯ ⋯

DS KSK

RRSig

Parent Zone

DNSKEY ZSKDNSKEY KSK

RRSig

DS KSK

RRSig

Grand Parent Zone

DNSKEY ZSKDNSKEY KSK

RRSig

DS KSK

RRSig

DNSKEY KSK

⋯

⋯

► RR of zone trusted to be authentic if

► RRSig on RR with ZSK verifies correctly and ZSK trusted

► ZSK trusted if RRSig for ZSK verifies correctly and KSK is

trusted

► KSK is trusted if RRSig for KSK verifies correctly and ZSK

is trusted

► ZSK is trusted…. and KSK is trusted,

► KSK is trusted if ZSK is trusted …

► … untill trusted root key is hit

Example: Typical Address Resolution with DNSSec

37IT-Security - Chapter 7 Security of Selected Classical Applications

Local
DNS server

“de” DNS server
f.nic.de

www.rwth-aachen.de

www.rwth-aachen.de A 137.226.107.63
www.rwth-aachen.de RRSig A HMN…..Q
rwth-aachen.de DNSKEY ZSK
rwth-aachen.de RRSig DNSKey ZSK
rwth-aachen.de DNSKEY KSK

www.rwth-aachen.de

137.226.107.63 rwth-aachen.de DS [hash of KSK]
rwth-aachen.de RRSig auf DS [signature]

rwth-aachen.de DS

rwth-aachen.de DNS server
zs2.rz.rwth-aachen.de

Stub resolver

The DS record may also be cached by RWTH’s name server and directly provided

Signatures are checked at the local DNS server; stub resolvers do often not support DNSSec

● DNSSec only protects authenticity of DNS queries

► Implicitly assumes that DNS queries are not confidential

§ DNS responses only contain public information!

● However, what someone queries and how reveals

► The websites he or she is interested in

► Operating system used by the client

§ OS specific queries such as DNS queries to windows domains for updating

► The anti-virus program you use

► The productivity programs you use

§ Acrobat reader, all MS-office products etc. make specific DNS queries

► …

Confidentiality of DNS Queries

38IT-Security - Chapter 7 Security of Selected Classical Applications

Example Threats against Confidentiality

39IT-Security - Chapter 7 Security of Selected Classical Applications

Local
DNS server

Root DNS server

“de” DNS server
f.nic.de

www.rwth-aachen.de

de NS f.nic.de,
f.nic.de A 81.91.164.5

www.rwth-aachen.de A 137.226.107.63

www.rwth-aachen.de

137.226.107.63

www.rwth-aachen.de

rwth-aachen.de NS zs2.rz.rwth-aachen.de
zs2.rz.rwth-aachen.de A 134.130.5.9

www.rwth-aachen.de

rwth-aachen.de DNS server
zs2.rz.rwth-aachen.de

Stub resolver

Attacker between stub
resolver and local DNS

server learns which device
sends which queries

Local DNS server learns all
queries of stub resolver

Attacker able to eavesdrop
on a query sent out by local

DNS server learns that
SOME client of local DNS

server sent out that query

DNS server learns that
SOME client of local DNS

server sent out that query

Threat countered by DNS over TLS (DoT)

40IT-Security - Chapter 7 Security of Selected Classical Applications

Local
DNS server

Root DNS server

“de” DNS server
f.nic.de

www.rwth-aachen.de

de NS f.nic.de,
f.nic.de A 81.91.164.5

www.rwth-aachen.de A 137.226.107.63

www.rwth-aachen.de

137.226.107.63

www.rwth-aachen.de

rwth-aachen.de NS zs2.rz.rwth-aachen.de
zs2.rz.rwth-aachen.de A 134.130.5.9

www.rwth-aachen.de

rwth-aachen.de DNS server
zs2.rz.rwth-aachen.de

Stub resolver

Attacker between stub
resolver and local DNS

server learns which device
sends which queries

Overview

41IT-Security - Chapter 7 Security of Selected Classical Applications

DNS Security

► DNS System

► Threats

► DNSSec

► DoT / DoH

Email Security

► Email Architecture

► Threats

► End-to-end protection

§ PGP and S/MIME

► Backbone protection

§ SMTPs

§ …
Remote Login with SSH

► Primary use case

► Security services offered

► TCP payload protection

● Originally designed to secure network services over an insecure network

► Specifically: remote login onto a machine for administrative purposes or in

order to run applications on a remote host

● Developed at the same time as the first SSL version

► Some overlap between SSL and TLS w.r.t use cases supported

► But original main use cases quite different

● Operates on the application layer

► Does not make use of TLS

SSH Main use Case and Operation

42IT-Security - Chapter 7 Security of Selected Classical Applications

Remote Login with SSH

TCP

IP

Data Link

Physical

SSH Protocol Family

43IT-Security - Chapter 7 Security of Selected Classical Applications

SSH User Authentication Protocol SSH Connection Protocol

SSH Transport Layer Protocol

Server authentication
Data confidentiality, integrity

Runs on top of TCP

User authentication
Runs on top of SSH Transport Layer Protocol

Multiplex multiple data streams over same
transport layer SSH connection

● Version string

► SSH version, SSH software version, optional

comments

● Key exchange init

► RAND, list of supported key exchange methods,

symmetric encryption algorithms, supported MACs,

supported compression algos

● Algorithm selection

► Client list of algorithms ordered according to

preference

§ Most preferred one first

► First algo in client list that is also on server’s list is

chosen

SSH Transport Layer Protocol (1)

44IT-Security - Chapter 7 Security of Selected Classical Applications

Listen on port 22
TCP handshake

Client_version_string

Server_version_string

Client_key_exchange_int

Server_key_exchange_int

Client_DH_Value

Public_key, Server_DH_Value, Sig(Hash)

Client_service_request

Verify signature
Verify public key

● DH-Value

► Public DH value selected by client resp. server

● Public key

► Bare public key of server

► Alternative: public key certificate

● Hash

► Computed on all information exchanged so far:

Client_version_string ∥… ∥ Server_DH_Value

● Sig

► Signature computed by server with private

key corresponding to public key

SSH Transport Layer Protocol (2)

45IT-Security - Chapter 7 Security of Selected Classical Applications

Listen on port 22
TCP handshake

Client_version_string

Server_version_string

Client_key_exchange_int

Server_key_exchange_int

Client_DH_Value

Public_key, Server_DH_Value, Sig(Hash)

Client_service_request

Verify signature
Verify public key

● Session key derived from DH key

► MAC keys, one per direction

► Encryption keys, one per direction

► IVs, one per direction if required for mode

of encryption selected

● Client_service_request

► First message protected by the selected

algorithms

► services

§ ssh-userauth

§ ssh-connection

SSH Transport Layer Protocol (3)

46IT-Security - Chapter 7 Security of Selected Classical Applications

Listen on port 22
TCP handshake

Client_version_string

Server_version_string

Client_key_exchange_int

Server_key_exchange_int

Client_DH_Value

Public_key, Server_DH_Value, Sig(Hash)

Client_service_request

Verify signature
Verify public key

Verifying Server’s Public Key

47IT-Security - Chapter 7 Security of Selected Classical
Applications

Pre-stored
Client has local database
that associates each host

name with the
corresponding public key of

the host

Certificate
The host name – key

association is certified by a
trusted CA and the server
provides an appropriate
certificate to the client

instead of the public key
alone

Fingerprint
A fingerprint of the key is

shown to the user and can
be checked by the user

over an external channel

Best effort
Accept host key without

checking when first
connecting to the server.

Save the host key in a local
database and use the pre-
stored method from there

on for this server

● User-auth-request

► Username

► Service name

► Method name

► Method specific fields

● User-auth-failure

► List of auth. methods that can be used next

► partial success flag

§ True: request successful but additional auth. required

§ False: previous request not successful

● User-auth-success

► Server starts requested service

SSH User Authentication Protocol

48IT-Security - Chapter 7 Security of Selected Classical Applications

User-authentication-request

User-authentication-failure

User-authentication-request

User-authentication-failure

User-authentication-request

User-authentication-success

…

User Authentication Request per Method

49IT-Security - Chapter 7 Security of Selected Classical
Applications

Public key method
public key or public key certificate of
user

Signature algorithm

signature on
• session ID (hash of messages

exchanged during ssh transport
establishment)

• all other data in the request

Password method
send user password over the ssh
transport

Host based key method
public key or public key certificate of
host

Signature algorithm

signature on
• session ID (hash of messages

exchanged during ssh transport
establishment)

• all other data in the request

§ Provides

§ Interactive sessions, i.e., a remote execution of a program

§ E.g., a shell, an application, a system command

§ May involve forwarding of X11 connections

§ Forwarding TCP/IP connections aka port forwarding aka TCP/IP tunneling

§ Comes in different flavors explained on the following slides

§ All these applications can be multiplexed into a single encrypted and integrity protected tunnel

SSH – Connection Protocol

50IT-Security - Chapter 7 Security of Selected Classical Applications

● Many applications can be protected with the help of TLS

► HTTP, FTP, …

● Some applications nevertheless have special needs

► Email: asynchronous natures makes use of TLS end-to-end impossible

► DNS: caching makes use of TLS end-to-end undesirable

● TLS may help to protect data transfer in a hop-by-hop fashion

► E.g., Email from mail server to user’s mail client

● End-to-end protection of Email can be provided by PGP or S/MIME

► Both support encryption with symmetric key for end-to-end confidentiality

► Digital signatures on hash of message for non-repudiation

► Encryption of symmetric key with public key of receiver

Summary (1)

51IT-Security - Chapter 7 Security of Selected Classical Applications

● PGP or S/MIME mainly differ in how public keys are distributed

► S/MIME uses CA and classical certificates

► PGP originally designed to use user-signed certificates

§ Supports use of CAs as well

§ Authenticity of keys “computed” from individually assigned trust levels

● End-to-end protection does not prevent spoofing if it is optional to use

► We still see a lot of email spoofing especially in the context of phishing and SPAM

► DKIM, SPF, and DMARC aim at making it harder

● DNS system is mainly used to map domain names to IP addresses

► Also, to map domain names to name servers and mail servers responsible for the domain

Summary (2)

52IT-Security - Chapter 7 Security of Selected Classical Applications

● DNS is originally unprotected

► DNS queries and responses are neither encrypted nor integrity-protected

► Consequently, DNS responses can be forged (see cache poisoning for example)

§ DNSSec ensures that only authentic RRs are cached

§ Public keys required to verify authenticity of RRs are distributed via DNS

► DNS queries can be eavesdropped on

§ Addressed by DoT which protects connection between client and local DNS server with TLS

● Remote login

► SSH offers authentication, confidentiality, and integrity for remote login

► SSH was developed in parallel to the first SSL versions

► Telnet over TLS offers the similar security services as SSH but SSH offers more additional features

Summary (3)

53IT-Security - Chapter 7 Security of Selected Classical Applications

Book Chapters

► Stallings Chapter 16

RFCs related to Email Security

► PGP: RFC 4880 OpenPGP Message

Format

► S/MIME: RFC 5751

► DKIM: RFC 6376

► SPF: RFC 7208

► DMARC: RFC 7489

Root server

► https://root-servers.org

References

54IT-Security - Chapter 7 Security of Selected Classical Applications

Book

► Allan Liska and Geoffrey Stowe: “DNS Security: Defending the Domain

Name System”, Elsevier 2016

RFCs related to DNS

► RFC 1034: Domain Names – Concepts and Facilities

► RFC 1035: Domain Names – Implementation and Specification

► RFC 4033: DNS Security Introduction and Requirements

► RFC 4034: Resource Records for the DNS Security Extensions

► RFC 4035: Protocol Modifications for the DNS Security

Extensions

Key Signing ceremony for the root KSK

► https://www.iana.org/dnssec/ceremonies

https://root-servers.org/
https://www.iana.org/dnssec/ceremonies

● W. Stallings, Cryptography and Network Security: Principles and Practice, 8th edition, Pearson 2022

► Chapter 19: Electronic Mail Security, DNS, DNSSec

► Chapter 17.4: SSH

SSH Specification Details

► The secure shell transport layer protocol RFC 4253

► Latest Algorithm recommendations for SSH

§ RFC 9142

References

55IT-Security - Chapter 7 Security of Selected Classical Applications

Prof. Dr.-Ing. Ulrike Meyer

IT-Security
Chapter 8: Denial-of-Services Attacks

● So far, we focused on

► Mechanisms to protect confidentiality

► Mechanisms to protect Integrity

► Key distribution methods for these mechanisms

► Using them to protect network protocols

§ on IP, TCP, and application layer

● Not covered yet

► Availability

Overall Lecture Context

2IT-Security - Chapter 8 Denial of Service Attacks

Attacks

Targeting
Confidentiality

Eavesdropping

Traffic Analysis

Targeting
Integrity

Modification

Masquerading

Replay

Repudiation

Targeting
Availability

Denial of
service

● Definition of Denial-of-Service Attacks

● Types of attacks and simple examples targeting

► Network bandwidth

► System resources

► Application resources

Overview

3IT-Security - Chapter 8 Denial of Service Attacks

● More Advanced Techniques

► Source address spoofing

► DDoS with compromised machines

► Reflection Attacks

§ Basic principle

§ Amplification attacks as subtype of reflection

attacks

● DoS Defenses

► Incident response cycle

► Examples for preventive measures

Classification according to type of resources targeted

Definition and Classification

4IT-Security - Chapter 8 Denial of Service Attacks

A denial of service (DoS) is an action that prevents or impairs the authorized use of networks, systems, or
applications by exhausting resources such as central processing units, bandwidth, and disk space.

Network Bandwidth

• Targets capacity of network
link connecting victim server
to the Internet

System Resources

• Targets overloading or
crashing network handling
software of the OS installed on
the victim machine

Application Resources

• Targets a specific application
such as a Web server or a DNS
Server and overloads it with
many resource consuming
valid-looking requests

Definition

Example: Classic Flooding Attack targeting Network Capacity

5IT-Security - Chapter 8 Denial of Service Attacks

Internet

● Attacker floods target network with

requests

► E.g., ICMP echo requests aka ”ping”

● Router connecting target network to

the ISP starts dropping IP packets

● Consequently, legitimate packets are

dropped as well

● Works well if attacker’s connection

has higher bandwidth than target’s

● Targets system resources of a target

server

► Namely, table of open TCP connections

● Flood server with TCP SYN messages

► Fills up table of open TCP connections

● Future request from legitimate users fail

► Server unavailable for legitimate requests

Example: Classic SYN Flooding Attack targeting System Resources

6IT-Security - Chapter 8 Denial of Service Attacks

SYN

SYN

SYN

SYN ACK

SYN ACK

SYN ACK

● Bombard web server with HTTP requests

● Request crafted to consume considerable resources

► E.g., request to download a large file from the target

§ Causes the web server to read the file from hard disk

§ Store it in memory

§ Convert it into a packet stream

§ Transmit the packets

§ Thus, consumes memory, processing, and transmission

resources

► Another example: recursive HTTP flood

§ Attacker starts from a given HTTP link to the server, then

follows all links on the provided website recursively

§ Also called spidering

Example: HTTP Flood targeting Application Resources

7IT-Security - Chapter 8 Denial of Service Attacks

HTTP request

HTTP request

HTTP request

Target
HTTP server

● Definition of Denial-of-Service Attacks

● Types of attacks and simple examples targeting

► Network bandwidth

► System resources

► Application resources

Overview

8IT-Security - Chapter 8 Denial of Service Attacks

● More Advanced Techniques

► Source address spoofing

► DDoS with compromised machines

► Reflection Attacks

§ Basic principle

§ Amplification attacks as subtype of reflection

attacks

● DoS Defenses

► Incident response cycle

► Examples for preventive measures

ICMP-food with IP address spoofing

● Attack from single IP can easily be blocked

● Attackers often use spoofed IP addresses

► Attacker will not be hit by the responses!

Source Address Spoofing Directly

9IT-Security - Chapter 8 Denial of Service Attacks

● Thwarting spoofing

► Block packets with

topologically invalid IP

► Needs to be applied close to

the on on the subnet the

attacker acts from

► Unfortunately, there are still

ISPs that do not implement

such filtering

§ Too costly?

IP: 6.6.6.6

S-IP: a.b.c.d ICMP Type 8

S-IP: b.b.c.d ICMP Type 8
S-IP: c.b.c.d ICMP Type 8

S-IP: d.b.c.d ICMP Type 8

ICMP Type 0
ICMP Type 0

ICMP Type 3

Target

IP: a.b.c.d

IP: b.b.c.d

IP: d.b.c.d

ICMP Type 0

ICMP Type 0
IP: c.b.c.d

● Also known as DDoS attacks

● Attacker makes many compromised devices send

requests to the target

► Compromised machines often infected with a bot

malware

► Remotely controllable by the attacker

► May attack multiple targets over time

► Owners of compromised devices unaware of the

fact that their devices participate in attacks

Distributed Denial of Service Attacks

10IT-Security - Chapter 8 Denial of Service Attacks

HTTP request

HTTP request

HTTP request

Target
HTTP server

● Spoof source address to victim’s address in requests sent to multiple reflectors

● Overwhelm victim with replies sent out by the reflectors to these faked requests

● Reflectors attack the victim, not the attacker himself

► Each reflector may see only one request -> not suspicious

► Victim is hit by lots of unsolicited responses

Principle of Reflection Attacks

11IT-Security - Chapter 8 Denial of Service Attacks

IP: 6.6.6.6

VictimReflector

S-IP: 1.2.3.4 request

D-IP: 1.2.3.4 response

IP: 1.2.3.4

● Simple example: SYN/ACK flooding attack using reflection

► Attacker sends SYN to refelctors using the target‘s IP address as source address

► Refectors respond to target with SYN ACK

► Target is flooded with unsolicited SYN ACKs send by many reflectors

Reflection Attack

12IT-Security - Chapter 8 Denial of Service Attacks

IP: 6.6.6.6

TargetReflector

S-IP: x.x.x.x SYN
D-IP: x.x.x.x SYN ACK

IP: x.x.x.x

S-IP: x.x.x.x RST

● Variant of reflection attacks

► Each original packet sent by the attacker generates multiple or large response packets sent to the target

● Example DNS amplification attack

► Uses DNS servers as reflectors

► Attacker sends fake DNS requests to reflectors spoofing the target DNS servers IP

► Small DNS requests may lead to huge responses especially due to DNSSec

§ DNSKEY RRs ware particularly large

Amplification Attacks

13IT-Security - Chapter 8 Denial of Service Attacks

IP: 6.6.6.6

Reflector
DNS Server

S-IP: x.x.x.x, D-IP: a.b.c.d
Request DNSKEY

Target
DNS Server

IP: a.b.c.d

S-IP: a.b.c.d, D-IP: x.x.x.x
Response DNSKEY

● Definition of Denial-of-Service Attacks

● Types of attacks and simple examples targeting

► Network bandwidth

► System resources

► Application resources

Overview

14IT-Security - Chapter 8 Denial of Service Attacks

● More Advanced Techniques

► Source address spoofing

► DDoS with compromised machines

► Reflection Attacks

§ Basic principle

§ Amplification attacks as subtype of reflection

attacks

● DoS Defenses

► Incident response cycle

► Examples for preventive measures

Prevention

Detection
and Filtering

Analysis and
Attack source

traceback

Attack
Reaction and

Recovery

Defense Against DoS Attacks

15IT-Security - Chapter 8 Denial of Service Attacks

Incident response cycle for DoS attacks

► Take measures to prevent DoS attacks

► Take measures to detect and filter DoS attacks

§ Intrusion detection systems

► Log traffic to analyze after or during attack

§ Can enable attack attribution

§ Can be used to derive new preventive measures

§ Can be used to generate new detection rules

► Take measures to react to and recover from attack

• Modify protocols to minimize DoS potential
• E.g., use cookies stored on client side instead of state kept on server

side
Protocol Design

• Does not prevent attack against own infrastructure but helps others
• Filter IP packets with source addresses that do not belong to subnet

they egress from

Disable IP address
spoofing

• Throttle IP packets known to be used as part of flooding attacks
• E.g., ICMP messages of type 8 (echo requests)Throttle specific Packets

• Increase the size of TCP connection tables
• Modify time-out behavior of serverLift resource limitations

Examples for Preventive Measures

16IT-Security - Chapter 8 Denial of Service Attacks

● Denial of Service Attacks can target

► Network resources like the network bandwidth

► System resources of the operating system of hosts

► Application specific resources

● Attackers try to hide their location by

► using spoofed source IP addresses in attack attack packets

► using compromised machines of unsuspecting users

► Also shield the attacker from response traffic

● Reflection attacks allow an attacker to indirectly attack a target

► Attacker sends requests to reflectors with target’s IP address as source

► Reflectors then flood target with reply messages

Summary

17IT-Security - Chapter 8 Denial of Service Attacks

● An amplification attack is a special form of a reflection attack

► Small requests sent out by attacker on behalf of target

► Each lead to multiple response or a single large response sent by the reflectors

► Attack is thus amplified

● Defenses against DoS attacks try to

► Prevent DoS attacks in the first place

► At least detect DoS attack if prevention is not possible

► Filter and block attack-related traffic

► Log attack traffic to derive future preventive and detection measures

Summary

18IT-Security - Chapter 8 Denial of Service Attacks

● W. Stallings, Cryptography and Network Security: Principles and Practice, 8th edition, Pearson 2022

► Chapter 21: Network Endpoint Security

§ 21.4 Denial of Service Attacks

References

19IT-Security - Chapter 8 Denial of Service Attacks

Prof. Dr.-Ing. Ulrike Meyer

IT-Security
Chapter 9: Access Control, Firewalls, Intrusion Detection

● So far, we mainly looked at cryptographic

protection of data in transit or storage

► IPSec, TLS, SSH, PGP, S/MIME, DNSSec

● Now we look at

► Access Control: Blocking unauthorized access

§ Specifying a policy of who should be allowed to access

what and how

► Firewalls: Blocking unwanted network traffic

§ Specifying a policy of which traffic to allow and which

to deny

► How to at least detect intrusions in general if other

security mechanisms fail

Overall Lecture Context

2IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

Cryptographic primitives

Protocols and policies

Implementations

User / Administrators

● Access Control

► Access control matrices and lists

► Discretionary access control

► Access control on UNIX-based systems

► Role-based access control

► Attribute-based access control

Overview

3IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Intrusion Detection Systems

► Components of an IDS

► Performance and Base-rate fallacy

► Anomaly vs. Misuse-based detection

► Host-based vs. network-based

► Example: SNORT
● Firewalls

► Firewalls policy

► Firewall types

► Placement of firewalls

Access Control IETF RFC 4949

Process by which use of system resources

is regulated according to a security policy

and is permitted only by authorized

entities (users, programs, processes, or

other systems) according to that policy

Access Control

4IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

Authentication determines who a subject IS
Access Control determines what a subject is AUTHORIZED to DO

Application

Middleware

Operating System

Hardware

Reliability

Co
m

pl
ex

ity

Access Control IETF RFC 4949

Process by which use of system resources

is regulated according to a security policy

and is permitted only by authorized

entities (users, programs, processes, or

other systems) according to that policy

Access Control

5IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

Policy expressed by Access Control Matrix

Authentication determines who a subject IS
Access Control determines what a subject is AUTHORIZED to DO

Object 1 Object 2 Object 3

Subject 1 rights rights rights

Subject 2 rights rights rights

Examples for rights: read, write, execute, append,…

● Many cells in an access control matrix are empty

► E.g., private files of a subject

● Access control lists abbreviate matrices by

► Storing rows of matrices alongside objects

Access Control Lists

6IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

File 1 File 2 File 3

Subject 1 all all

Subject 2 all read

Subject 3

Subject 4

Subject 5

File 1

Subject 1 all

Others

ACL of File 1

Access Control Matrix

Basic Types of Access Controls

7IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

Discretionary Access Control

► Each object has an owner

► Owner decides who may access an object how

§ May include deciding how gets a special grant

access right

Mandatory Access Control

► A system-wide security policy decrees access to

objects

► Compares security labels of objects to security

clearances of subjects

Often occur in combination in modern implementations

● Which subjects can modify an objects ACL

► Creator of object

► Specific right that allows changes (revocation difficult)

● Privileged user and how ACLs apply to that user

● Support of groups or wildcards

► Allow to abbreviate ACLs

● Handling of contradictory permissions

► Allow if any permission allows it

► Deny if any permission denies it

► Apply first matching entry

● Application of default settings

Discretionary Access Control Implementations Differ in

8IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Each object is associated with three classes

of subjects

► owner group others

● Three rights available

► r:read w:write x:execute

● ACL for an object indicates

► If object is directory or not

► Rights assigned to each subject class

● Rights are initially set to default value

● Rights can be changed by owner with chmod

Classical Example for Discretionary Access Control: UNIX File System

9IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

Example ACLs

Directory owner group others

d rwx r−− −−−

− rw− rw− r−−

Meaning of chmod abc

r = 4 w = 2 x = 1

7 = rwx 6 = rw− 5 = r−x

4 = r−− 3 = −wx 2 = −w−

1 = −−x

chmod 715 file sets rwx −−x r−x

● The Unix permissions have the following effect on directories

► r allows listing the content of a directory

► w allows adding or deleting objects to/form a directory

► x allows opening / executing files, cd to subdirectory if x is also set on it

● Examples

► d rwx r–– r--

§ Allows group members to list the content of the directory but does not allow them to

access any subdirectory

► d rwx ––x r–-

§ Allows group members to change to subdirectories, open all files in the directory,

execute all executables in there, but not to list them, delete them, or add files or

subdirectories or executables,…

Meaning of Rights for Directories in UNIX-based Systems

10IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Each process or subject is associated with a user ID and at least one group ID

► Can be a member of more groups as well

● Access decisions to objects are based on user IDs and group IDs

● When a file is created it is owned by a particular user and marked with that user’s user ID as owner

► It also belongs to a specific group

§ Initially the primary group of its creator or the group of its parent directory if that has the setGID bit set

● If the userid is 0 (root) then the access control decision is ‘yes’

► I.e. root can do whatever it likes, some things can only be done by root

Unix: Access Decisions and User IDs and Group IDs

11IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Each process has three user IDs and three group IDs

► real uid, effective uid, saved uid

► real gid, effective gid, saved gid

● Real user ID (ruid)

► identifies the owner of the process

● Effective user ID (euid)

► used in most access control decisions

► can be assigned to a process by a system call (e.g. setuid)

● Saved user ID (suid)

► stores a previous user ID such that it can be restored later

● Similar: group IDs

Unix: User IDs, Group IDs

12IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● When setuid permission is set on an executable file, then

► a process that runs this file is granted access based on the userID of the owner of the file

► The effectiveUID on which the access decision depends is set to the UID of the owner of the file

► This special permission allows allows the process running the file to access files and directories that are

normally available only to the owner.

● Similar setgid permission

● The setuid and setgid permissions are indicated as s instead of x

► chmod 2000 sets the setuid bit, chmod 4000 sets the setgid bit

● The sticky bit protects the files within a directory

► If a directory has the sticky bit set, a file within it can be deleted only by file owner, directory owner, or root

Special Types of Permissions: setuid, setgid, sticky bit

13IT-Security 2 - Chapter 7 Access Control

● Define roles of subjects, e.g. as job functions within an organization

● Assigns access rights to roles instead of individual users

● User are assigned roles according to their responsibilities

Role-based Access Control Models (RBAC)

14IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

Users Roles Resources

Role1

Role2

Role3

● Assignment of users to roles according to their responsibilities

● Access control matrix maps Roles to Objects

► Allowing for roles as objects allows for hierarchy

Access Matrix Representation of RBAC

15IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

R1 R2 …. Rn

U1 X

U2 X

U3 X X

U4 X

U5 X

U6 X

Um X

…

Role

U
se
r

R1 R2 F1 F2 P1 D2 …

R1 control Owner, r wake search

R2 c w x

R3

Rn w stop

…

Object

Ro
le

● Defines authorizations expressed as conditions on properties of the subject, object, and the

environment

► E.g. attribute of object: creator of the object

► Then a single access rule can specify the ownership privilege for any creator of an object

● Advantage of ABAC

► Flexibility and expressiveness

● Main concern with ABAC

► Performance impact of evaluating predicates on objects and user properties for each access

● Proposed uses include cooperating web services and cloud computing

Attribute-based Access Control

16IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Subject

► An active entity that causes information

to flow amount objects or changes

system state

§ E.g. , user, application, process, device

● Subject attributes

► Associated with a subject

► Define the identity and characteristics of

the subject

§ E.g., subject identifier, organization, job

title,…

Entities and Attributes in the ABAC Model

17IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Object

► Passive system-related entity

§ in the context of a specific request information

§ E.g., device, file, record, table, process, program, network,

domain,...

● Object attributes

► Associated with an object

§ E.g., title, creator, date, author,…

● Environment attributes

► Operational, technical, or situations environement or context

in which the access occurs

§ E.g. Current date and time, current malware activities,,...

● ABAC relies on

► Evaluation of attributes of subjects and objects

► A formal access control rule defining allowable operations for subject/object attribute combinations in a

given environment

● ABAC systems are able to enforce DAC, RBAC, and MAC concepts

● ABAC enables fine-grained access control

Attribute Evaluation

18IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

1. Subject request access to object

2. Access control mechanism

governed by set of rules defined

by access control policy

3. Based on these rules assesses

attributes

4. Grants access to object if access is

authorized, denies otherwise

ABAC Logical Architecture

19IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

Access Control Policy

Subject
Access Control Mechanism

Object

Subject Attributes Object Attributes

Rules

Decision Enforce

Name

Clearence

Owner

Classi-
fication

1.

2.

3. 3.

3.

Environmental
Conditions

4.

● Assume store must enforce access rule to movies based on

user age and movie rating (no environment here)

● In RBAC

► Users would be assigned one of the three roles adult, juvenile,

child

► Three rights: can view R-rated movies, can view PG-13-rated

movies, can view G-rated movies

► The adult role obtains all three rights, the juvenile role only the

last two, child role only the last one

Example: RBAC vs ABAC (1)

20IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

Movie Rating Users Allowed Access

R Age 17 and older

PG-13 Age 13 and older

G Everyone

● In ABAC there is no need for roles, instead whether a user u can

access a movie m given environment e is determined by a rule

R1: can_access(u,m,e) ←

(Age(u) ≥ 17 ⋀ Rating(m) ∈ {R,PG-13,G}) ⋁

(Age(u) ≥ 13 ⋀ Rating(m) ∈ {PG-13,G}) ⋁

(Age(u) < 13 ⋀ Rating(m) ∈ {G}

● No user to role assignment, no role to rights assignment necessary

Example: RBAC vs ABAC (2)

21IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

Movie Rating Users Allowed Access

R Age 17 and older

PG-13 Age 13 and older

G Everyone

● Advantage of ABAC becomes clearer if we add more attributes

● Assume that objects have an additional release date

► Divides movies into new release or old release

● Users have the attribute premium user or regular user

► Only premium users are allowed to access new release movies

● To capture this new situation in RBAC we would have to

► Double the number of roles and double the number of rights

● In ABAC we just need two new rules in addition to R1 on last slide:

Example: RBAC vs ABAC (3)

22IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

R2: can_access(u,m,e) ←
((MembershipType(u) = Premium) ⋁
((MembershipType(u) = Regular ⋀ MovieType(m) = OldRelease)

R3: can_access(u,m,e) ← R1 ⋀ R2

● Access Control

► Access control matrices and lists

► Discretionary access control

► Access control on UNIX-based systems

► Role-based access control

► Attribute-based access control

Overview

23IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Intrusion Detection Systems

► Components of an IDS

► Performance and Base-rate fallacy

► Anomaly vs. Misuse-based detection

► Host-based vs. network-based

► Example: SNORT
● Firewalls

► Firewalls policy

► Firewall types

► Placement of firewalls

● A network firewall

► Controls access between an internal network and an external network

► Allowing or denying (IP) packets according to a security policy

● The internal network is to be secured, the external network is not trusted

Principle of Firewalls

24IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

Internet
(External Network)

Internal Network

● When a packet arrives at a firewall, a security policy is applied to

determine the appropriate action

► Accept / deny

► If a packet is denied it is either silently dropped or bounced back

► In addition a firewall often logs information about packets arriving

● A firewall policy can be viewed as a list of rules

► Each rule consists of a set of tuples and actions

► Each tuple corresponds to a field in the packet header

§ E.g for IP packets: the protocol type, source IP, destination IP, source port,

destination port

Firewall Policy

25IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Simple packet filter firewall policy

► Rules can be fully specified or contain wildcards

► Header information of passing packet is compared to the fields of a rule

► If the packet header information is a subset of the rule, the packet is said to match the rule

Simple Example for a Firewall Policy

26IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

No. Protocol Src IP Src Port Dest IP Dest Port Action

1 UDP 190.1.1.* * * 80 deny

2 TCP 180.* * 180.* 90 accept

3 UDP 210.1.* * * 90 accept

4 TCP 210.* * 220.* 80 accept

5 UDP 190.* * * 80 accept

6 * * * * * deny

Most firewalls use a first-match policy as rule matching policy

► The packet header information is matched sequentially with the rules starting from the first rule

► The action of the first matching rule is executed

► Any other rules further down in the policy that may also match the packet are ignored

► A default rule is often placed at the end of a policy with action deny

§ Makes the policy comprehensive

Rule Matching Policy: First Match Policy

27IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

No. Protocol Src IP Src Port Dest IP Dest Port Action

1 UDP 190.1.1.* * * 80 deny

2 TCP 180.* * 180.* 90 accept

3 UDP 210.1.* * * 90 accept

4 TCP 210.* * 220.* 80 accept

5 UDP 190.* * * 80 accept

6 * * * * * deny

● Assume the following packet arrives:

► TCP, 210.1.1.1:3080, 220.2.33.8:80

● What will be the rule to apply?

Example

28IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

No. Protocol Src IP Src Port Dest IP Dest Port Action

1 UDP 190.1.1.* * * 80 deny

2 TCP 180.* * 180.* 90 accept

3 UDP 210.1.* * * 90 accept

4 TCP 210.* * 220.* 80 accept

5 UDP 190.* * * 80 accept

6 * * * * * deny

● Assume the following packet:

► TCP, 210.1.1.1:3080, 220.2.33.8:80

● First matching rule: rule 4, action: accept

Example

29IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

No. Protocol Src IP Src Port Dest IP Dest Port Action

1 UDP 190.1.1.* * * 80 deny

2 TCP 180.* * 180.* 90 accept

3 UDP 210.1.* * * 90 accept

4 TCP 210.* * 220.* 80 accept

5 UDP 190.* * * 80 accept

6 * * * * * deny

● Each tuple in a rule can be modeled as set of packets

► E.g ,the tuple 198.188.150.* corresponds to the set of IP addresses ranging from 198.188.150.0 to

198.188.150.255

● The tuples of a rule collectively define a set of packets that match this rule

► E.g. the rule Proto = TCP, SIP = 190.150.140.38, SP = 188, DIP = 190.180.39.*, DP = 80, action = accept

defines a set of 256 unique packet headers that match this rule

● The overall set of possible packets is denoted by P

● Each firewall policy R can be described by three sets

► A(R) ⊆ P describes the set of packets that will be accepted

► D(R) ⊆ P describes the set of packets that will be denied

► U(R) ⊆ P describes the set of packets that do not match any rule in the policy

Simple Mathematical Model of a Packet Filtering Firewall

30IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● A firewall policy R is considered comprehensive if any packet from P will match at

least one rule

► I.e. A(R) ∪ D(R) = P or equivalently U(R) = ∅

► typically ensured by adding a default rule of “deny” at the end of the policy

● This simple model also allows to compare two policies

► Assume two firewall policies R, S

► The two policies are said to be equivalent if their accept, deny and non-match sets are

the same

● Note that being equivalent does not mean that the two policies have the same

rules!!

► Just that given any packet the two policies will lead to the same actions always

Simple Mathematical Model (2)

31IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● In first-match policies more specific policy rules typically appear at the beginning of the policy and

more general ones appear towards the end

● An anomaly is an unintended consequence of adding rules in a certain order

► Introducing anomalies into large firewalls is very easy

● Example: shadowing

► Occurs if an earlier rule i matches every packet that another lower rule j (j > i) matches

● If both rules have the same action, this is not a problem but if e.g. rule i is added after rule j the

consequence may be undesirable

Anomalies on First-Match Policies - Shadowing

32IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

No. Protocol Src IP S - Port Dest IP D - Port Action

i TCP 190.150.140.38 188 190.180.39.* 80 accept

j TCP 190.150.140.38 188 190.180.39.180 80 drop

● Only a portion of an earlier rule i shadows a lower rule j (j > i)

► For example

► The rule j is partially shadowed by the first rule i

► By itself rule j will drop any TCP packet arriving from 190.150.140.38 and destined to 190.180.39.180 on

port 80

► When rule i is added before rule j, then any packet like this with source port 188 will be accepted

► Only the system administrator will typically know whether or not this behavior was intended

Anomalies on First-Match Policies – Half-Shadowing

33IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

No. Protocol Src IP S - Port Dest IP D - Port Action

i TCP, SIP 190.150.140.38 188 190.180.39.* 80 accept

j TCP, SIP 190.150.140.38 * 190.180.39.180 80 drop

● The number of firewall rules will typically impact the firewall performance

► Every rule requires some processing time

► More rules will require more processing time on average

● Ways to enhance performance through optimizing the policy

► Policy reordering such that rules that match more packets are placed earlier in the policy

§ Must be done with care to avoid violating the integrity of a policy

§ I.e., after reordering, the policy should still accept and deny the same packets

► Removing unnecessary rules by

§ Removing redundant rules

§ Combining rules if possible

Policy Optimization

34IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Removing redundant rules

● Combining several rules …

● … to one

Removing Unnecessary Rules

35IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

No. Protocol Src IP S - Port Dest IP D - Port Action

i TCP 190.150.140.38 188 190.180.39.* 80 drop

j TCP 190.150.140.38 188 190.180.39.180 80 drop

No. Protocol Src IP S - Port Dest IP D - Port Action

i TCP 190.150.140.38 188 190.180.39.* 80 accept

j UDP 190.150.140.38 188 190.180.39.* 80 accept

No. Protocol Src IP S - Port Dest IP D - Port Action

i * 190.150.140.38 188 190.180.39.* 80 accept

● Firewalls can be categorized into three general classes

► Packet filters

► Stateful firewalls

► Application layer firewalls

Firewall Types

36IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

Application

Transport

Network

Data Link

Physical

802.11, 802.3

IPv4 and IPv6

TCP, UDP,…

HTTP, FTP, SMTP,…

● In TCP connections, ports with numbers less than 1024 are permanently assigned to servers

► 20,21 for FTP, 23 for telnet, 25 for SMTP, 80 for HTTP…

● Clients use ports numbered from 1024 to 49151

► They must be available for clients to receive responses

● Dynamic and/or Private Ports: 49152 through 65535

● What should a firewall do if it sees, say, an incoming request to some client’s port 5612?

► It must allow it: this could be a server’s response in a previously established connection…

► …OR it could be malicious traffic

► Can’t tell without keeping state for each connection

Why Stateless Filtering Is Not Enough

37IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Stateful firewalls perform the same operations as packet filter

● But they enable connection tracking

► E.g., if no stateful packet filter is used, allowing internal users to connect to any external webserver will

require two rules

§ One for outgoing traffic to any webserver

§ One for incoming traffic to any user regardless of whether a user requested traffic from that webserver

► A stateful firewall can support a more restrictive policy that allows incoming traffic from webservers only in

response to requests by users

► Dynamically add a rule to the policy that allows return packets when a connection is started

► Delete this rule when the connection is closed

§ Typically based on timers as it is hard for the firewall to reliably determine whether a connection is closed

Stateful Packet Firewalls

38IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

Firewall Placement: Using a Demilitarized Zone (DMZ)

39IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

DMZ

DNS Email Web

Application and
Database Servers

Workstations

Internal protected network

Boarder
Router

External
Firewall

Internal
Firewall

Internet

● Internal firewall adds more strict filtering capabilities compared to external firewall

● Internal firewall provides two-way protection to DMZ

► Filter attacks from DMZ towards internal network and vice versa

● Multiple internal firewalls can be used to protect portions of internal network from each other

● Can filter traffic at the network, transport, and application layer

● Typically come with proxy capabilities

► Application proxies are intermediaries for network connections

► If a user on the internal network wants to connect to an application server on the external network

§ The proxy (here the firewall) would terminate the connection

§ The proxy would then create a connection to the external server

● The firewall can thus inspect the content of the packets

► Like an intrusion detection system

● Application layer firewalls and other security devices are being merged into one device

► E.g. intrusion prevention systems combine firewalls with intrusion detection

§ Can often filter packets as well as inspect packet contents for viruses, spam, attack signatures

Application Layer Firewalls

40IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Access Control

► Access control matrices and lists

► Discretionary access control

► Access control on UNIX-based systems

► Role-based access control

► Attribute-based access control

Overview

41IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Intrusion Detection Systems

► Components of an IDS

► Performance and Base-rate fallacy

► Anomaly vs. Misuse-based detection

► Host-based vs. network-based

► Example: SNORT
● Firewalls

► Firewalls policy

► Firewall types

► Placement of firewalls

● Definitions from IETF RFC 4949 ”Internet Security Glossary”

Intrusion Detection

42IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

Security Intrusion: A security event, or a combination of multiple
security events that constitutes a security incident in which an
intruder gains, or attempts to gain, access to a system (or system
resource) without having authorization to do so

Intrusion Detection: A security service that monitors and analyzes
system events for the purpose of finding, and providing real-time or
near real-time warning of attempts to access system resources in
an unauthorized manner

Sensors

► Collect data from a monitored part of the system

§ Input to a sensor can, e.g., include network packets,

log files, or system call traces recorded on a particular

system

Analyzers

► Analyzers receive and store data collected by one or

more sensors

► Tries to determine if an intrusion has occurred

► Output may include

§ Evidence supporting the detection

§ Guidance about appropriate actions to take

Logical Components of an Intrusion Detection System

43IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

User Interface

► Enables user to view output from analyzer

or control behavior of the IDS’s

components

● Basic assumption underlying intrusion detection systems

► Behavior of intruders differ from that of legitimate users in a quantifiable way

Basic Principles (1)

44IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Typical behavior of an intruder differs from typical behavior of an

authorized user, but there is an overlap in these behaviors

● So, any intrusion detection approach will make mistakes

► If it tries to catch all intruders, it will typically sometimes raise false

alarms, i.e., cause false positives

► If it tries to limit false alarms it will typically miss some attacks, i.e., cause

false negatives

● Ideally one would want an IDS to

► Maximize the detection rate, i.e., the ratio of detected to total attacks

§ = Recall = TP / (TP + FN)

► Minimizing the false alarm rate, i.e., ratio of false positive to all negatives

§ = False Positive Rate = FP / (FP + TN)

Basic Principles (2)

45IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

TP = True Positives = Attacks rising alarm
FN = False Negatives = Attacks not rising alarm
FP = Benign behavior rising alarm
TN = Benign behavior not rising alarm

● It is very difficult to meet this goal of high detection rate and low false alarm rate

● In general

► if the actual numbers of intrusions is low compared to the number of legitimate uses of a system

► Then if an alarm is raised the probability that indeed an attack takes place is very low unless the

detection is extremely discriminative

● This phenomenon is called the base rate fallacy

Problem: Base Rate Fallacy

46IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Suppose two events A and B occur with probability Pr(𝐴) and Pr(𝐵), respectively

● Let Pr(𝐴 ∩ 𝐵) be probability that both A and B occur

● What is the conditional probability that A occurs given that B has occurred?

Pr(𝐴 ∣ 𝐵) =
Pr(𝐴 ∩ 𝐵)
Pr(𝐵)

● Applying this twice we get Bayes Theorem

Pr(𝐵 ∣ 𝐴) =
Pr 𝐴 𝐵 Pr(𝐵)

Pr(𝐴)

Reminder: Conditional Probability and Bayes Theorem

47IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Suppose mutually exclusive events E1, … ,En together cover the entire set of possibilities

● Then probability of any event A occurring is

Pr 𝐴 = ∑! Pr(𝐴 ∣ 𝐸!) - Pr(𝐸!)

Intuition: since E1, … ,En cover entire
probability space, whenever A occurs,

some event Ei must have occurred

Law of Total Probability

48IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Assume

► 1% of traffic is SYN floods, 99% of traffic is valid connections

► IDS’s detection rate is 90%, i.e. IDS classifies 90% of SYN floods as attack

► IDS’s false alarm rate is 1%, i.e. IDS classifies 1% of valid connections as attack

● What is the probability that a connection flagged by IDS as a SYN flood really is a valid connection?

Example for Base-Rate Fallacy

49IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

Pr(alarm | valid) • Pr(valid)
Pr(valid | alarm) =

Pr(alarm)

Pr(alarm | valid) • Pr(valid)
=

Pr(alarm | valid) • Pr(valid) + Pr(alarm | SYN flood) • Pr(SYN flood)

0.01 • 0.99
=

0.01 • 0.99 + 0.90 • 0.01
≈ 52% chance that traffic is valid
given an alarm is raised

● Anomaly Detection

► Collect data corresponding to behavior of legitimate users over a period of time

► Built a model of normal behavior from it

► Try to determine whether current behavior is of a legitimate user or of intruder by comparing it to the

model

● Signature or Heuristic detection

► Use a set of known malicious data patterns (signatures) or attack rules (heuristics) and compare them to

currently observed data

► Also known as misuse detection

► Can only identify known attacks

General IDS Approaches

50IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Anomaly detection assumes that

► What is usual, is known

► What is unusual, is bad

► Problem

§ Does not necessarily detect undesirable yet usual behavior

§ False alarm rates can be high

§ Very hard to obtain (attack free) usual behavior

● Misuse detection assumes that

► What is bad, is known

► What is not bad, is good

► Problem

§ Cannot detect new attacks, i.e. false negatives typically very high

In Other Words,…

51IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Training: develop a model of legitimate behavior

► Collect and process sensor data from normal operation of monitored system

► May occur at distinct times or may be a continuous of monitoring and evolving the model

● Detection: Compare observed sensor data to the trained model

► Classify as normal or anomalous activity

● Detection approaches

► Statistical: analysis of the observed behavior using univariate, multivariate, or time-series models of observed metrics

► Knowledge-based: approaches use an expert system that classifies observed behavior according to a set of rules that model

legitimate behavior

► Machine-learning: approaches automatically determine a suitable model from features extracted from the sensor data using

machine-learning techniques

§ E.g. Bayesian networks, Markov models, neural networks, fuzzy logic, clustering, but also classifiers such as SVMs, Random Forests, deep

neural networks,…

§ Often make use of attack data as well, i.e. train model with benign AND malicious data

Anomaly Detection

52IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Signature approaches

► Match large collection of known attack patterns against data monitored on a system or in transit over the

network

► Signatures need to be specific enough to minimize false alarm rate but still detect malicious data

► Typically, low cost with respect to time and resources

► But: significant effort necessary to review new attacks and generate signatures

● Rule-based heuristic identification

► Rules that identify suspicious behavior

► Typically, specific to the machine and operating system monitored

► Often derived from analyzing attack tools and scripts collected on the Internet

► SNORT is a rule-based network intrusion detection system

Misuse Detection

53IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Set of patterns defining a behavioral signature likely to be associated with attack of a certain type

► Example: buffer overflow

§ A setuid program spawns a shell with certain arguments

§ A network packet has lots of NOPs in it

§ Very long argument to a string function

► Example: SYN flooding (denial of service)

§ Large number of SYN packets without ACKs coming back

§ …or is this simply a poor network connection?

● Attack signatures are usually very specific and may miss variants of known attacks

► Why not make signatures more general?

Misuse Detection

54IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Use invariant characteristics of known attacks

► Bodies of known viruses and worms, port numbers of applications with known buffer overflows, RET

addresses of overflow exploits

► Hard to handle mutations

§ Polymorphic viruses: each copy has a different body

● Big research challenge: fast, automatic extraction of signatures of new attacks

● Honeypots are useful for signature extraction

► Try to attract malicious activity, be an early target

Extracting Misuse Signatures

55IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Examines user and software activity on a specific host

● Aims to detect both attacks from the outside as well as internal attack

● Can use anomaly or misuse-based detection approach

● But: provide only a local view on an attack

● Are only able to detect attacks when they already hit the target system

Host-based Intrusion Detection Systems (HIDS)

56IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● System call traces: Record sequences of system calls made by processes on the system

► Works well on Linux and Unix systems

► Difficult on Windows systems as use of DLLs hides which process uses which system calls (use of DLL

function calls proposed as alternative)

● Audit (log file) records: Operating systems include software that collects information on user activity

► Problem: audit records may not include relevant information; intruder may manipulate the records

● File integrity checksums: Detect intruder activity on a system by periodically scanning critical

files for changes

► Use message authentication code to compute checksums, compare them to a known baseline

► Tripwire is a well-known system using this approach

● Registry access: monitor access to the registry on Windows machines

Data Sources for HIDS

57IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Monitors traffic at selected points on a network

► Examines traffic for a large number of hosts with a variety of devices and software

► Examines traffic packet by packet in real-time or close to real-time

► May examine network-, transport- and/or application-level protocol activity

► Typically included in perimeter security infrastructure, e.g. firewall

● Challenge

► Arranging the monitoring to minimize the number of agents but cover the complete network

● Agent must have same view of traffic as destination

► TTL tricks, fragmentation may obscure this

► End-to-end encryption defeats content monitoring

§ Not traffic analysis, though

Network-Based Intrusion Detection System (NIDS)

58IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Inline sensor

► Inserted into a network segment such that monitored traffic must pass the sensor

► E.g., incorporate directly in firewall or as standalone component

● Passive sensor

► Monitors copy of network traffic, actual traffic does not pass through it

Types of NIDS Sensors

59IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● When a sensor detects potential violations it

► Sends an alert

► Logs information related to the event

● Typical information logged by an NIDS sensor includes

► Timestamp

► Connection or session ID

► Event or alert type and Rating (e.g., severity, impact, confidence,…)

► Network, transport, and application layer protocol

► Source and destination IPs and ports, number of bytes transmitted over the connection

► Decoded payload data

► State-related information (e.g., authenticated username)

Logging of Alerts

60IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● In this chapter we looked at basic non-cryptographic security mechanisms

● Access Control

► Access Controls implement an access policy

► An access policy determines which subjects have which rights over which objects

§ As opposed to authentication which determines who is who

► Access Controls can be implemented on all layers of a system

§ Hardware, operating system, middleware, application

► In discretionary access control

§ Each object has an owner, access to object is at the owner’s discretion

► In mandatory access control

§ a global policy determines access to all objects

► In role-based access control roles are used as subjects and users are assigned one or more roles

Summary

61IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

► In attribute-based access control

§ Access is granted based on attributes of subjects, objects and the environment they act in

● Network Firewalls

► Control network traffic flow to and from one network or network segment to another

► In packet flters IP packets are accepted or blocked dependent on

§ Header Information in TCP/IP headers

► In stateful firewalls additional state is kept on previously inspected packets and acceptance / denial depends

on this state

► In application layer firewalls

► Application layer content is inspected

Summary

62IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● Intrusion Detection Systems

► Consist of sensors that collect information and analyzers that receive information from sensors

► Network-based intrusion detection systems

§ focus on sensors that collect information on network traffic

► Host-based intrusion detection systems

§ focus on sensor that collect information on individual hosts

► Intrusion detection systems try to detect attacks and provide evidence

§ Underlying assumption: attack will be visible in the collected information

► The goal of an IDS is to

§ Mximize the detection rate, i.e., the ratio of detected to total attacks and to

§ Minimizing the false alarm rate, i.e., ratio of false positive to all negatives

Summary

63IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

► Main approaches for IDS

§ Anomaly-based approach

– Model normal behavior, classify anormal behavior as attack
§ Misuse-based approach

– Model attack behavior and try to detect it
§ Model both normal and attack behavior and try to distinguish it

► Snort is an example for a

§ host-based intrusion detection system

§ that collects information on network traffic of a host

§ it uses a misuse-based approach

Summary

64IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

● W. Stallings, Cryptography and Network Security: Principles and Practice, 8th edition, Pearson 2022

► Chapter 21: Network Endpoint Security

§ Firewalls, Intrusion Detection Systems

● Wenliang Du, Computer Security a Hands-on Approach, 3rd edition, 2022

► Chapter 1: Linux Security Principle

§ Access Control

References

65IT-Security - Chapter 9 Access Control, Firewalls, Intrusion Detection

Prof. Dr.-Ing. Ulrike Meyer

IT-Security
Chapter 10: Malware and Binary Exploitation

● So far, we mainly looked at

► Secure cryptographic building

blocks

► Design of security protocols

► Users / Administrator when it

comes to password selection

● Now we look at

► Implementation vulnerabilities

► Social engineering

Overall Lecture Context

2IT-Security - Chapter 10 Malwar and Binary Exploitation

Cryptographic primitives

Protocols and policies

Implementations

Building
blocks

Specifications

Systems

User / AdministratorsHuman

Overview

3IT-Security - Chapter 10 Malwar and Binary Exploitation

Malware Types by Spreading

► Viruses, Worms, Trojans

Initial Infection

► Software Vulnerabilities

► Misconfigured access controls

► Vulnerable Authentication

§ Weak passwords

§ Protocol weaknesses

► Social engineering

Botnets

► C&C Infrastructures

► Taking down Botnets

Typical Payloads

► DDoS Engines

► SPAM Engines

► Phishing Engines

► Information Stealing

► Miners

Malware = Malicious Software

► According to NIST SP 800-83:

“A program that is inserted into a system, usually covertly, with the intent of

compromising the confidentiality, integrity or availability of the victim’s data,

applications, or operating system or otherwise annoying or disrupting the

victim”

Definition

4IT-Security - Chapter 10 Malwar and Binary Exploitation

Owner of the system and victim do not necessarily coincide

● Experimenting how to write malware

● Testing own programming skills

● Get famous

● Vandalism

● Fighting authorities

● Direct Financial gain

● Corporate Espionage

● Combatting crime and terrorism

● Cyberwar

Motivation to Write Malware

5IT-Security - Chapter 10 Malwar and Binary Exploitation

● Attacker writes a small shell script on a UNIX system:

cp /bin/sh /tmp/.xyz

chmod u+s,o+x /tmp/.xyz

rm ./ls

ls $*

● Attacker saves this script in a file called “ls” and tricks a victim user into executing it

● This leads to a copy of the shell in a hidden file .xzy

● Shell executable by anyone with the userid set to who-ever-executed-the-script

► If who-ever-executed-the-script acted as root, shell will be a root shell executable by anyone

● To the victim user, the result will look the same as result of real ls

► Script removes itself

Simple Example for Malicious Code

6IT-Security - Chapter 10 Malwar and Binary Exploitation

Trojan Horse

► Program with an

§ overt purpose known to the user

§ covert purpose unknown to the user

► Typically installed by the user itself

Malware Types with respect to Spreading

7IT-Security - Chapter 10 Malwar and Binary Exploitation

Virus

► Software fragment that attaches to an existing

executable

► Can replicate itself from one infected executable

to another

Worm

► Program that actively seeks for machines to infect

► Infects new machines by exploiting one or more

software vulnerabilities

► Uses network connections, shared media email,…to

spread from one machine to another

Overview

8IT-Security - Chapter 10 Malwar and Binary Exploitation

Malware Types by Spreading

► Viruses

► Worms

► Trojans

Initial Infection

► Malicious Attachments

► Installing malicious Applications

► Software Vulnerabilities

► Misconfigured access controls

► Social engineering

Botnets

► C&C Infrastructures

► DGAs

► Sinkholing

Typical Payloads

► DDoS Engines

► SPAM Engines

► Phishing Engines

► Information Stealing

► Miners

● Centralized

► Attacker operates central infrastructure to distribute

commands to the victim machines

► Two main techniques used

§ IRC Servers: commands are pushed to connected clients

§ HTTP Servers: commands are pulled by victim clients

● Decentralized

► The victim machines form a P2P network

► Commands of an attacker are distributed from P2P directly

● Many of today’s bots are hybrid

Command and Control Techniques

9IT-Security - Chapter 10 Malwar and Binary Exploitation

Botnet
herder

Infected Machines

Infected Machines

Botnet
herder

C&C Server

● Locate C&C servers and take them down

► Analyze network traffic of infected machines

► Analyze bot malware itself by reverse engineering the code

► If it is C&C server is a compromised machine, contact legitimate owner

● Make C&C server impossible to contact

► Block domain name in DNS

► Block IP range of C&C infrastructure

► Disconnect rogue hosting companies

● Find out which devices in your network are infected by

► Sinkholing the corresponding domain names and see who connects

► Automatically warn users of infected machines

Taking Down a Centralized C&C Infrastructure

10IT-Security - Chapter 10 Malwar and Binary Exploitation

DNS Sinkholing of known Malicious Domains

11IT-Security - Chapter 10 Malwar and Binary Exploitation

SinkholeWithout Sinkhole

mal.com

6.6.6.6

6.6.6.6

mal.com

Com
m

and?

Com
m

and

137.226.107.63
mal.com

137.226.107.63

Command?

You are infected!

DNS Server
DNS Server

C&C Server
mal.com
6.6.6.6

C&C Server

● Use of Domain Generating Algorithms (DGAs)

► Change domain name of machine queried for commands e.g. by an HTTP-bot based on a DGA using a

seed (e.g. time stamp, twitter post,…) as input

► Domain names queried change frequently

► Attack has to register the queried domain names in order to be able to distribute commands

► If DGA and seed are known domain names can be blocked in local DNS

● Use of Fast Flux in DNS

► Multiple IP addresses associated with a single domain name, no one server to take down

► IP addresses quickly changed by changing DNS records

► IP addresses typically belong to compromised servers

► Still domain name can be blocked locally at DNS server on the victim’s network

Hiding the IPs of C&C Servers to Impede Take Down

12IT-Security - Chapter 10 Malwar and Binary Exploitation

Hiding C&C Server by DGA

13IT-Security - Chapter 10 Malwar and Binary Exploitation

► DGA generates domains

► Bot tries to resolve domains

► Most domains are not registered

► Bot herder registers one or more domains per day

► Bot connects to C&C server and asks for commands

6.6.6.6

NX-Response (domain does not exist)

Com
m

and?

Com
m

and

DNS Server
t3622c4773260c097e2e9b26705212ab85.ws

NX-Response (domain does not exist)

u83ccf36d9f02e9ea79a9d16c0336677e4.to

v02bec0c090508bc76b3ea81dfc2198a71.in

6.6.6.6

C&C Server

Name Description

Advanced Persistent
Threat (APT)

Sophisticated malware directed at specific business or political targets
applied persistently and effectively

Adware Advertising integrated in software, often results in pop-up ads or
redirection of a browser to a commercial site

Attack kit Set of tools for generating malware, including propagation and payload
mechanisms

Auto-rooter Malicious hacking tool used to remotely break into machines

Backdoor Any mechanism that bypasses a security check, allows unauthorized
access to functionality in a program or system

Downloader Code that installs other items on a machine, e.g. loads a larger malware
packed after initial infection

Drive-by-downloads Uses code in a compromised web site that exploits a vulnerability in the
browser or browser plugins

Exploit Code specific to exploiting a single vulnerability or set of vulnerabilities

Flooder (DoS engine) Generates large volume of data, e.g. to carry out denial of service attack

Malware Terminology

14IT-Security - Chapter 10 Malwar and Binary Exploitation

Name Description

Key logger Captures keystrokes on the infected system

Logic bomb Code inside a malware, triggers when a specific condition is met

Macro virus Uses macro or scripting code, typically embedded in document

Mobile code Code that is portable between different platforms

Rootkit Set of hacker tools used to hide the malware and gain root access

Spam engines Used to send large volumes of unwanted email

Spyware Collects information from a computer and transmits it to another system (e.g.
key strokes, screen shots, network traffic…)

Trojan horse Appears to be useful but also has a secondary malicious purpose

Virus Tries to replicate itself into executable of script code when executed

Worm Runs independently and propagates copies of itself, typically uses software
vulnerability

Bot (Zombie) Activated on an infected machine to gain remote control to launch attacks on
other machines

Malware Terminology

15IT-Security - Chapter 10 Malwar and Binary Exploitation

Overview

16IT-Security - Chapter 10 Malwar and Binary Exploitation

Malware Types by Spreading

► Viruses

► Worms

► Trojans

Initial Infection

► Malicious Attachments

► Installing malicious Applications

► Software Vulnerabilities

► Misconfigured access controls

► Social engineering

Botnets

► C&C Infrastructures

Typical Payloads

► DDoS Engines

► SPAM Engines

► Phishing Engines

► Information Stealing

► Miners

● Spread mostly over Emails but also over Instant Messengers and SMS

● May contain executable code or files with macro viruses

● Often used in connection with social engineering, e.g.,

► Email pretending to be from some reputable business

§ Pretending to contain an order confirmation, tax information, bill,…

► Email pretending to answer to job advertisements or call for bids,…

§ Pretending to contain application papers, offers,…

► Emails pretending to alert users of security breaches etc.

§ Pretending to contain cleaning software that urgently needs to be run,…

● E.g., according to BSI-Lagebild 2022:

► 34 000 emails per month filtered in German government networks

Malicious Attachments

17IT-Security - Chapter 10 Malwar and Binary Exploitation

● Trojans are typically deliberately installed by users

● User tricked into installing them by claimed functionality

► Free versions of games

► Free anti-virus products

► …

● Most common strategy used to infect mobile devices still

Installing Malicious Applications

18IT-Security - Chapter 10 Malwar and Binary Exploitation

Software Vulnerabilities

19IT-Security - Chapter 10 Malwar and Binary Exploitation

0.000 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 90.000

Execute Unauthorized Code or Commands

Read Application Data

DoS

Bypass Protection Mechanism

Modify Memory

Read Memory

Modify Application Data

Read Files or Directories

Gain Privileges or Assume Identity

Modify Files or Directories

Hide Activities

Unexpected State

Alter Execution Logic

Reduce Performance

Quality Degradation

Bekannt gewordene Schwachstellen nach möglicher Schadwirkung
Anzahl

© Bundesamt für Sicherheit in der Informationstechnik 2023

Buffer Overflow: A condition at an interface under which more input can be
placed into a buffer than the capacity allocated for it, overwriting other

information. Attackers exploit such a condition to crash a system or to insert
specially crafted code that allows them to gain control of the system

Example for Execution of Unauthorized Code: Buffer Overflow – Definition by NIST

20IT-Security - Chapter 10 Malwar and Binary Exploitation

Example for a Basic Buffer Overflow in C Code

21IT-Security - Chapter 10 Malwar and Binary Exploitation

gets() does not do
any length checking!

Copies some expected
tag value into str1

Assume tag is
START

● The simple example on the last slide results in a variable corruption

► Overly long input data overwrites memory location of another variable

► This may already result in a serious attack

§ E.g., if next_tag contained a password to which the input (str2) is to be compared before access to some system resources are

granted

● More sophisticated buffer overflows target corruption of program control addresses in order to alter

the flow of execution of the program

● To exploit any type of buffer overflow vulnerability an attacker needs to

► Identify a buffer overflow vulnerability in some program that can be triggered using externally sourced data under the

attacker’s control

§ E.g., by inspecting the source code of a program or using fuzzing tools

► Understand how that buffer will be stored in the processes memory and can thus be used to corrupt adjacent memory

locations (architecture and compiler dependent)

§ Recap on memory segmentation

Basic Buffer Overflows

22IT-Security - Chapter 10 Malwar and Binary Exploitation

● Compiled program’s memory is divided into five segments

► text, data, bss, heap, stack

► Text, data and bss segments are of static size,

► Heap and stack shrink and grow dynamically during program execution

Executable Program’s Memory Segments

23IT-Security - Chapter 10 Malwar and Binary Exploitation

Higher addresses Stack segment
Stack grows towards

lower addresses
Heap grows towards

higher addresses
Heap segment
Bss segment
Data segment

Low addresses Text segment

on most
architectures

● Suppose Web server contains this function

void func(char *str) {
char buf[126];
strcpy(buf,str);

}

● When this function is invoked, a new frame with local variables is pushed onto the stack

Stack Buffers

24IT-Security - Chapter 10 Malwar and Binary Exploitation

Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

Top of
stack

Stack grows this way

buf SFP RET str

Local variables

Frame of the
calling function

Execute instruction
at this address
after func() finishes

ArgumentsPointer to
previous
frame

buf[0]
goes here

● Memory pointed to by str is copied onto stack…

void func(char *str) {
char buf[126];
strcpy(buf,str);

}

● If a string longer than 126 bytes is copied into buffer, it will overwrite adjacent stack locations

What If Buffer is Overstuffed?

25IT-Security - Chapter 10 Malwar and Binary Exploitation

strcpy does NOT check whether the string
at *str contains fewer than 126 characters

buf str

This will be
interpreted
as return address!

overflow Top of
stack

Frame of the
calling function

● Suppose buffer contains attacker-created string

► For example, *str contains a string received from the network as input to some network service daemon

● When function exits, code in the buffer will be
executed, giving attacker, e.g., a shell

► Root shell if the victim program is setuid root

Executing Attack Code

26IT-Security - Chapter 10 Malwar and Binary Exploitation

code str Frame of the
calling function

RET

Attacker puts actual assembly
instructions into his input string, e.g.,
binary code of execve(“/bin/sh”)

In the overflow, a pointer back
into the buffer appears in
the location where the system
expects to find return address

Top of
stack

● strcpy does not check input size

► strcpy(buf, str) simply copies memory contents into buf starting from *str until “\0” is encountered

► ignores the size of area allocated to buf

● Many C library functions are unsafe

► strcpy(char *dest, const char *src)

► strcat(char *dest, const char *src)

► gets(char *s)

► scanf(const char *format, …)

► printf(const char *format, …)

► …

Cause: No Range Checking

27IT-Security - Chapter 10 Malwar and Binary Exploitation

● strncpy(char *dest, const char *src, size_t n)

► If strncpy is used instead of strcpy, no more than n characters will be copied from *src to *dest

§ Programmer has to supply the right value of n

● strncat(char *dest, const char *src, size_t n)

► If strncat is used, then the first n characters from *src will be appended to *dest

● Potential overflow in htpasswd.c (Apache 1.3):

… strcpy(record,user);
strcat(record,”:”);

strcat(record,cpw); …

● Published “fix” (do you see the problem?):
… strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”);
strncat(record,cpw,MAX_STRING_LEN-1); …

Does Range Checking Help?

28IT-Security - Chapter 10 Malwar and Binary Exploitation

Copies username (“user”) into buffer (“record”),
then appends “:” and hashed password (“cpw”)

● Published “fix” for Apache htpasswd overflow:

… strncpy(record,user,MAX_STRING_LEN-1);
strcat(record,”:”);
strncat(record,cpw,MAX_STRING_LEN-1); …

Misuse of strncpy in htpasswd “Fix”

29IT-Security - Chapter 10 Malwar and Binary Exploitation

MAX_STRING_LEN bytes allocated for record buffer

content of *user

Put up to MAX_STRING_LEN-1
characters into buffer

:

Put “:”

contents of *cpw

Again put up to MAX_STRING_LEN-1
characters into buffer

● Defense Mechanisms can broadly be divided into

► Compile time defenses, which aim to harden new programs to resist attacks

► Run-time defenses, which aim to detect and abort attacks in existing programs

● Compile-time defenses

► Choose a high-level programing language that does not permit buffer overflows

§ Programs may still be vulnerable if existing system libraries are used

§ Disadvantage: direct access to some instructions and hardware resources lost

► Encourage safe coding standards

► Language extensions and use of safe standard libraries such as libsafe

► Include additional code at compile time to detect corruption of the stack frame at runtime

§ E.g. gcc extensions such as Stackguard, Stackshield, and Return Address Defender

Defense against Buffer Overflows

30IT-Security - Chapter 10 Malwar and Binary Exploitation

● Typical memory exploit involves code injection

► Put malicious code at a predictable location in memory, usually masquerading as data

► Trick vulnerable program into passing control to it

§ Overwrite saved EIP, function callback pointer, etc.

● Idea: Make stack and other data areas non-executable

► Needs to be supported by the processor‘s memory management unit

§ Tag pages of virtual memory as non-executable

► Some useful functionality also uses executable code on the stack, e.g., nested functions in C, Linux signal handlers,…

● Support has become standard in most modern operating systems

► Protects against classic overflows, where shellcode is included in stack buffer

● Consequence:

► Newer buffer overflow exploits use more sophisticated techniques such as using code already existing on the target machine,…

Run-Time Defenses – Executable Address Space Protection

31IT-Security - Chapter 10 Malwar and Binary Exploitation

● Examples for misconfigurations include

► Weak user-selected passwords

► Weak default passwords that are not changed

► Open port such as open ssh port

► …

Misconfigured Access Controls

32IT-Security - Chapter 10 Malwar and Binary Exploitation

● Essential part of many already mentioned infection paths

► Malicious attachments

► Installing malicious applications

► …

● Other examples

► Trick users into revealing their password

► Trick administrators into resetting passwords of specific users

► Trick users on the phone / via email

► Trick users into entering account credentials into fake websites

§ Phishing

► …

Social Engineering

33IT-Security - Chapter 10 Malwar and Binary Exploitation

Overview

34IT-Security - Chapter 10 Malwar and Binary Exploitation

Malware Types by Spreading

► Viruses

► Worms

► Trojans

Initial Infection

► Malicious Attachments

► Installing malicious Applications

► Software Vulnerabilities

► Misconfigured access controls

► Social engineering

Botnets

► C&C Infrastructures

Typical Payloads

► DDoS Engines

► SPAM Engines

► Phishing Engines

► Information Stealing

► Miners

Ransome Ware

► Encrypt all or some files on the victim machine

► Ask for ransom to release encryption key

► Makes use of crypto currencies for payment

Examples for Malicious Purposes aka Payload

35IT-Security - Chapter 10 Malwar and Binary Exploitation

SPAM or Phishing Engine

► Engines that allow to sent spam or phishing

emails from the victim machine

DDoS Engine

► Enables infected machine to participate in DDoS

attacks w/o user’s consent

Key Logger or general Spyware

► Logs a user’s keystrokes and stores

them

► Sends them off to the attacker

► Thereby steals, e.g., account

credentials, credit card information…

► Turn on camera remotely to spy

Data Theft and Espionage

► Steal sensitive information from infected

machine

Examples for Payloads and Additional Malicious Functionalities

36IT-Security - Chapter 10 Malwar and Binary Exploitation

Rootkit

► allows to maintain covert root access to the

infected machine

► hides any evidence of its presence, e.g., by

installing malicious versions of standard

system programs such as netstat, ps, ls, du,

et.

Bot

► enables attacker to remotely control an

infected machine via a command-and-control

infrastructure

Crypto Miners

► install a malicious program on the victim’s

host that helps in mining crypto currencies

► Runs in the background and typically uses

computing resources while victim machine is

idle

► Spreads the energy consumption and

computing time over multiple victim

machines

● W. Stallings, Cryptography and Network Security: Principles and Practice, 8th edition, Pearson 2022

► Chapter 21: Network Endpoint Security

§ 21.3 Malicious Software

● Wenliang Du, Computer Security a Hands-on Approach, 3rd edition, 2022

► Chapter 4: Buffer Overflows

References

37IT-Security - Chapter 10 Malwar and Binary Exploitation

Prof. Dr.-Ing. Ulrike Meyer

IT-Security
Summary

● Security goals

► Confidentiality, Integrity, Availability

● Examples for attacks against these goals

● Definition of security services and security mechanisms

► Which of them aim at prevention, detection, or deterrence

● Categorization of attackers according to

► Skills

► Knowledge on and access to target

► Computational resources

► Motivation

Chapter 1: Introduction

2IT-Security 1 -- Summary

● Definition of an encryption scheme

● Kerckhoffs’ principle

● Examples for classical ciphers

► Caesar cipher (easily breakable with brute force due to short key length)

► Monoalphabetic substitution cipher (easily breakable with frequency analysis)

● Perfect Secrecy

► Shannon’s theorem

► One-time pad and perfect secrecy of the one-time pad

► Practical problems with the one-time pad

● Computational Security

Chapter 2: Symmetric Encryption (1)

3IT-Security 1 - Chapter

● Modeling attacks against ciphers

► W.r.t power of the attack (ciphertext-only attack, known-plaintext attack…)

► W.r.t. attack result ((partial) plaintext recovery, (partial) key recovery)

► W.r.t technique used (brute force, time-memory trade-off, differential, algebraic..)

● Block ciphers versus stream ciphers

► How are they defined

► What’s the problem with key stream re-use when a stream cipher is used

● Basic facts on DES, 2DES, 3DES, AES

► Key sizes, block sizes, attacks

► Meet-in-the-middle attack on 2DES

Chapter 2: Symmetric Encryption (2)

4IT-Security 1 -- Summary

● Modes of encryption (ECB, CBC, CFB, OFB, CTR, GCM)

► Encryption / decryption, properties

● Stream ciphers and block ciphers alone do not provide integrity

► Understand that plaintext encrypted with a stream cipher can be changed by anyone

Chapter 2: Symmetric Encryption (3)

5IT-Security 1 -- Summary

● Definitions for

► hash function, cryptographic hash function, pre-image resistance, 2nd pre-image resistance,

collision resistance, relations between the properties

● Complexity of brute force attacks against ideal hash functions

● Basic facts on MD-5, SHA-1, SHA-2, SHA-3

► Length of hash value, broken / not broken (yet ;-))

● Definition message authentication code

● HMAC, CMAC constructions in detail

► Including advantage of HMAC over other constructions

► Including advantage of CMAC over CBC-MAC

Chapter 3: Integrity (1)

6IT-Security 1 -- Summary

● Methods for replay protection

● Ways to combine integrity protection and encryption

● Galois Counter Mode (GCM)

Chapter 3: Integrity (2)

7IT-Security 1 -- Summary

● RSA key generation, encryption, decryption in detail

► Extended Euclidian algorithm

► Including security proofs and why we need Optimal Asymmetric Encryption Padding

► Details on how OAEP works and adds semantic security to RSA

● Symmetric versus asymmetric encryption

● RSA Backdoors general idea and examples

● Definition of digital signatures

► Details of RSA-Signatures (with hashing)

► Why we hash messages before signing

Chapter 4: Asymmetric Cryptography (1)

8IT-Security 1 -- Summary

● Type of attacks against signature schemes

► wrt power of attacker (key-only etc…)

► wrt result of the attack, e.g. total break, existential forgery,...

● Type of attacks against signature schemes

► wrt power of attacker (key-only etc…)

► wrt result of the attack, e.g. total break, existential forgery,...

● Comparison of MACs and digital signatures

● Details on key generation, signature generation/verification in DSS

● Details on Diffie-Hellmann key agreement and MitM against DH

Chapter 4: Asymmetric Cryptography (2)

9IT-Security 1 -- Summary

● Definition of entity authentication

► Correctness, resistance against transfer, impersonation resistance

► mutual vs. unilateral authentication

● Example Building Blocks for unilateral and mutual authentication

► With time stamps, with random challenges, with signatures, with MACs

► Understand the problem of reflection attacks in this context

● Definiton of the properties of session key establishment protocols

► key agreement vs. key transport protocols

► authenticated key establishement

► explicit key authentication, implicit key authenticaiton, key freshness, perfect forward secrecy, known key

attacks

Chapter 5: Authentication and Key Agreement (1)

10IT-Security 1 -- Summary

● Analyze key establishment protocols w.r.t. these properties

● Diffie-Hellmann,

► Man-in-the middle attack in DH, implicit key authentication in Diffie-Hellmann, authenticated DH

● Trusted Third Parties in Key Establishment

► Main idea of Key distribution center, example protocol

► Main idea of Certification authorities,

§ Example authenticated DH with certificates

§ Content of a certificate

§ Certificate verification

§ Certificate revocation

§ Chains of certificates

Chapter 5: Authentication and Key Agreement (2)

11IT-Security 1 -- Summary

● Typical password-based authentication between client and server

► Relation between randomly selected passwords and effective key length

► Password based user authentication by a server

§ Advantage storing cryptographic hashes of passwords over plaintext / encrypted storage

► Purpose of salting passwords

► Dictionary attacks on password files

● Typical password-based authentication between two peers

► MAC-keys generated from password

► Vulnerability against offline password cracking

Chapter 5: Authentication and Key Agreement (3)

12IT-Security 1 -- Summary

● IPSec

► Transport mode vs tunnel mode

► Security services offered by ESP and AH

§ What does an IP packet look like that is protected with ESP/AH in tunnel/transport mode

§ Which part of the packet is encrypted/integrity protected in ESP/AH in tunnel/transport mode

► Fields in AH and ESP protocol headers / ESP trailer

► Replay protection in ESP and AH

► Main content of SAs and SA selectors

► Inbound / outbound processing overview

Chapter 6: Network Security Protocols (1)

13IT-Security 1 -- Summary

● IPSec

► IKE v2 protocol details

§ In particular: how do initiator and responder authenticate each other?

§ What’s the basis for the key agreement?

§ How are security algorithms for IKE itself / for ESP and/or AH negotiated?

● TLS 1.3

► Understand the details of the handshake protocol

§ Different options to authenticate the handshake (mutual or unilateral authenticaiton with

signatures, PSK-based authentication only, DH with PSK)

§ Properties these different options have

● Comparison between IPSec and TLS including main use cases

Chapter 6: Network Security Protocols (2)

14IT-Security 1 -- Summary

● Email Security

► End-to-end vs hop-by-hop protection of email

► End-to-end security goals

► Basic principle used in PGP and S/MIME (hybrid encryption, signatures for non-

repudiation...)

► Web of trust in PGP

§ Introducer Trust, certificate trust, key legitimacy

► Main ideas of DKIM, SPF, and DMARC

Chapter 7: Email, DNS, SSH (1)

15IT-Security 1 -- Summary

● DNS

► General operation of DNS

§ Concept and types of resource records

§ Recursive and interative queries

§ Purpose of caching

► Security issues of DNS

§ Authenticity of resource records

– cache poisoning
§ Confidentiality

► DNSSec

§ New types of resource records

§ Keys used in DNSSec and how they are distributed and authenticated

Chapter 7: Email, DNS, SSH (2)

16IT-Security 1 -- Summary

● SSH

► Details on the transport layer protocol

§ Including the mandatory key exchange method

§ Including algorithm negotiation

► User authentication protocol

§ Including the details on the three user authentication protocols (public key, password, host-based)

Chapter 7: Email, DNS, SSH (3)

17IT-Security 1 -- Summary

● Classification of DoS attacks w.r.t. the type of resource they target

► network bandwith, system resources, appplication resources

► Example attack for each type

§ Flodding with ICMP echo requests, SYN Flooding, HTTP Flood

● Source address spoofing

● DDoS attacks

● Principle of a reflection attack

► Amplification attack as a subtype of reflection attacks

● Preventive defense mechanisms

Chapter 8: Denial of Service Attacks

18IT-Security 1 - Chapter

● Access Control

► Discretionary vs. Mandatory access control

► Access control subjects, objects rights

► Access control matrices and Access control lists

► How do different Discretionary access control systems differ

§ Who can change acl associated with an object

§ How ACLs apply to privileged user

§ Support of groups and wildcards

§ Handling of contradictory permissions

§ Default settings

Chapter 9: Access Control, Firewalls, IDSs (1)

19IT-Security 1 - Chapter

● Access Control

► Access Control in UNIX file systems

§ rights

§ changing rights

§ meaning of rights on directories

§ user ids

► Roll based Access Control

§ Main idea

► Attribute based access control

§ Main idea

Chapter 9: Access Control, Firewalls, IDSs (2)

20IT-Security 1 - Chapter

● Firewalls

► Packet filters

► Firewall policy

§ First match policy

§ Comprehensiveness of a fire wall policy

► Interpret rules in a simple packet filtering policy

§ Find redundant rules

§ Find (half-)shadowing rules

§ Combine rules

► Stateful firewall and why we need them

► What is a DMZ

Chapter 9: Access Control, Firewalls, IDSs (3)

21IT-Security 1 - Chapter

● Intrusion Detection Systems

► Components of an IDS

► Basic assumption underlying any iDS

► Definition of detection rate and false alarm rate

► Base rate fallacy problem

► Anomaly detection vs. misuse (signature based) detection

► Host based vs. network-based intrusion detection

► Inline vs. passive network-based intrusion detection

Chapter 9: Access Control, Firewalls, IDSs (4)

22IT-Security 1 - Chapter

● Types of Malware w.r.t. spreading

► worms, viruses, trojans

● Botnets

► Command and Control Infrastructures

► DGAs

● Buffer Overflows

► Basic principle

► Explain on an example if given a vulnerable piece of code

► Types of defenses

● Typical malware payloads

Chapter 10

23IT-Security 1 - Chapter

… and don’t forget to look at the exercises and e-tests as well!!!!

Good Luck!

24IT-Security 1 -- Summary

