

Elements of Machine Learning & Data Science

Winter semester 2023/24

Lecture 2 – Introduction to ML

13.10.2023

Prof. Bastian Leibe

Announcements: Moodle

- Materials provided on moodle
 - Pdfs of the slides
 - Video recording of the previous lecture
 - Pre-recorded videos for this lecture

• If you haven't done so yet, please register for the class to get access to the moodle.

 Lecture 1: Introduction & Organization (10.10.2023, all instructors)

_\	EleMLDS-ws23-part01-intro.pdf 5.9 MB Hochgeladen 10.10.2023 13:23	Als erledigt kennzeichnen
	EleMLDS-ws23-part01-intro-6on1.pdf 1.4 MB Hochgeladen 10.10.2023 13:24	Als erledigt kennzeichnen
\rightarrow	•)) elemlds23-part01-intro.mp4	
	Video recording of the lecture on 10.10.2023.	
	 Lecture 2: Introduction to Machine Learning Leibe) 	g (13.10.2023,
\rightarrow	Pre-recorded videos	
	Here we provide several pre-recorded videos that together cover the topics from Lecture 2 and [] watch them either ahead of the lecture or use them for in-depth repetition.	part of] Lecture 3. You can

EleMLDS-ws23-part02-intro-to-ml-6on1.pdf 575.4 KB Hochgeladen 13.10.2023 14:25

Als erledigt kennzeichnen

Announcements: Pre-recorded Videos

Companion MOOCs

- · We have created two MOOCs to complement this lecture
 - Basics of ML
 - Basics of Data Science
- Target: International Master students and students from other degree programs joining Computer Science

• The pre-recorded videos are part of those MOOCs

- Extended explanations of key lecture topics
- High production value
- They may not cover the full topic range of the lecture
- Please use them as supplementary material

	Visual Computing Institute	RWITHAACHEN UNIVERSITY
bridging Al Basics of Machine Learning		
Introduction Motivation		
Prof. Bastian Leibe		

Announcement: Small-Group Exercises

Monday	Tuesday	Wednesday	Thursday	Friday
14:30-18:00h	3x 14:30-16:00h	2x 14:30-16:00h		
3x 16:30-18:00h	3x 16:30-18:00h	2x 16:30-18:00h		
18:30-20:00h	2x 18:30-20:00h			

Bi-weekly small-group exercises

- We're currently setting up a poll to collect your preferences for the exercise slots
- Please enter your choices until Wed, 18.10. evening!
- Based on the poll results, we will assign you to exercise slots
- We will send out an email announcement with detailed instructions tonight or on Saturday...

Machine Learning Topics

- 1. Introduction to ML
- 2. Probability Density Estimation
- 3. Linear Discriminants
- 4. Linear Regression
- 5. Logistic Regression
- 6. Support Vector Machines
- 7. AdaBoost
- 8. Neural Network Basics

Machine Learning Concepts

Forms of Machine Learning

Bayes Decision Theory

Bayes Optimal Classification

Topics for Today

- 1. Motivation
- 2. Forms of Learning
- 3. Terms, Concepts, and Notation
- 4. Bayes Decision Theory

Motivation

What is Machine Learning?

Machines that learn to perform a task from experience

Experience: training data Learning: discover relevant criteria & adapt to given situation

Task: problem to solve (e.g., classification)

Mathematical Formulation

Machines that learn to perform a task from experience

Often described through a mathematical function:

Discrete targets: Classification

 $y \in \{\text{important}, \text{spam}\}$

Continuous targets: Regression

 $y = p(\text{spam}) \in [0, 1]$

Learning from Data

Machines that learn to perform a task from experience

Learning from collected samples:

Learning via sparse feedback:

Reinforcement learning

Measuring Success

Machines that learn to perform a task from experience

- Performance measure: typically a single number.
 - Calculate with a suitable metric.
- Divide data into disjoint subsets:

• Measure generalization performance on test set.

E.g., % correctly recognized spam mails

$$\begin{array}{c} & & \\ & &$$

E.g., average distance to desired endpoint

Machines that learn to perform a task from experience

Learning = optimizing $f(\mathbf{x}; \mathbf{w})$

w describes the type of model that we use.

Machines that learn to perform a task from experience

Machines that learn to perform a task from experience

Machines that learn to perform a task from experience

Machines that *learn* to perform a task from experience

Motivation

What is Machine Learning?

Machines that learn to perform a task from experience

We will focus on statistical Machine Learning.

Topics for Today

- 1. Motivation
- 2. Forms of Learning
- 3. Terms, Concepts, and Notation
- 4. Bayes Decision Theory

Supervised vs. Unsupervised Learning

Supervised Learning

- We will mostly focus on supervised learning.
- Given training data with labels: $\mathcal{D} = \{(\mathbf{x}_1, t_1), \dots, (\mathbf{x}_N, t_N)\}$
- The goal is to learn a predictive function $y(\mathbf{x}; \mathbf{w})$ that yields good performance on unseen test data.
- In real-world scenarios, we also need to preprocess our data to handle, e.g.,
 - Missing or wrong values
 - Outliers
 - Inconsistencies

Forms of Learning

Data Types - Overview

We can convert complex data types into easier-to-handle continuous vector-space data via feature extraction.

Features

- Feature extraction is the process that creates descriptive vectors from samples.
 - Features should be invariant to irrelevant input variations.
 - Selecting the "right" features is crucial.
 - Usually encode some domain knowledge.
 - Higher-dimensional features are more discriminative.
- Curse of dimensionality: complexity increases exponentially with number of dimensions.

Example: convert audio snippet to feature vector with Fast Fourier Transform (FFT).

Introduction

- 1. Motivation
- 2. Forms of learning
- 3. Terms, Concepts, and Notation
- 4. Bayes Decision Theory

Terms, Concepts, and Notation

- Most of our tools will be based on statistics and probability theory.
- We will review the most important concepts here.
- Some Notation:
 - Scalar data $x \in \mathbb{R}$
 - Vector-valued data $\mathbf{x} \in \mathbb{R}^{D}$
 - Datasets $\mathcal{X} = \{x_1, \dots, x_N\}$

Terms, Concepts, and Notation

- Most of our tools will be based on statistics and probability theory.
- We will only review the most important concepts here.
- Some Notation:
 - Scalar data $x \in \mathbb{R}$
 - Vector-valued data $\mathbf{x} \in \mathbb{R}^{D}$
 - Datasets $\mathcal{X} = \{x_1, \dots, x_N\}$
 - Labelled datasets $\mathcal{D} = \{(x_1, t_1), \dots, (x_N, t_N)\}$

D

i=1

 $\sum w_j x_j$

• Matrices $\mathbf{M} \in \mathbb{R}^{m imes n}$

• Dot product
$$\mathbf{w}^{\mathsf{T}}\mathbf{x} =$$

Probability Basics

- Probabilities are defined over random variables:
 - Discrete case:

$$p(X = x_j) = \frac{n_j}{N}$$

$$p(X \in (x_1, x_2)) = \int_{x_1}^{x_2} p(x) \, \mathrm{d}x$$

Where p(x) is the probability density function (pdf) of x.

Probability Basics

- Random variables $A \in \{a_i\}, B \in \{b_j\}$
- Consider *N* trials:

$$n_{ij} = \# \{A = a_i \land B = b_j\}$$
$$c_i = \# \{A = a_i\}$$
$$r_j = \# \{B = b_j\}$$

- Derive from this:
 - Joint probability $p(A = a_i, B = b_j) = \frac{n_{ij}}{N}$
 - Marginal probability

$$p(A = a_i) = \frac{c_i}{N}$$

• Conditional probability $p(B = b_j | A = a_i) = \frac{n_{ij}}{c_i}$

• Sum rule:

$$p(A = a_i) = \frac{c_i}{N} = \frac{1}{N} \sum_j n_{ij} = \sum_{b_j} p(A = a_i, B = b_j)$$

• Product rule:

$$p(A = a_i, B = b_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \cdot \frac{c_i}{N}$$
$$= p(B = b_j | A = a_i) p(A = a_i)$$

 a_i

Rules of Probability - Summary

• Sum rule:

$$p(A) = \sum_{B} p(A, B)$$

- Product rule:
 - p(A,B) = p(B|A)p(A)
- Combine into Bayes' Theorem:

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}$$
$$= \frac{p(B|A)p(A)}{\sum_{A} p(B|A)p(A)}$$

This is the most important equation in this course!

Introduction

- 1. Motivation
- 2. Forms of learning
- 3. Terms, Concepts, and Notation
- 4. Bayes Decision Theory

Bayes Decision Theory

- Goal: predict an output class C from measurements \mathbf{x} , by minimizing the probability of misclassification.
- How can we make such decisions optimally?
- Bayes Decision Theory gives us the tools for this
 - Based on Bayes' Theorem:

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

• In the following, we will introduce its basic concepts...

Example: handwritten character recognition

 \mathbf{x} : e.g., pixel values

Core Concept: Priors

- What can we tell about the outcome of an experiment *before* making any measurements?
- The a-priori probability $p(\mathcal{C})$ captures the probability distribution over the different class outcomes
 - · Based on previously observed data
 - i.e., independent of the actual measurement
- The prior probabilities over all possible class outcomes sum to one.

Example: in English text, the letter "e" makes up ~13% of all letters:

 $p(\mathcal{C}_{\rm e}) = 0.13$

And there are 26 letters in the English alphabet:

$$\sum_{\alpha \in \{a, \dots, z\}} p(\mathcal{C}_{\alpha}) = 1$$

Core Concept: Likelihood

- How *likely* is it that we *observe* a certain measurement \mathbf{x} *given* an example of class C?
- This is expressed by the likelihood $p(\mathbf{x}|\mathcal{C})$
 - It is called a *class-conditional distribution*, since it specifies the distribution of x conditioned on the class C.
 - We can estimate the likelihood from the distribution of measurements x observed on the given training data.
- Here, ${\bf x}$ measures certain properties of the input data.
 - E.g., the fraction of black pixels
 - We simply treat it as a vector $\mathbf{x} \in \mathbb{R}^D$.

Core Concept: Posterior

- What is the probability for class C_k if we made a measurement \mathbf{x} ?
- This a-posteriori probability $p(C_k|\mathbf{x})$ can be computed via Bayes' Theorem after we observed \mathbf{x} :

$$p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{\sum_j p(\mathbf{x}|\mathcal{C}_j)p(\mathcal{C}_j)}$$

- This is usually what we're interested in!
- Interpretation

 $posterior = \frac{likelihood \cdot prior}{normalization \ factor}$

$$p(x|\mathcal{C}_1)$$

$$p(x|\mathcal{C}_2)$$

$$p(x|\mathcal{C}_1)p(\mathcal{C}_1)$$

$$p(x|\mathcal{C}_2)p(\mathcal{C}_2)$$

$$p(\mathcal{C}_1|x)$$

$$p(\mathcal{C}_2|x)$$

Making Optimal Decisions

• Goal: minimize the probability of misclassification.

 $p(\text{mistake}) = p(x \in \mathcal{R}_1, \mathcal{C}_2) + p(x \in \mathcal{R}_2, \mathcal{C}_1)$ $= \int_{\mathcal{R}_1} p(x, \mathcal{C}_2) \, \mathrm{d}x + \int_{\mathcal{R}_2} p(x, \mathcal{C}_1) \, \mathrm{d}x$ $= \int_{\mathcal{R}_1} p(\mathcal{C}_2 | x) p(x) \, \mathrm{d}x + \int_{\mathcal{R}_2} p(\mathcal{C}_1 | x) p(x) \, \mathrm{d}x$

• Note:

Making Optimal Decisions

• Goal: minimize the probability of misclassification.

 $p(\text{mistake}) = p(x \in \mathcal{R}_1, \mathcal{C}_2) + p(x \in \mathcal{R}_2, \mathcal{C}_1)$ $= \int_{\mathcal{R}_1} p(x, \mathcal{C}_2) \, \mathrm{d}x + \int_{\mathcal{R}_2} p(x, \mathcal{C}_1) \, \mathrm{d}x$ $= \int_{\mathcal{R}_1} p(\mathcal{C}_2 | x) p(x) \, \mathrm{d}x + \int_{\mathcal{R}_2} p(\mathcal{C}_1 | x) p(x) \, \mathrm{d}x$

• Note:

• Minimal error at the intersection \hat{x}

Making Optimal Decisions

- Our goal is to minimize the probability of a misclassification.
- The optimal decision rule is: decide for \mathcal{C}_1 iff $p(\mathcal{C}_1|\mathbf{x})>p(\mathcal{C}_2|\mathbf{x})$
- Or for multiple classes: decide for C_k iff $p(C_k|\mathbf{x}) > p(C_j|\mathbf{x}) \ \forall j \neq k$
- Once we can estimate posterior probabilities, we can use this rule to build classifiers.

Summary: Introduction to ML

Machine Learning

Forms of Machine Learning

 $p(\mathcal{C}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C})p(\mathcal{C})}{p(\mathbf{x})}$

Bayes Theorem

Bayes Optimal Classification

Next Lectures...

- Ways how to estimate the probability densities $p(\mathbf{x}|\mathcal{C})$
 - Parametric methods
 - Gaussian distribution
 - Mixtures of Gaussians
 - Non-parametric methods
 - Histograms
 - k-Nearest Neighbor
 - Kernel Density Estimation
- Ways to directly model the posteriors $p(\mathcal{C}_k | \mathbf{x})$
 - Linear discriminants
 - Logistic regression, SVMs, Neural Networks, ...

Machine Learning Topics

- 1. Introduction to ML
- 2. Probability Density Estimation
- 3. Linear Discriminants
- 4. Linear Regression
- 5. Logistic Regression
- 6. Support Vector Machines
- 7. AdaBoost
- 8. Neural Network Basics

References and Further Reading

• More information, including a short review of Probability theory and a good introduction in Bayes Decision Theory can be found in Chapters 1.1, 1.2 and 1.5 of

Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006