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Announcement: Small-Group Exercises

• Bi-weekly small-group exercises

• We’re currently setting up a poll to collect your preferences for the exercise slots

• Please enter your choices until Wed, 18.10. evening!

• Based on the poll results, we will assign you to exercise slots

• Please sign up for your time slot preferences by Wed evening…

Monday Tuesday Wednesday Thursday Friday

14:30-18:00h 3x 14:30-16:00h 2x 14:30-16:00h

3x 16:30-18:00h 3x 16:30-18:00h 2x 16:30-18:00h

18:30-20:00h 2x 18:30-20:00h
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Machine Learning Topics

1. Introduction to ML

2. Probability Density Estimation

3. Linear Discriminants

4. Linear Regression

5. Logistic Regression

6. Support Vector Machines

7. AdaBoost

8. Neural Network Basics

Machine Learning

Concepts

Forms of Machine Learning

Bayes Decision Theory Bayes Optimal 

Classification
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Introduction

1. Motivation

2. Forms of learning

3. Terms, Concepts, and Notation

4. Bayes Decision Theory
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Rules of Probability - Summary

• Sum rule:

• Product rule:

• Combine into Bayes’ Theorem:

Terms, Concepts, Notation

This is the most important 

equation in this course!
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Introduction

1. Motivation

2. Forms of learning

3. Terms, Concepts, and Notation

4. Bayes Decision Theory
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Bayes Decision Theory

• Goal: predict an output class    from measurements   ,

by minimizing the probability of misclassification.

• How can we make such decisions optimally?

• Bayes Decision Theory gives us the tools for this

• Based on Bayes’ Theorem:

• In the following, we will introduce its basic concepts…

Example: handwritten character recognition

: e.g., pixel values
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Core Concept: Priors

• What can we tell about the outcome of an experiment 

before making any measurements?

• The a-priori probability captures the probability 

distribution over the different class outcomes

• Based on previously observed data

• i.e., independent of the actual measurement

• The prior probabilities over all possible class outcomes 

sum to one.

Bayes Decision Theory

Example: in English text, the letter “e” 

makes up ~13% of all letters:

And there are 26 letters in the 

English alphabet:
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Core Concept: Likelihood

• How likely is it that we observe a certain 

measurement      given an example of class    ?

• This is expressed by the likelihood

• It is called a class-conditional distribution,

since it specifies the distribution of     

conditioned on the class    . 

• We can estimate the likelihood from the

distribution of measurements     observed 

on the given training data.

• Here,    measures certain properties of the input data.

• E.g., the fraction of black pixels

• We simply treat it as a vector              .

Bayes Decision Theory
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Core Concept: Posterior

• What is the probability for class      if we made a 

measurement    ?

• This a-posteriori probability can be 

computed via Bayes’ Theorem after we observed    :

• This is usually what we’re interested in!

• Interpretation

Bayes Decision Theory



11

Making Optimal Decisions

• Goal: minimize the probability of misclassification.

• Note:

Bayes Decision Theory

and      are the decision regions

after setting a decision threshold.

+ = constant

We can only reduce
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Making Optimal Decisions

• Goal: minimize the probability of misclassification.

• Note:

• Minimal error at the intersection

Bayes Decision Theory

and      are the decision regions

after setting a decision threshold.

+ = constant

We can only reduce
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Making Optimal Decisions

• Our goal is to minimize the probability of a 

misclassification.

• The optimal decision rule is: decide for     iff

• Or for multiple classes: decide for      iff

• Once we can estimate posterior probabilities, 

we can use this rule to build classifiers.

Bayes Decision Theory

decide for decide for
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Summary: Introduction to ML

Machine Learning Forms of Machine Learning

Bayes Optimal 

Classification

Bayes Theorem
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Next Lectures…

• Ways how to estimate the probability densities

• Parametric methods

− Gaussian distribution

− Mixtures of Gaussians

• Non-parametric methods

− Histograms

− k-Nearest Neighbor

− Kernel Density Estimation

• Ways to directly model the posteriors 

• Linear discriminants

• Logistic regression, SVMs, Neural Networks, …
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Machine Learning Topics

1. Introduction to ML

2. Probability Density Estimation

3. Linear Discriminants

4. Linear Regression

5. Logistic Regression

6. Support Vector Machines

7. AdaBoost

8. Neural Network Basics Mixtures of Gaussians

& EM-Algorithm

Parametric Methods

& ML-Algorithm

Bayes Classifiers

Nonparametric Methods
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Probability Density Estimation

1. Probability Distributions

2. Parametric Methods

3. Nonparametric Methods

4. Mixture Models

5. Bayes Classifier

6. K-NN Classifier
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Probability Distributions

• Up to now: Bayes optimal classification based on               and          .

• How can we estimate (= learn) those probability densities?

• Supervised training case: data and class labels are known.

• Estimate the probability density for each class      separately.

• (For simplicity of notation, we will drop the class label      in the following  ).

• First, we look at the Gaussian distribution in more detail…

given
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The Gaussian (or Normal) Distribution

• One-dimensional (univariate) case:

• Multi-dimensional (multivariate) case:

Probability Densities

Mean Variance

Mean

vector

Covariance 

matrix
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Gaussian Distribution: Shape

Probability Distributions

Full covariance matrix: Diagonal covariance matrix: Uniform variance:

General ellipsoid shape Axis-aligned ellipsoid Hypersphere
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• Central Limit Theorem

• The distribution of a sum of     i.i.d. random variables 

becomes increasingly Gaussian as     grows.

• In practice, the convergence to a Gaussian can be very rapid.

• This makes the Gaussian interesting for many applications.

• Example: Sum over     uniform [0,1] random variables.

Probability Distributions

Gaussian Distribution: Motivation

i.i.d. = independent and 

identically distributed
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Probability Density Estimation

1. Probability Distributions

2. Parametric Methods

3. Nonparametric Methods

4. Mixture Models

5. Bayes Classifier

6. K-NN Classifier
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Parametric Methods

• In parametric methods, we assume that we know the 

parametric form of the underlying data distribution.

• I.e., the equation of the pdf with parameters   .

Example:
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Parametric Methods

• In parametric methods, we assume that we know the 

parametric form of the underlying data distribution.

• I.e., the equation of the pdf with parameters   .

• Goal: Estimate    from training data                                .

• Likelihood of   :

Example:

Probability that the data     was indeed 

generated by a distribution with parameters   .
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Maximum Likelihood Approach

• Idea: Find optimal parameters by maximizing         .

• Computation of the likelihood:

• Single data point (e.g., for Gaussian):

• Assumption: all data points are independent

• Negative Log-Likelihood (“Energy”):

Parametric Methods

Maximizing the likelihood  minimizing the negative log-likelihood. 
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• Minimizing the negative log-likelihood:

• Take the derivative and set it to zero.

• Log-likelihood for Normal distribution (1D case):

Parametric Methods  |  Maximum Likelihood Approach
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• By minimizing the negative log-likelihood, we found:

• is the Maximum Likelihood estimate

for the parameters of a Gaussian distribution.

• This is a very important result.

• Unfortunately, it is wrong…

Parametric Methods  |  Maximum Likelihood Approach

sample mean sample variance

Similarly, we can derive:



29

• To be precise, the result is not wrong, but biased.

• Assume the samples                           come from 

a true Gaussian distribution with mean    and variance

• It can be shown that the expected estimates are then

 The ML estimate will underestimate the true variance!

• We can correct for this bias:

Parametric Methods  |  Maximum Likelihood Approach
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• Maximum Likelihood has several significant limitations.

• It systematically underestimates the variance of the distribution!

• E.g., consider the estimate for a single sample:

• We say ML overfits to the observed data.

• We will still often use Maximum Likelihood, but it is important to know about this effect.

Parametric Methods  |  Maximum Likelihood Approach
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Probability Density Estimation

1. Probability Distributions

2. Parametric Methods

3. Nonparametric Methods

a) Histograms

b) Kernel Methods & k-Nearest Neighbors

4. Mixture Models

5. Bayes Classifier

6. K-NN Classifier
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Histograms

• Partition the data space into     distinct bins with 

widths      and count the number of observations      

in each bin.

• Then,                    .

• Often the same width is used for all bins.

• This can be done, in principle, for any 

dimensionality    .

Nonparametric Methods

…but the required 

number of bins grows 

exponentially with    !
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Nonparametric Methods  |  Histograms

The bin width     acts as a smoothing factor.

Not smooth enough

About ok

Too smooth
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Advantages Limitations

• Very general method. In the limit                 , 

every probability density can be 

represented.

• No need to store the data points once 

histogram is computed.

• Rather brute-force.

• Discontinuities at bin edges.

• Choosing right bin size is hard.

• Unsuitable for high-dimensional feature 

spaces.

Nonparametric Methods  |  Histograms
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Probability Density Estimation

1. Probability Distributions

2. Parametric Methods

3. Nonparametric Methods

a) Histograms

b) Kernel Methods & k-Nearest Neighbors

4. Mixture Models

5. Bayes Classifier

6. K-NN Classifier



36

: volume of     .

Kernel Methods and k-Nearest Neighbors

• Data point    comes from pdf        .

• Probability that    falls into small region    :

• Estimate          from samples

• Let     be the number of samples that fall into    .

• If the number of samples     is sufficiently large, 

we can estimate     as:

Nonparametric Methods

For sufficiently small    ,

is roughly constant.
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Nonparametric Methods  | Kernel Methods and k-Nearest Neighbors

Kernel Methods k-Nearest Neighbors

fixed

determine
fixed

determine

Example: Determine 

the number    of data 

points inside a fixed 

hypercube
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Kernel Methods

• Hypercube of dimension     with edge length    :

• Probability density estimate:

• This method is known as Parzen Window estimation.

Nonparametric Methods
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• In general, we can use any kernel such that

• Then, we get the probability density estimate

• This is known as Kernel Density Estimation.

Nonparametric Methods  |  Kernel Methods

E.g., a Gaussian kernel 

for smoother boundaries.
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Nonparametric Methods  | Kernel Methods and k-Nearest Neighbor

Kernel Methods k-Nearest Neighbors

fixed

determine
fixed

determine

Increase the volume    

until the     next data 

points are found.
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k-Nearest Neighbors

• Fix    , estimate     from the data.

• Consider a hypersphere centered on    and let it grow 

to a volume       that includes     of the given     data points.

• Then

• Side note:

• Strictly speaking, the model produced by k-NN is not a true 

density model, because the integral over all space diverges.

• E.g. consider            and a sample exactly on a data point.

Nonparametric Methods





42

Advantages Limitations

• Very general. In the limit                  , every 

probability density can be represented.

• No computation during training phase

• Just need to store training set

• Requires storing and computing with the 

entire dataset.

• Computational costs linear in the number 

of data points.

• Can be improved through efficient 

storage structures (at the cost of some 

computation during training).

• Choosing the kernel size/     is a 

hyperparameter optimization problem.

Nonparametric Methods  |  Kernel Methods and k-Nearest Neighbors
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Bias-Variance Tradeoff

Nonparametric Methods

Not smooth enough

About ok

Too smooth

Histograms:

Bin width  .

Parzen Window:

Kernel size   .

k-NN:

# of neighbors

Too much variance

Too much bias
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References and Further Reading

• More information in Bishop’s book

• Gaussian distribution and ML: Ch. 1.2.4 and 2.3.1-2.3.4.

• Nonparametric methods: Ch. 2.5.

•

Christopher M. Bishop

Pattern Recognition and Machine Learning

Springer, 2006
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