

Elements of Machine Learning & Data Science

Winter semester 2023/24

Lecture 3 – Bayes Decision Theory 17.10.2023

Prof. Bastian Leibe

Announcement: Small-Group Exercises

Monday	Tuesday	Wednesday	Thursday	Friday
14:30-18:00h	3x 14:30-16:00h	2x 14:30-16:00h		
3x 16:30-18:00h	3x 16:30-18:00h	2x 16:30-18:00h		
18:30-20:00h	2x 18:30-20:00h			

• Bi-weekly small-group exercises

- We're currently setting up a poll to collect your preferences for the exercise slots
- Please enter your choices until Wed, 18.10. evening!
- Based on the poll results, we will assign you to exercise slots
- Please sign up for your time slot preferences by Wed evening...

Machine Learning Topics

- 1. Introduction to ML
- 2. Probability Density Estimation
- 3. Linear Discriminants
- 4. Linear Regression
- 5. Logistic Regression
- 6. Support Vector Machines
- 7. AdaBoost
- 8. Neural Network Basics

Machine Learning Concepts

Forms of Machine Learning

Bayes Decision Theory

Bayes Optimal Classification

Introduction

- 1. Motivation
- 2. Forms of learning
- 3. Terms, Concepts, and Notation
- 4. Bayes Decision Theory

Rules of Probability - Summary

• Sum rule:

$$p(A) = \sum_{B} p(A, B)$$

- Product rule:
 - p(A,B) = p(B|A)p(A)
- Combine into Bayes' Theorem:

$$\begin{split} p(A|B) &= \frac{p(B|A)p(A)}{p(B)} \\ &= \frac{p(B|A)p(A)}{\sum_A p(B|A)p(A)} \end{split}$$

This is the most important equation in this course!

Introduction

- 1. Motivation
- 2. Forms of learning
- 3. Terms, Concepts, and Notation
- 4. Bayes Decision Theory

Bayes Decision Theory

- Goal: predict an output class C from measurements x, by minimizing the probability of misclassification.
- How can we make such decisions optimally?
- Bayes Decision Theory gives us the tools for this
 - Based on Bayes' Theorem:

$$p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}$$

• In the following, we will introduce its basic concepts...

Example: handwritten character recognition

 \mathbf{x} : e.g., pixel values

Core Concept: Priors

- What can we tell about the outcome of an experiment *before* making any measurements?
- The a-priori probability $p(\mathcal{C})$ captures the probability distribution over the different class outcomes
 - · Based on previously observed data
 - i.e., independent of the actual measurement
- The prior probabilities over all possible class outcomes sum to one.

Example: in English text, the letter "e" makes up ~13% of all letters:

 $p(\mathcal{C}_{\rm e}) = 0.13$

And there are 26 letters in the English alphabet:

$$\sum_{\alpha \in \{a, \dots, z\}} p(\mathcal{C}_{\alpha}) = 1$$

Core Concept: Likelihood

- How *likely* is it that we *observe* a certain measurement \mathbf{x} *given* an example of class C?
- This is expressed by the likelihood $p(\mathbf{x}|\mathcal{C})$
 - It is called a *class-conditional distribution*, since it specifies the distribution of x conditioned on the class C.
 - We can estimate the likelihood from the distribution of measurements x observed on the given training data.
- Here, ${\bf x}$ measures certain properties of the input data.
 - E.g., the fraction of black pixels
 - We simply treat it as a vector $\mathbf{x} \in \mathbb{R}^{D}$.

Core Concept: Posterior

- What is the probability for class C_k if we made a measurement \mathbf{x} ?
- This a-posteriori probability $p(C_k|\mathbf{x})$ can be computed via Bayes' Theorem after we observed \mathbf{x} :

$$p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{\sum_j p(\mathbf{x}|\mathcal{C}_j)p(\mathcal{C}_j)}$$

- This is usually what we're interested in!
- Interpretation

 $posterior = \frac{likelihood \cdot prior}{normalization \ factor}$

$$p(x|\mathcal{C}_1)$$

$$p(x|\mathcal{C}_2)$$

$$p(x|\mathcal{C}_1)p(\mathcal{C}_1)$$

$$p(x|\mathcal{C}_2)p(\mathcal{C}_2)$$

$$p(\mathcal{C}_1|x)$$

$$p(\mathcal{C}_2|x)$$

Making Optimal Decisions

• Goal: minimize the probability of misclassification.

 $p(\text{mistake}) = p(x \in \mathcal{R}_1, \mathcal{C}_2) + p(x \in \mathcal{R}_2, \mathcal{C}_1)$ $= \int_{\mathcal{R}_1} p(x, \mathcal{C}_2) \, \mathrm{d}x + \int_{\mathcal{R}_2} p(x, \mathcal{C}_1) \, \mathrm{d}x$ $= \int_{\mathcal{R}_1} p(\mathcal{C}_2 | x) p(x) \, \mathrm{d}x + \int_{\mathcal{R}_2} p(\mathcal{C}_1 | x) p(x) \, \mathrm{d}x$

• Note:

Making Optimal Decisions

• Goal: minimize the probability of misclassification.

 $p(\text{mistake}) = p(x \in \mathcal{R}_1, \mathcal{C}_2) + p(x \in \mathcal{R}_2, \mathcal{C}_1)$ $= \int_{\mathcal{R}_1} p(x, \mathcal{C}_2) \, \mathrm{d}x + \int_{\mathcal{R}_2} p(x, \mathcal{C}_1) \, \mathrm{d}x$ $= \int_{\mathcal{R}_1} p(\mathcal{C}_2 | x) p(x) \, \mathrm{d}x + \int_{\mathcal{R}_2} p(\mathcal{C}_1 | x) p(x) \, \mathrm{d}x$

• Note:

• Minimal error at the intersection \hat{x}

Making Optimal Decisions

- Our goal is to minimize the probability of a misclassification.
- The optimal decision rule is: decide for \mathcal{C}_1 iff $p(\mathcal{C}_1|\mathbf{x})>p(\mathcal{C}_2|\mathbf{x})$
- Or for multiple classes: decide for C_k iff $p(C_k|\mathbf{x}) > p(C_j|\mathbf{x}) \ \forall j \neq k$
- Once we can estimate posterior probabilities, we can use this rule to build classifiers.

Summary: Introduction to ML

Machine Learning

Forms of Machine Learning

 $p(\mathcal{C}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C})p(\mathcal{C})}{p(\mathbf{x})}$

Bayes Theorem

Bayes Optimal Classification

Next Lectures...

- Ways how to estimate the probability densities $p(\mathbf{x}|\mathcal{C}_k)$
 - Parametric methods
 - Gaussian distribution
 - Mixtures of Gaussians
 - Non-parametric methods
 - Histograms
 - k-Nearest Neighbor
 - Kernel Density Estimation
- Ways to directly model the posteriors $p(\mathcal{C}_k | \mathbf{x})$
 - Linear discriminants
 - Logistic regression, SVMs, Neural Networks, ...

Machine Learning Topics

- 1. Introduction to ML
- 2. Probability Density Estimation
- 3. Linear Discriminants
- 4. Linear Regression
- 5. Logistic Regression
- 6. Support Vector Machines
- 7. AdaBoost
- 8. Neural Network Basics

Nonparametric Methods

Mixtures of Gaussians & EM-Algorithm

Bayes Classifiers

Probability Density Estimation

- **1. Probability Distributions**
- 2. Parametric Methods
- 3. Nonparametric Methods
- 4. Mixture Models
- 5. Bayes Classifier
- 6. K-NN Classifier

Probability Distributions

- Up to now: Bayes optimal classification based on $p(\mathbf{x}|\mathcal{C}_k)$ and $p(\mathcal{C}_k)$.
- How can we estimate (= learn) those probability densities?
 - Supervised training case: data and class labels are known.
 - Estimate the probability density for each class C_k separately.

 $p(\mathbf{x}|\mathcal{C}_k)$ given $\mathbf{x} \in \mathcal{C}_k$

- (For simplicity of notation, we will drop the class label C_k in the following $\Rightarrow p(\mathbf{x})$).
- First, we look at the Gaussian distribution in more detail...

The Gaussian (or Normal) Distribution

• One-dimensional (univariate) case:

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Mean Variance

• Multi-dimensional (multivariate) case:

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathsf{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$$

Mean Covariance matrix

Gaussian Distribution: Shape

Full covariance matrix:

 $\mathbf{\Sigma} = [\sigma_{ij}]$

General ellipsoid shape

Diagonal covariance matrix:

 $\boldsymbol{\Sigma} = \operatorname{diag}\{\sigma_i\}$

Axis-aligned ellipsoid

Uniform variance:

 $\boldsymbol{\Sigma} = \sigma^2 \mathbf{I}$

Hypersphere

Gaussian Distribution: Motivation

- Central Limit Theorem
 - The distribution of a sum of N *i.i.d.* random variables becomes increasingly Gaussian as N grows.
 - In practice, the convergence to a Gaussian can be very rapid.
 - This makes the Gaussian interesting for many applications.
- Example: Sum over N uniform [0,1] random variables.

i.i.d. = *independent* and *identically distributed*

Probability Density Estimation

- 1. Probability Distributions
- 2. Parametric Methods
- 3. Nonparametric Methods
- 4. Mixture Models
- 5. Bayes Classifier
- 6. K-NN Classifier

Parametric Methods

- In parametric methods, we assume that we know the parametric form of the underlying data distribution.
 - I.e., the equation of the pdf with parameters θ .

Example: $p(x) = \mathcal{N}(x|\mu, \sigma)$ $\theta = (\mu, \sigma)$

Parametric Methods

- In parametric methods, we assume that we know the parametric form of the underlying data distribution.
 - I.e., the equation of the pdf with parameters θ .
- Goal: Estimate θ from training data $\mathcal{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$.
- Likelihood of θ :

 $L(\theta) = p(\mathcal{X}|\theta)$

Probability that the data \mathcal{X} was indeed generated by a distribution with parameters θ .

Example: $p(x) = \mathcal{N}(x|\mu,\sigma)$

Maximum Likelihood Approach

- Idea: Find optimal parameters by maximizing $L(\theta)$.
- Computation of the likelihood:
 - Single data point (e.g., for Gaussian):

$$p(x_n|\theta) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x_n - \mu)^2}{2\sigma^2}\right)$$

• Assumption: all data points are independent

$$L(\theta) = p(\mathcal{X}|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$$

• Negative Log-Likelihood ("Energy"):

$$E(\theta) = -\ln L(\theta) = -\sum_{n=1}^{N} \ln p(x_n | \theta)$$

Maximizing the likelihood \Leftrightarrow minimizing the negative log-likelihood.

Parametric Methods | Maximum Likelihood Approach

- Minimizing the negative log-likelihood:
 - Take the derivative and set it to zero.

$$\frac{\partial}{\partial \theta} E(\theta) = -\frac{\partial}{\partial \theta} \sum_{n=1}^{N} \ln p(x_n | \theta) = -\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \theta} p(x_n | \theta)}{p(x_n | \theta)} \stackrel{!}{=} 0$$

• Log-likelihood for Normal distribution (1D case):

$$\frac{\partial}{\partial\mu}E(\mu,\sigma) = -\sum_{n=1}^{N} \frac{\frac{\partial}{\partial\mu}p(x_n|\mu,\sigma)}{p(x_n|\mu,\sigma)} \qquad \qquad p(x_n|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}}\exp\left(-\frac{(x_n-\mu)^2}{2\sigma^2}\right)$$
$$= -\sum_{n=1}^{N} -\frac{2(x_n-\mu)p(x_n|\mu,\sigma)}{2\sigma^2} \qquad \qquad \frac{\partial}{\partial\mu}p(x_n|\mu,\sigma) = -\frac{2(x_n-\mu)}{2\sigma^2}p(x_n|\mu,\sigma)$$

$$=\frac{1}{\sigma^2}\sum_{n=1}^N (x_n-\mu) = \frac{1}{\sigma^2} \left(\sum_{n=1}^N x_n - N\mu\right) \stackrel{!}{=} 0 \quad \Longleftrightarrow \quad \hat{\mu} = \frac{1}{N}\sum_{n=1}^N x_n$$

Parametric Methods | Maximum Likelihood Approach

• By minimizing the negative log-likelihood, we found: Similarly, we can derive:

sample mean

sample variance

- $\hat{\theta} = (\hat{\mu}, \hat{\sigma})$ is the Maximum Likelihood estimate for the parameters of a Gaussian distribution.
 - This is a very important result.
 - Unfortunately, it is wrong...

Parametric Methods | Maximum Likelihood Approach

- To be precise, the result is not wrong, but biased.
- Assume the samples x_1, x_2, \ldots, x_N come from a true Gaussian distribution with mean μ and variance σ^2
 - It can be shown that the expected estimates are then

$$\mathbb{E}[\mu_{\rm ML}] = \mu$$
$$\mathbb{E}[\sigma_{\rm ML}^2] = \left(\frac{N-1}{N}\right)\sigma^2$$

- \Rightarrow The ML estimate will underestimate the true variance!
- We can correct for this bias:

$$\hat{\sigma}^2 = \frac{N}{N-1}\sigma_{\rm ML}^2 = \frac{1}{N-1}\sum_{n=1}^N (x_n - \hat{\mu})^2$$

- Maximum Likelihood has several significant limitations.
 - It systematically underestimates the variance of the distribution!
 - E.g., consider the estimate for a single sample:

- We say ML overfits to the observed data.
- We will still often use Maximum Likelihood, but it is important to know about this effect.

Probability Density Estimation

- 1. Probability Distributions
- 2. Parametric Methods
- 3. Nonparametric Methods
 - a) Histograms
 - b) Kernel Methods & k-Nearest Neighbors
- 4. Mixture Models
- 5. Bayes Classifier
- 6. K-NN Classifier

Histograms

- Partition the data space into N distinct bins with widths Δ_i and count the number of observations n_i in each bin.
- Then, $p_i = \frac{n_i}{N\Delta_i}$.
- Often the same width is used for all bins.
- This can be done, in principle, for any dimensionality *D*.

...but the required number of bins grows exponentially with D !

The bin width Δ acts as a smoothing factor.

Advantages

- Very general method. In the limit $(N \to \infty)$, every probability density can be represented.
- No need to store the data points once histogram is computed.

Limitations

- Rather brute-force.
- Discontinuities at bin edges.
- Choosing right bin size is hard.
- Unsuitable for high-dimensional feature spaces.

Probability Density Estimation

- 1. Probability Distributions
- 2. Parametric Methods
- 3. Nonparametric Methods
 - a) Histograms
 - b) Kernel Methods & k-Nearest Neighbors
- 4. Mixture Models
- 5. Bayes Classifier
- 6. K-NN Classifier

Kernel Methods and k-Nearest Neighbors

- Data point ${\bf x}$ comes from pdf $p({\bf x})$.
 - Probability that \mathbf{x} falls into small region \mathcal{R} :

$$P = \int_{\mathcal{R}} p(y) dy \approx p(\mathbf{x}) V$$

- Estimate $p(\mathbf{x})$ from samples
 - Let K be the number of samples that fall into \mathcal{R} .
 - If the number of samples $N \, {\rm is} \, {\rm sufficiently} \, {\rm large}, we can estimate <math display="inline">P \, {\rm as}:$

$$P = \frac{K}{N} \quad \Rightarrow \quad p(\mathbf{x}) \approx \frac{K}{NV}$$

For sufficiently small \mathcal{R} , $p(\mathbf{x})$ is roughly constant. V: volume of \mathcal{R} .

Kernel Methods

• Hypercube of dimension D with edge length h:

$$k(\mathbf{u}) = \begin{cases} 1, & \text{if } |u_i| \leq \frac{1}{2}h, \ i = 1, \dots, D\\ 0, & \text{otherwise} \end{cases}$$
$$K = \sum_{n=1}^{N} k(\mathbf{x} - \mathbf{x}_n) \qquad V = \int k(\mathbf{u}) d\mathbf{u} = h^D$$

• Probability density estimate:

$$p(\mathbf{x}) \approx \frac{K}{NV} = \frac{1}{Nh^D} \sum_{n=1}^{N} k(\mathbf{x} - \mathbf{x}_n)$$

• This method is known as Parzen Window estimation.

Nonparametric Methods | Kernel Methods

• In general, we can use any kernel such that

$$k(\mathbf{u}) \ge 0, \quad \int k(\mathbf{u}) d\mathbf{u} = 1$$

$$K = \sum_{n=1}^{N} k(\mathbf{x} - \mathbf{x}_n)$$

• Then, we get the probability density estimate

$$p(\mathbf{x}) \approx \frac{K}{NV} = \frac{1}{N} \sum_{n=1}^{N} k(\mathbf{x} - \mathbf{x}_n)$$

• This is known as Kernel Density Estimation.

E.g., a Gaussian kernel for smoother boundaries.

k-Nearest Neighbors

- Fix K, estimate V from the data.
- Consider a hypersphere centered on \mathbf{x} and let it grow to a volume V^* that includes K of the given N data points.
- Then

$$p(\mathbf{x}) \approx \frac{K}{NV^*}$$

- Side note:
 - Strictly speaking, the model produced by k-NN is not a true density model, because the integral over all space diverges.
 - E.g. consider K = 1 and a sample exactly on a data point.

$$V^* = 0 \quad \Rightarrow \quad p(\mathbf{x}) \approx \frac{K}{N \cdot 0}$$

Advantages

- Very general. In the limit $(N \to \infty)$, every probability density can be represented.
- No computation during training phase
 - Just need to store training set

Limitations

- Requires storing and computing with the entire dataset.
 - Computational costs linear in the number of data points.
 - Can be improved through efficient storage structures (at the cost of some computation during training).
- Choosing the kernel size/K is a hyperparameter optimization problem.

Bias-Variance Tradeoff

References and Further Reading

- More information in Bishop's book
 - Gaussian distribution and ML:
 - Nonparametric methods:

- Ch. 1.2.4 and 2.3.1-2.3.4.
- Ch. 2.5.

