

Elements of Machine Learning & Data Science

Winter semester 2023/24

Lecture 3 – Bayes Decision Theory 17.10.2023

Prof. Bastian Leibe

Announcement: Small-Group Exercises

• **Bi-weekly small-group exercises**

- We're currently setting up a poll to collect your preferences for the exercise slots
- Please enter your choices until Wed, 18.10. evening!
- Based on the poll results, we will assign you to exercise slots
- *Please sign up for your time slot preferences by Wed evening…*

Machine Learning Topics

- **1. Introduction to ML**
- 2. Probability Density Estimation
- 3. Linear Discriminants
- 4. Linear Regression
- 5. Logistic Regression
- 6. Support Vector Machines
- 7. AdaBoost
- 8. Neural Network Basics

Machine Learning **Concepts**

Forms of Machine Learning

Bayes Decision Theory **Bayes Optimal**

Classification

Introduction

- 1. Motivation
- 2. Forms of learning
- **3. Terms, Concepts, and Notation**
- 4. Bayes Decision Theory

Rules of Probability - Summary

• Sum rule:

$$
p(A) = \sum_{B} p(A, B)
$$

• Product rule:

$$
p(A, B) = p(B|A)p(A)
$$

• Combine into Bayes' Theorem:

$$
p(A|B) = \frac{p(B|A)p(A)}{p(B)}
$$

$$
= \frac{p(B|A)p(A)}{\sum_{A} p(B|A)p(A)}
$$

This is the most important equation in this course!

Introduction

- 1. Motivation
- 2. Forms of learning
- 3. Terms, Concepts, and Notation
- **4. Bayes Decision Theory**

Bayes Decision Theory

- Goal: predict an output class C from measurements x , by minimizing the probability of misclassification.
- *How can we make such decisions optimally?*
- Bayes Decision Theory gives us the tools for this
	- Based on Bayes' Theorem:

$$
p(Y|X) = \frac{p(X|Y)p(Y)}{p(X)}
$$

• In the following, we will introduce its basic concepts...

 $x : e.g., pixel values$

Core Concept: Priors

- What can we tell about the outcome of an experiment *before* making any measurements?
- The a-priori probability $p(C)$ captures the probability distribution over the different class outcomes
	- Based on previously observed data
	- i.e., independent of the actual measurement
- The prior probabilities over all possible class outcomes sum to one.

Example: in English text, the letter "e" makes up ~13% of all letters:

 $p(\mathcal{C}_{e}) = 0.13$

And there are 26 letters in the English alphabet:

$$
\sum_{\alpha \in \{\text{a}, \dots, \text{z}\}} p(\mathcal{C}_{\alpha}) = 1
$$

Core Concept: Likelihood

- How *likely* is it that we *observe* a certain measurement x given an example of class \mathcal{C} ?
- This is expressed by the likelihood $p(\mathbf{x}|\mathcal{C})$
	- It is called a *class-conditional distribution*, since it specifies the distribution of x conditioned on the class \mathcal{C} .
	- We can estimate the likelihood from the distribution of measurements x observed on the given training data.
- Here, x measures certain properties of the input data.
	- E.g., the fraction of black pixels
	- We simply treat it as a vector $\mathbf{x} \in \mathbb{R}^D$.

Core Concept: Posterior

- What is the probability for class \mathcal{C}_k if we made a measurement x ?
- This a-posteriori probability $p(\mathcal{C}_k|\mathbf{x})$ can be computed via Bayes' Theorem after we observed \mathbf{x} :

$$
p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|C_k)p(C_k)}{\sum_j p(\mathbf{x}|C_j)p(C_j)}
$$

- *This is usually what we're interested in!*
- **Interpretation**

 $posterior = \frac{likelihood \cdot prior}{normalization factor}$

$$
p(x|C_1)
$$
\n
$$
p(x|C_1)p(C_1)
$$
\n
$$
p(x|C_1)p(C_1)
$$
\n
$$
p(x|C_2)p(C_2)
$$
\n
$$
p(C_1|x)
$$
\n
$$
p(C_2|x)
$$

Making Optimal Decisions

• Goal: minimize the probability of misclassification.

 $p(\text{mistake}) = p(x \in \mathcal{R}_1, \mathcal{C}_2) + p(x \in \mathcal{R}_2, \mathcal{C}_1)$ $=\int_{\mathcal{R}_1} p(x,\mathcal{C}_2) dx + \int_{\mathcal{R}_2} p(x,\mathcal{C}_1) dx$ $= \int_{\mathcal{R}_1} p(\mathcal{C}_2 | x) p(x) \,dx + \int_{\mathcal{R}_2} p(\mathcal{C}_1 | x) p(x) \,dx$

• Note:

Making Optimal Decisions

• Goal: minimize the probability of misclassification.

 $p(\text{mistake}) = p(x \in \mathcal{R}_1, \mathcal{C}_2) + p(x \in \mathcal{R}_2, \mathcal{C}_1)$ $=\int_{\mathcal{R}_1} p(x,\mathcal{C}_2) dx + \int_{\mathcal{R}_2} p(x,\mathcal{C}_1) dx$ $= \int_{\mathcal{R}_1} p(\mathcal{C}_2 | x) p(x) \,dx + \int_{\mathcal{R}_2} p(\mathcal{C}_1 | x) p(x) \,dx$

• Note:

• *Minimal error at the intersection*

Making Optimal Decisions

- Our goal is to minimize the probability of a misclassification.
- The optimal decision rule is: decide for C_1 iff $p(\mathcal{C}_1|\mathbf{x}) > p(\mathcal{C}_2|\mathbf{x})$
- Or for multiple classes: decide for \mathcal{C}_k iff $p(\mathcal{C}_k|\mathbf{x}) > p(\mathcal{C}_j|\mathbf{x}) \ \forall j \neq k$
- *Once we can estimate posterior probabilities, we can use this rule to build classifiers.*

Summary: Introduction to ML

Machine Learning **Forms of Machine Learning**

 $p(\mathcal{C}|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C})p(\mathcal{C})}{p(\mathbf{x})}$

Bayes Theorem

Bayes Optimal **Classification**

Next Lectures…

- Ways how to estimate the probability densities $p(\mathbf{x}|\mathcal{C}_k)$
	- Parametric methods
		- − Gaussian distribution
		- − Mixtures of Gaussians
	- Non-parametric methods
		- − Histograms
		- − k-Nearest Neighbor
		- − Kernel Density Estimation
- Ways to directly model the posteriors $p(\mathcal{C}_k|\mathbf{x})$
	- Linear discriminants
	- Logistic regression, SVMs, Neural Networks, …

Machine Learning Topics

- 1. Introduction to ML
- **2. Probability Density Estimation**
- 3. Linear Discriminants
- 4. Linear Regression
- 5. Logistic Regression
- 6. Support Vector Machines
- 7. AdaBoost
- 8. Neural Network Basics Mixtures of Gaussians

Parametric Methods & ML-Algorithm

Nonparametric Methods

& EM-Algorithm

Bayes Classifiers

Probability Density Estimation

- **1. Probability Distributions**
- 2. Parametric Methods
- 3. Nonparametric Methods
- 4. Mixture Models
- 5. Bayes Classifier
- 6. K-NN Classifier

Probability Distributions

- Up to now: Bayes optimal classification based on $p(\mathbf{x}|\mathcal{C}_k)$ and $p(\mathcal{C}_k)$.
- *How can we estimate (= learn) those probability densities?*
	- Supervised training case: data and class labels are known.
	- Estimate the probability density for each class \mathcal{C}_k separately.

 $p(\mathbf{x}|\mathcal{C}_k)$ given $\mathbf{x} \in \mathcal{C}_k$

- (For simplicity of notation, we will drop the class label \mathcal{C}_k in the following $\Rightarrow p(\mathbf{x})$).
- *First, we look at the Gaussian distribution in more detail…*

The Gaussian (or Normal) Distribution

• One-dimensional (univariate) case:

$$
\mathcal{N}(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)
$$

Mean Variance

• Multi-dimensional (multivariate) case:

$$
\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)
$$

Mean Covariance
vector matrix

Gaussian Distribution: Shape

$$
\boldsymbol{\Sigma} = [\sigma_{ij}]
$$

General ellipsoid shape **Axis-aligned ellipsoid** Hypersphere

Full covariance matrix: Diagonal covariance matrix: Uniform variance:

 $\Sigma = \text{diag}\{\sigma_i\}$

 $\boldsymbol{\Sigma} = \sigma^2 \mathbf{I}$

Gaussian Distribution: Motivation

- Central Limit Theorem
	- The distribution of a sum of N *i.i.d.* random variables becomes increasingly Gaussian as N grows.
	- In practice, the convergence to a Gaussian can be very rapid.
	- This makes the Gaussian interesting for many applications.
- Example: Sum over N uniform [0,1] random variables.

i.i.d. = independent and identically distributed

 $N=5$

22

Probability Density Estimation

- 1. Probability Distributions
- **2. Parametric Methods**
- 3. Nonparametric Methods
- 4. Mixture Models
- 5. Bayes Classifier
- 6. K-NN Classifier

Parametric Methods

- In parametric methods, we assume that we know the parametric form of the underlying data distribution.
	- I.e., the equation of the pdf with parameters θ .

Parametric Methods

- In parametric methods, we assume that we know the parametric form of the underlying data distribution.
	- I.e., the equation of the pdf with parameters θ .
- Goal: Estimate θ from training data $\mathcal{X} = {\mathbf{x}_1, \dots, \mathbf{x}_N}$.
- Likelihood of θ :

 $L(\theta) = p(\mathcal{X}|\theta)$

Probability that the data X *was indeed generated by a distribution with parameters* θ *.* Example: $p(x) = \mathcal{N}(x|\mu, \sigma)$

Maximum Likelihood Approach

- Idea: Find optimal parameters by maximizing $L(\theta)$.
- Computation of the likelihood:
	- Single data point (e.g., for Gaussian):

$$
p(x_n|\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_n - \mu)^2}{2\sigma^2}\right)
$$

• Assumption: all data points are independent

$$
L(\theta) = p(\mathcal{X}|\theta) = \prod_{n=1}^{N} p(x_n|\theta)
$$

• Negative Log-Likelihood ("Energy"):

$$
E(\theta) = -\ln L(\theta) = -\sum_{n=1}^{N} \ln p(x_n|\theta)
$$

Maximizing the likelihood minimizing the negative log-likelihood.

- Minimizing the negative log-likelihood:
	- Take the derivative and set it to zero.

$$
\frac{\partial}{\partial \theta} E(\theta) = -\frac{\partial}{\partial \theta} \sum_{n=1}^{N} \ln p(x_n|\theta) = -\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \theta} p(x_n|\theta)}{p(x_n|\theta)} \stackrel{!}{=} 0
$$

• Log-likelihood for Normal distribution (1D case):

$$
\frac{\partial}{\partial \mu} E(\mu, \sigma) = -\sum_{n=1}^{N} \frac{\frac{\partial}{\partial \mu} p(x_n | \mu, \sigma)}{p(x_n | \mu, \sigma)}
$$
\n
$$
= -\sum_{n=1}^{N} \frac{\lambda(x_n - \mu)}{\lambda \sigma^2} \frac{p(x_n | \mu, \sigma)}{p(x_n | \mu, \sigma)}
$$
\n
$$
\frac{\partial}{\partial \mu} p(x_n | \mu, \sigma) = \frac{2(x_n - \mu)}{2\sigma^2} p(x_n | \mu, \sigma)
$$

$$
= \frac{1}{\sigma^2} \sum_{n=1}^{N} (x_n - \mu) = \frac{1}{\sigma^2} \left(\sum_{n=1}^{N} x_n - N\mu \right) \stackrel{!}{=} 0 \iff \hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n
$$

• By minimizing the negative log-likelihood, we found: Similarly, we can derive:

sample mean sample variance

- $\hat{\theta} = (\hat{\mu}, \hat{\sigma})$ is the Maximum Likelihood estimate for the parameters of a Gaussian distribution.
	- This is a very important result.
	- Unfortunately, it is wrong...

- To be precise, the result is not wrong, but biased.
- Assume the samples x_1, x_2, \ldots, x_N come from a true Gaussian distribution with mean μ and variance σ^2
	- It can be shown that the expected estimates are then

$$
\mathbb{E}[\mu_{\mathrm{ML}}] = \mu
$$

$$
\mathbb{E}[\sigma_{\mathrm{ML}}^2] = \left(\frac{N-1}{N}\right)\sigma^2
$$

- *The ML estimate will underestimate the true variance!*
- We can correct for this bias:

$$
\hat{\sigma}^2 = \frac{N}{N-1} \sigma_{ML}^2 = \frac{1}{N-1} \sum_{n=1}^{N} (x_n - \hat{\mu})^2
$$

- Maximum Likelihood has several significant limitations.
	- It systematically underestimates the variance of the distribution!
	- E.g., consider the estimate for a single sample:

- We say ML overfits to the observed data.
- *We will still often use Maximum Likelihood, but it is important to know about this effect.*

Probability Density Estimation

- 1. Probability Distributions
- 2. Parametric Methods
- **3. Nonparametric Methods**
	- **a) Histograms**
	- b) Kernel Methods & k-Nearest Neighbors
- 4. Mixture Models
- 5. Bayes Classifier
- 6. K-NN Classifier

Histograms

- Partition the data space into N distinct bins with widths Δ_i and count the number of observations n_i in each bin.
- Then, $p_i = \frac{n_i}{N\Delta_i}$.
- Often the same width is used for all bins.
- This can be done, in principle, for any dimensionality D .

…but the required number of bins grows exponentially with $D!$

The bin width Δ acts as a smoothing factor.

Advantages Limitations

- Very general method. In the limit $(N \to \infty)$, every probability density can be represented.
- No need to store the data points once histogram is computed.

- Rather brute-force.
- Discontinuities at bin edges.
- Choosing right bin size is hard.
- Unsuitable for high-dimensional feature spaces.

Probability Density Estimation

- 1. Probability Distributions
- 2. Parametric Methods
- **3. Nonparametric Methods**
	- a) Histograms
	- **b) Kernel Methods & k-Nearest Neighbors**
- 4. Mixture Models
- 5. Bayes Classifier
- 6. K-NN Classifier

Kernel Methods and k-Nearest Neighbors

- Data point x comes from pdf $p(\mathbf{x})$.
	- Probability that x falls into small region \mathcal{R} :

$$
P = \int_{\mathcal{R}} p(y) dy \approx p(\mathbf{x}) V
$$

- Estimate $p(\mathbf{x})$ from samples
	- Let K be the number of samples that fall into \mathcal{R} .
	- If the number of samples N is sufficiently large, we can estimate P as:

$$
P = \frac{K}{N} \quad \Rightarrow \quad p(\mathbf{x}) \approx \frac{K}{NV}
$$

 $V:$ volume of \mathcal{R} . For sufficiently small \mathcal{R} , $p(\mathbf{x})$ is roughly constant.

Kernel Methods

• Hypercube of dimension D with edge length h :

$$
k(\mathbf{u}) = \begin{cases} 1, & \text{if } |u_i| \le \frac{1}{2}h, \ i = 1, \dots, D \\ 0, & \text{otherwise} \end{cases}
$$
\n
$$
K = \sum_{n=1}^{N} k(\mathbf{x} - \mathbf{x}_n) \qquad V = \int k(\mathbf{u}) d\mathbf{u} = h^D
$$

• Probability density estimate:

$$
p(\mathbf{x}) \approx \frac{K}{NV} = \frac{1}{Nh^D} \sum_{n=1}^{N} k(\mathbf{x} - \mathbf{x}_n)
$$

• This method is known as Parzen Window estimation.

Nonparametric Methods | Kernel Methods

• In general, we can use any kernel such that

$$
k(\mathbf{u}) \ge 0, \quad \int k(\mathbf{u}) d\mathbf{u} = 1
$$

$$
K = \sum_{n=1}^{N} k(\mathbf{x} - \mathbf{x}_n)
$$

Then, we get the probability density estimate

$$
p(\mathbf{x}) \approx \frac{K}{NV} = \frac{1}{N} \sum_{n=1}^{N} k(\mathbf{x} - \mathbf{x}_n)
$$

• This is known as Kernel Density Estimation.

E.g., a Gaussian kernel for smoother boundaries.

k-Nearest Neighbors

- Fix K , estimate V from the data.
- Consider a hypersphere centered on x and let it grow to a volume V^* that includes K of the given N data points.
- Then

$$
p(\mathbf{x}) \approx \frac{K}{NV^*}
$$

- Side note:
	- Strictly speaking, the model produced by k-NN is not a true density model, because the integral over all space diverges.
	- E.g. consider $K=1$ and a sample exactly on a data point.

$$
V^* = 0 \qquad \Rightarrow \qquad p(\mathbf{x}) \approx \frac{K}{N \cdot 0}
$$

Advantages Limitations

- Very general. In the limit $(N \to \infty)$, every probability density can be represented.
- No computation during training phase
	- Just need to store training set

- Requires storing and computing with the entire dataset.
	- Computational costs linear in the number of data points.
	- Can be improved through efficient storage structures (at the cost of some computation during training).
- Choosing the kernel size/ K is a hyperparameter optimization problem.

Bias-Variance Tradeoff

References and Further Reading

- More information in Bishop's book
	- Gaussian distribution and ML: Ch. 1.2.4 and 2.3.1-2.3.4.
	- Nonparametric methods: Ch. 2.5.

•

-
-

