

Elements of Machine Learning & Data Science Introduction to Data Science

Lecture 6

Prof. Wil van der Aalst

Marco Pegoraro, M.Sc. Leah Tacke genannt Unterberg, M.Sc.

Outline

1. Introduction

2. Tabular Data

- 3. Data Science Process
- 4. Challenges
- 5. Data Types
- 6. Descriptive Statistics
- 7. Interpretative Pitfalls
- 8. Basic Visualizations
- 9. Feature Transformations
- 10. "How to lie with statistics"

Motivation – Impact and Size of Data

Motivation – Impact and Size of Data

Introduction

Motivation – Data Scientist

The Data Science Pipeline

Infrastructure

- Big data infrastructure
- Distributed systems
- Data engineering
- Programming
- Security
- ...

Analysis

- Statistics
- Data/process mining
- Machine learning
- Artificial intelligence
- Visualization
- ...

Effect

- Ethics & privacy
- IT Law
- Operations management
- Business models
- Entrepreneurship
- ...

The Data Science Pipeline

Infrastructure

- Big data infrastructure
- Distributed systems
- Data engineering
- Programming
- Security
- ...

Challenge: making things scalable & instant

Analysis

Effect

Introduction

The Data Science Pipeline

The Data Science Pipeline

Terminology

- Many different names (statistics, data analytics, data mining, machine learning, artificial intelligence, predictive analytics, process mining, etc.) are used to refer to the key disciplines that contribute to data science
- Unfortunately, the areas these names describe are heavily overlapping and context dependent

Terminology

Data Science: A Definition

"Data science is an interdisciplinary field aiming to turn data into real value. Data may be structured or unstructured, big or small, static or streaming. Value may be provided in the form of predictions, automated decisions, models learned from data, or any type of data visualization delivering insights. Data science includes data extraction, data preparation, data exploration, data transformation, storage and retrieval, computing infrastructures, various types of mining and learning, presentation of explanations and predictions, and the exploitation of results taking into account ethical, social, legal, and business aspects."

Page 10, Wil van der Aalst. Process Mining: Data Science in Action. Springer-Verlag, Berlin, 2016.

What actually is the *Data* in Data Science?

Example

- A restaurant owner wants to analyze the performance of their menu items ...
- You have collected the following data:

price	calories	vegetarian	spicy	bestseller
12.99	800	Yes	No	Yes
9.99	600	Yes	Yes	No
14.99	1000	No	Yes	No
11.99	700	No	No	Yes
8.99	500	Yes	No	No

Features

- Features are raw or derived (mean, median, max, min, rank, etc.)
- Time is a special feature:
 - It cannot decrease
 - We often want to predict the future based on the past
 - Vital in temporal data analysis (time series data, event data, sequential data, ...)

Example – Unlabeled Data

Unlabeled – no target feature selected

features

	price	calories	vegetarian	spicy	bestseller
es	12.99	800	Yes	No	Yes
anc	9.99	600	Yes	Yes	No
inst	14.99	1000	No	Yes	No
	11.99	700	No	No	Yes
	8.99	500	Yes	No	No

Example – Labeled Data

Labeled – designated target feature

	price	calories	vegetarian	spicy	bestseller
es	12.99	800	Yes	No	Yes
anc	9.99	600	Yes	Yes	No
INSU	14.99	1000	No	Yes	No
	11.99	700	No	No	Yes
	8.99	500	Yes	No	No

features

Extracting Data

Feature Extraction

Example – Instances and Features

- Rows instances
- Columns features

			icatares		
	price	calories	vegetarian	spicy	bestseller
S	12.99	800	Yes	No	Yes
nce	9.99	600	Yes	Yes	No
Ista	14.99	1000	No	Yes	No
. <u> </u>	11.99	700	No	No	Yes
	8.99	500	Yes	No	No

features

Data Science Is Complex and Requires a Structured Approach

"Data science is an interdisciplinary field aiming to turn data into real value. Data may be structured or unstructured, big or small, static or streaming. Value may be provided in the form of predictions, automated decisions, models learned from data, or any type of data visualization delivering insights. Data science includes data extraction, data preparation, data exploration, data transformation, storage and retrieval, computing infrastructures, various types of mining and learning, presentation of explanations and predictions, and the exploitation of results taking into account ethical, social, legal, and business aspects."

Wil van der Aalst. Process Mining: Data Science in Action. Springer-Verlag, Berlin, 2016.

Cross-Industry Standard Process for Data Mining (CRISP-DM)

- Developed in the late 90s
- Its structure is quite obvious
- Details: Pete Chapman (1999)
 'The CRISP-DM User Guide'
- Any similar life-cycle models

Cross-Industry Standard Process for Data Mining (CRISP-DM)

- 1. Business understanding What does the organization need?
- 2. Data understanding What data do we have?
- 3. Data preparation How do we prepare the data for analysis?
- 4. Modeling What modeling techniques should we apply?
- 5. Evaluation Which model best meets the business objectives?
- 6. Deployment How do stakeholders access and use the results?

Plan-Do-Check-Act (PDCA)

Also known as the Shewhart Cycle or Deming Cycle

Define-Measure-Analyze-Improve-Control (DMAIC)

Define	Measure	Analyze	Improve	Control
 Launch team Establish charter Plan project Gather VOC/VOB Plan for change 	 Document the process Collect baseline data Narrow project focus 	 Analyze data Identify root causes Indentify and remove waste 	 Generate solutions Evaluate solutions Optimize solutions Pilot Plan and implement 	 Control the proces Validate project benefits

Often used as part of the Six Sigma methodology

L* Lifecycle Model

Specific for process mining

Extract-Transform-Load (ETL)

Extract-Load-Transform (ELT)

Differences

Organizational Issues

- Project or a continuous effort?
- Involve all stakeholders (users, customers, process owners, managers, board level, etc.)
- Positive Return-on-Investment (ROI) requires actionable insights
- Prepare for resistance (privacy concerns, data quality excuses, fear of transparency, etc.)
- Requires change management

Important, but ... our focus will be on data science techniques

Finding Data

- There may be hundreds or thousands of tables
- There may exist many different entities that are less or not at all relevant

Preparing the Data

- Reorganizing data, filtering data, etc.
- Extracting relevant features

- Normalization (elimination of the effects of varying scales and units in different features, allowing for more accurate comparisons)
- Sampling (making data smaller or removing/changing a sample bias)

Big Data

- Lots of data (e.g. transactions) are recorded
- Need to have the ability to save, compare and analyze the collected data
- Requires distribution and concurrency

Streaming Data

- Data is generated continuously and processed in real-time
- Data is not stored in a database for later analysis
- Challenge: processing the data in real-time, need to handle the volume and velocity

Streaming Data

- Data is generated continuously and processed in real-time
- Data is not stored in a database for later analysis
- Challenge: processing the data in real-time, need to handle the volume and velocity

Source: De Agostini Editorial/Getty Images

Source: NatGeo
Data Quality

- Data may be:
 - Incomplete
 - Invalid
 - Inconsistent
 - Imprecise
 - Outdated
- Challenge: detecting and handling such issues

Challenges

Overfitting and Underfitting

Concept Drift

- Properties of the data change over time and thus the performance of a model decreases
- The data that the model is trained on no longer represents the real-world data
- Challenge: when to update the model with new data

Challenges

Turning Insights into Action

- Predicting the inevitable does not help much
- What can be influenced?
- Is there still time?

Concerns – Responsible Data Science

 Responsible Data Science advocates the development of techniques, algorithms, tools, laws, ethical/social principles for ensuring fairness, accuracy, confidentiality and transparency covering the whole data science pipeline

Concerns – Responsible Data Science

- Responsible Data Science advocates the development of techniques, algorithms, tools, laws, and ethical/social principles for ensuring fairness, accuracy, confidentiality and transparency covering the whole data science pipeline
- Fairness: How to avoid unfair conclusions even if they are true?
- Accuracy: How to answer questions with a guaranteed level of accuracy?
- Confidentiality: How to answer questions without revealing secrets?
- Transparency: How to clarify answers such that they become indisputable?

III-posed Problems

- A problem is well-posed if
 - A solution exists
 - The solution is unique
- Problems in data science are often ill-posed:
 - Many possible models explaining observed phenomena
 - Data set is just a sample and does not represent the whole population
 - Noise in the data set
 - The result needs to generalize to have predictive or explanatory value

Tabular Data

Feature values can have various types - knowing these data types is essential for correct data analysis and data processing!

Numerical			features	featur	re
	price	calories	vegetarian	spicy	bestseller
e S	12.99	800	Yes	No	Yes
instanc	9.99	600	Yes	Yes	No
	14.99	1000	No	Yes	No
	11.99	700	No	No	Yes
_	8.99	500	Yes	No	No

Data Types Overview

Feature values can have various types - knowing these data types is essential for correct data analysis and data processing!

Data Types - Nominal

- Represents category, code or state
- Ordering of the values has no meaning (e.g., blonde hair is not better than brown hair)

hair color

Data Types - Binary

- Special case of nominal: Binary
- Only two categories (often 0 and 1)
- Symmetric: both values are equal (subjectively or frequency based)
- Asymmetric: one value is normal/default, the other exception

Data Types - Ordinal

- Values have a meaningful order
 - high, medium, low
 - excellent, good, satisfactory, poor
 - lightning fast, quick, slow
 - strongly agree, agree, indifferent, disagree, strongly disagree
- The difference between successive values cannot be quantified •

customer

Data Types - Numeric

- Measurable quantities
- Differences can be quantified
- Mean, median, mode, variance, etc. can be computed

Data Types – Discrete

- Numeric ٠
- Can be counted •

forest

Data Types - Interval

- Scale of equal-sized units with quantifiable difference between the units
- A zero may not exist, values may go negative

Data Types - Ratio

- Multiples/ratios can be identified (e.g., three times as heavy, four times as fast, etc.)
- The scale ends at zero (0 kg, 0 km/h, 0 Kelvin)

Data Types - Unstructured

- Text, audio, video, etc.
- Can be turned into structural data
- Examples: multiset of words or ngrams to describe a text, or pixel information for images

Unstructured

Text, audio, image, signal, video...

Data Types - Unstructured

- Extremely prevalent in Big Data
- Huge opportunity for novel
 transformation/extraction approaches
 - e.g. NLP
- Misnomer, as data may be structured, just not to an appreciable degree under the current viewpoint

Unstructured

Text, audio, image, signal, video...

Data Types Overview

• Data types are essential for correct data analysis and data processing!

Conclusion

- Data can be unstructured (e.g., text) but turned into e.g., vectors
- Most techniques are based on tabular data (especially the basic ones)
- The data type is vital for the correct data processing and analysis

price	calories	vegetarian	spicy	bestseller
12.99	800	Yes	No	Yes
9.99	600	Yes	Yes	No
14.99	1000	No	Yes	No
11.99	700	No	No	Yes
8.99	500	Yes	No	No

Descriptive Statistics Repetition

X	Count = 10
1.5	Number of instances
2.7	Cardinality = 10
3.1	Number of unique values
4.2	
5.5	
6.9	
7.6	
8.1	
9.3	
10.0	

X	Count = 10
1.5	Number of instances
2.7	Cardinality = 10
3.1	Number of unique values
4.2	Min = 1.5
5.5	Minimum value
6.9	
7.6	
8.1	
9.3	

10.0

x	Count = 10
1.5	Number of instances
2.7	Cardinality $= 10$
3.1	Number of unique values
4.2	Min = 1.5
5.5	Minimum value
6.9	Mox = 10.0
7.6	Maximum value
8.1	
9.3	
10.0	

X	Count = 10 Number of instances
1.0	
2.7	Cardinality = 10
3.1	Number of unique values
4.2	Min = 1.5
5.5	Minimum value
6.9	
76	Max = 10.0
7.0	Maximum value
8.1	$\bar{x} = \frac{\sum_{n=1}^{N} x_n}{N}$
9.3	Mean = 5.89
10.0	Sum of all values divided by count

Count = 10Χ Number of instances 1.5 2.7 Cardinality = 10Number of unique values 3.1 4.2 Min = 1.55.5 Minimum value 6.9 Max = 10.07.6 Maximum value 8.1 Mean = 5.899.3 Sum of all values divided by count 10.0 Median = 6.2Middle value / mean of two middle values

X	Count = 10	
1.5	Number of instances	
2.7	Cardinality = 10	
3.1	Number of unique values	
4.2	Min = 1.5	
5.5	Minimum value	
6.9		
7.6	Max = 10.0 Maximum value	
8.1		
9.3	Mean = 5.89	
10.0	Sum of all values divided by count	
	Median = 6.2 Middle value / mean of two middle values	

Variance ≈ 8.621 //

Average squared distance of each value from the mean

 $\int_{-\infty} var(x) = \frac{\sum_{n=1}^{N} (x_n - \bar{x})^2}{N - 1}$

x	Count = 10
1.5	Number of instances
2.7	Cardinality = 10
3.1	Number of unique values
4.2	Min = 1.5
5.5	Minimum value
6.9	
7.6	Maximum value
8.1	
9.3	Mean = 5.89 Sum of all values divided by count
10.0	Sum of all values divided by count
	Median = 6.2 Middle value / mean of two middle values

Variance ≈ 8.621

Average squared distance of each value from the mean

Standard deviation ≈ 2.936 How spread out the data is (the square root of the variance)

$$std(x) = \sqrt{var(x)}$$

Count = 10 Number of instances

Cardinality = 10 Number of unique values

Min = 1.5 Minimum value

Max = 10.0 Maximum value

Mean = 5.89 Sum of all values divided by count

Median = 6.2

Middle value / mean of two middle values

Variance ≈ 8.621

Average squared distance of each value from the mean

Standard deviation ≈ 2.936 How spread out the data is (the square root of the variance)

pth percentile

 x_n with $n = \left\lceil \frac{p}{100} \cdot N \right\rceil$

Value at or below (or strictly below) which p percent of the instances are located 10^{th} percentile = 1.5 25^{th} percentile = 3.1 50^{th} percentile = 5.5 75^{th} percentile = 8.1 100^{th} percentile = 10 Third quartile (Q₃)

Individual Features - Categorical

x	Count = 10
A	Number of instances
В	
А	
С	
В	
В	
С	
А	
С	
В	

Individual Features - Categorical

x	Count = 10
Α	Number of instances
В	Cardinality $= 3$
А	Number of unique values
С	
В	
В	
С	
А	
С	
В	

В

Individual Features - Categorical

x	Count = 10
A	Number of instances
В	Cardinality $= 3$
А	Number of unique values
С	Mode = B
В	Value that appears most frequently
В	
С	
А	
С	

Multiple Features - Covariance

$$\begin{array}{c|ccc} \mathbf{x} & \mathbf{y} \\ \hline 1.5 & 4.2 \\ 2.7 & 4.9 \\ 3.1 & 7.1 \\ 4.2 & 9.8 \\ 5.5 & 12.3 \\ 6.9 & 14.7 \\ 7.6 & 16.5 \\ 8.1 & 18.2 \\ 9.3 & 20.9 \\ 10.0 & 22.6 \end{array} \quad Cov(x,y) \approx 19.134 \qquad \begin{array}{c} +\& + \Rightarrow + \\ +\& + \Rightarrow + \\ +\& - \Rightarrow - \\ -\& + \Rightarrow - \\ -\& - \Rightarrow + \end{array}$$

Multiple Features – Correlation

 $Corr(x,y) = \frac{Cov(x,y)}{\sqrt{Var(x)} \cdot \sqrt{Var(y)}}$

maximal positive correlation

10
Multiple Features – Correlation (Example)

Temperature (°C)	Number of cones	200			•		
10	60	s 9 150			•	•	•
15	10	ef col			•		
20	185	0 100 Te				•	
23	150	1 Jun 50		•			
25	150	~			•		
30	200	C	0	10	20	30	40
35	175			Т	emperatu	re	

$$Corr(x,y) = \frac{Cov(x,y)}{\sqrt{Var(x)} \cdot \sqrt{Var(y)}} = \frac{419.88}{8.54 \cdot 63.69} = 0.77$$

Temperature Number of cones Strong positive correlation

Multiple Features – Correlation Matrix

Features a, b, ..., z

a b z
a
$$\begin{bmatrix} Corr(a,a) & Corr(a,b) & \dots & Corr(a,z) \\ Corr(b,a) & Corr(b,b) & \dots & Corr(b,z) \\ \dots & \dots & \dots & \dots \\ Corr(z,a) & Corr(z,b) & \dots & Corr(z,z) \end{bmatrix}$$

Multiple Features – Correlation Matrix

Features a, b, ..., z

What can we say about this distribution?

X	У
55.3846	97.1795
51.5385	96.0256
46.1538	94.4872
42.8205	91.4103
40.7692	88.3333
38.7179	84.8718
35.641	79.8718
33.0769	77.5641
28.9744	74.4872
26.1538	71.4103

. . .

Count = 142 Mean(x) = 54.2633 Std(x) = 16.7651 Mean(y) = 47.8323 Std(y) = 26.9354Corr(x, y) = -0.0645

Datasaurus

Count = 142 Mean(x) = 54.2633 Std(x) = 16.7651 Mean(y) = 47.8323 Std(y) = 26.9354Corr(x, y) = -0.0645

Anscombe's Quartet

Dataset 1		Dataset 2		Dataset 3		Dataset 4	
Х	У	х	у	Х	у	Х	у
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

$$Mean(x) = 9$$

$$Var(x) = 11$$

$$Mean(y) = 7.5$$

$$Var(y) = 4.125$$

$$Corr(x, y) = 0.816$$

Linear regression line: $y = \frac{1}{2}x + 3$

Anscombe's Quartet

Dataset 1		Dataset 2		Dataset 3		Dataset 4	
х	у	Х	у	х	у	х	У
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89

Outliers

- Outlier: an observation that lies an abnormal distance away from other values
- Can have a significant impact on measures such as mean, variance or standard deviation
- It is important to identify and deal with outliers before performing any analysis
 → visualize and explore our data first!

Simpson's Paradox

A trend appears in several different groups of data but disappears or reverses when these groups are combined.

Simpson's Paradox

Department	All		Me	n	Women		
	Applicants	Admitted	Applicants	Admitted	Applicants	Admitted	
Α	933	64%	825	62%	108	82%	
в	585	63%	560	63%	25	68%	
С	918	35%	325	37%	593	34%	
D	792	34%	417	33%	375	35%	
E	584	25%	191	28%	393	24%	
F	714	6%	373	6%	341	7%	
Total	4526	39%	2691	45%	1835	30%	

	All		Me	n	Women		
	Applicants	Admitted	Applicants	Admitted	Applicants	Admitted	
Total	12,763	41%	8,442	44%	4,321	35%	

Aggregated

Legend:

greater percentage of successful applicants than the other gender

greater number of applicants than the other gender

bold - the two 'most applied for' departments for each gender

By department (six largest)

UC Berkeley admission data, 1973

Spurious Correlations

Math doctorates awarded

correlates with

Uranium stored at US nuclear power plants

tylervigen.com

Importance of Visualization

Spurious Correlations

US spending on science, space, and technology correlates with

Suicides by hanging, strangulation and suffocation

tylervigen.com

Box Plot

- Median value (middle), depicted by bar
- IQR Interquartile Range (covers 50% of middle instances), depicted by box
- Upper fence 3rd quartile + 1.5 IQR
 Upper whisker maximal value below upper fence
- Lower fence 1st quartile 1.5 IQR
 Lower whisker minimal value above lower fence
- Outliers drawn separately

Box Plot - Example

Histograms - Visualizations of Distributions

Categorical features

Histograms - Visualizations of Distributions

Continuous features

Histograms - Visualizations of Distributions

Continuous features

Histograms – Watch out for Normalization!

- Discrete probability distribution over intervals
- Normalized over population
- Sums to **1** [over discrete intervals]

to 25 or between 25 to 30"

Children's Weight

- Continuous probability density over values
- Normalized over population **and** bin width
- Integrates to **1** [over continuous range]

Children's Weight

Different Types of Histograms

Normal (Gaussian) Distribution

Normal (Gaussian) Distribution

- $N(\mu, \sigma^2)$
- µ mean
- σ standard deviation

Scatter Plot - Correlation

World Happiness Report 2023 [3]

Scatter Plot Matrix

World Happiness Report 2023

Faceting: Collection of Bar Plots

Favorite Snacks

Faceting: Change of Focus

Favorite Snacks

Stacked Bar Plots

University Sports Class Participation

Stacked Bar Plots

1.0 0.02 0.03 0.02 0.06 0.06 0.9 0.8 0.37 0.46 0.7 0.63 0.63 0.74 0.6 0.5 0.4 0.3 0.57 0.52 0.2 0.35 0.31 0.23 0.1 0.0 Fitness Yoga Cycling Soccer Dancing

University Sports Class Participation

■ Master ■ Bachelor ■ PhD

Collection of Histograms

Collection of Box Plots

Height [cm]

■ Children ■ Teenagers ■ Adults

Advanced Visualizations - Examples

Heatmap

Advanced Visualizations - Examples

Dot Plot with Several Variables

Fatal Collisions per Billion Miles

Comparison of US States

Value of Good Visualizations

- Understanding and analyzing data more quickly and easily
- Communicating to others more effectively
- Identifying outliers, anomalies and other unexpected patterns in data
- Making clear decisions identifying key insights

Feature Transformations

Dealing with Categorical Features

One-Hot Encoding

(f ₁	f ₂	f ₃	class
	high	true	88	Α
	high	false	76	В
	medium	false	32	В
	low	true	89	С
	high	true	21	С
	medium	true	45	Α

Standard one-hot encoding: introduce a 0/1 feature for every possible value

- high -(1,0,0)
- medium (0,1,0)
- low (0,0,1)

One-Hot Encoding: Standard

f ₁ - high	f ₁ - medium	f ₁ - Iow	f ₂	f ₃	class
1	0	0	true	88	Α
1	0	0	false	76	В
0	1	0	false	32	В
0	0	1	true	89	С
1	0	0	true	21	С
0	1	0	true	45	A

Standard one-hot encoding: introduce a 0/1 feature for every possible value

- high -(1,0,0)
- medium (0,1,0)
- low (0,0,1)
One-Hot Encoding: Common Variant

f ₁ - dummy ₀	f ₁ - dummy ₁	f ₂	f ₃	class
1	0	true	88	A
1	0	false	76	В
0	1	false	32	В
0	0	true	89	С
1	0	true	21	С
0	1	true	45	A

k-1 one-hot encoding:

- high -(1,0)
- medium (0,1)
- low (0,0)

+ preferable where co-linearity of features is problematic- introduces asymmetry, e.g., see *low*

One-Hot Encoding – Special Cases

f ₁ - high	f ₁ - medium	f ₁ - Iow	f ₂	f ₃	class
1	0	0	true	88	A
1	0	0	false	76	В
0	1	0	false	32	В
0	0	1	true	89	С
1	0	0	true	21	С
0	1	0	true	45	

- Binary values (true, false) can be translated to a single numeric value (1, 0) [example of k-1 encoding]
- Note that categorical variables with a clear order (ordinal) may be translated to a single numeric value (e.g., excellent = 1.0, good = 0.7, average = 0.5, poor = 0.3, horrible = 0.0)

Dealing with Continuous Features - Binning

- Binning is used to transform continuous features into categorical
- A bin is a range, e.g., [0,5), [5,10), [10,15), [15,20)
- Choosing the right bins (their number and size) is crucial (e.g., to create meaningful histograms)

Binning – Number of Bins

- Too few bins may lead to the loss of information (underfitting) •
- Too many bins may lead to sparseness bins that are empty or have just a few instances • (overfitting)

173.5] 75.85]

.15,

Ω,

3

 \sim

178.2] 180.55] 182.9] 185.25]

175.85,

180.55,

с,

78.

187.6] 189.95] 192.3]

85.25 87.6,

82.9,

194.65]

92.3,

89.95,

(194.65, 197

Equal Width Binning

Bins have a fixed width, but the numer of items per bin may vary

Height [cm]

Tree Age [years]	Tree Height [m]	Apply equal width binning to the feature Tree Height with a bin width of 29 The lowest bin boundaries should coincide with the smallest value.
9	26	
51	96	
47	61	
77	118	
64	91	
2	6	
48	60	
13	31	
9	11	
29	86	
90	107	
80	88	

Tree Age [years]	Tree Height [m]	Apply equal width binning to the feature Tree Height with a bin width of 29. The lowest bin boundaries should coincide with the smallest value.
9	26	
51	96	
47	61	1. Sort the data
77	118	
64	91	
2	6	
48	60	
13	31	
9	11	
29	86	
90	107	
80	88	

Tree Age [years]	Tree Height [m]	Apply equal width binning to the feature Tree Height with a bin width of 29. The lowest bin boundaries should coincide with the smallest value.
2	6	
9	11	
9	26	1. Sort the data
13	31	
48	60	
47	61	
29	86	
80	88	
64	91	
51	96	
90	107	
77	118	

Tree Age [years]	Tree Height [m]	Apply equal width binning to the feature Tree Height with a bin width of 29. The lowest bin boundaries should coincide with the smallest value.
2	6	
9	11	
9	26	1. Sort the data
13	31	2. Distribute elements to bins
48	60	
47	61	
29	86	
80	88	
64	91	
51	96	
90	107	
77	118	

Tree Age [years]	Tree Height [m]	Apply equal width binning to the feature Tree Height with a bin width of 29. The lowest bin boundaries should coincide with the smallest value.
2	6	
9	11	
9	26	1. Sort the data
13	31	2. Distribute elements to bins:
48	60	$6+29=35 \rightarrow [6.35)$
47	61	
29	86	
80	88	
64	91	
51	96	
90	107	
77	118	

Tree Age [years]	Tree Height [m]	Apply equal width binning to the feature Tree Height with a bin width of 29. The lowest bin boundaries should coincide with the smallest value.
2	6	
9	11	
9	26	1. Sort the data
13	31	2. Distribute elements to bins:
48	60	$6+29=35 \rightarrow [6.35)$
47	61	$35+29=64 \rightarrow [35,64]$
29	86	
80	88	
64	91	
51	96	
90	107	
77	118	

Tree Age [years]	Tree Height [m]	Apply equal width binning to the feature Tree Height with a bin width of 29. The lowest bin boundaries should coincide with the smallest value.
2	6	
9	11	
9	26	1. Sort the data
13	31	2. Distribute elements to bins:
48	60	$6+29=35 \rightarrow [6.35)$
47	61	$35+29=64 \rightarrow [35,64]$
29	86	$64+29=93 \rightarrow [64,93)$
80	88	
64	91	
51	96	
90	107	
77	118	

Tree Age [years]	Tree Height [m]	Apply equal width binning to the feature Tree Height with a bin width of 29. The lowest bin boundaries should coincide with the smallest value.
2	6	
9	11	
9	26	1. Sort the data
13	31	2. Distribute elements to bins:
48	60	$6+29=35 \rightarrow [6.35)$
47	61	$35+29=64 \rightarrow [35,64)$
29	86	$64+29=93 \rightarrow [64.93)$
80	88	$93+29=122 \rightarrow [93,122)$
64	91	
51	96	
90	107	
77	118	

Tree Age [years]	Tree Height [m]	Apply equal width binning to the feature Tree Height with a bin width of 29. The lowest bin boundaries should coincide with the smallest value.									
2	6										
9	11										
9	26	1. Sort the	1. Sort the data								
13	31	2. Distribut	2 Distribute elements to bins:								
48	60										
47	61										
29	86				88	20					
80	88		11 -	60	80	96 107					
64	91		31 20	61	91	110					
51	96			01		110					
90	107		very	small	tall	very					
77	118		small			tall					

Tree Age [years]	Tree Height [m]	Apply equal width binning to the feature Tree Height with a bin width of 29. The lowest bin boundaries should coincide with the smallest value.								
2	very small									
9	very small									
9	very small	1. Sort the	1. Sort the data							
13	very small	2. Distribut	2. Distribute elements to bins:							
48	small									
47	small									
29	tall		AA 6	00		88	06			
80	tall		11	60		80	90 107			
64	tall		31 26	61		91	118			
51	very tall			01						
90	very tall		very	sm	all	tall	very			
77	very tall		small				tall			

Equal Frequency Binning

Bins vary in width, but the numer of items per bin is fixed

ee Age years]	Tree Height [m]	Apply equal frequency binning to the feature Tree Age with an elemen frequency of 4.
9	26	
51	96	
47	61	
77	118	
64	91	
2	6	
48	60	
13	31	
9	11	
29	86	
90	107	
80	88	

Tree Age [years]	Tree Height [m]	Apply equal frequency binning to the feature Tree Age with an element frequency of 4.
9	26	
51	96	
47	61	1. Sort the data
77	118	
64	91	
2	6	
48	60	
13	31	
9	11	
29	86	
90	107	
80	88	

Tree Age [years]	Tree Height [m]	Apply equal frequency binning to the feature Tree Age with an element frequency of 4.
2	6	
9	26	
9	11	1. Sort the data
13	31	
29	86	
47	61	
48	60	
51	96	
64	91	
77	118	
80	88	
90	107	

2 6 9 26 9 11 13 31 29 86	
9269111. Sort the data13312. Distribute elements to bins2986	
 9 11 1. Sort the data 13 31 2. Distribute elements to bins 29 86 	
 13 31 2. Distribute elements to bins 29 86 47 94 	
29 86	
4/ 61	
48 60	
51 96	
64 91	
77 118	
80 88	
90 107	

Tree Age [years]	Tree Height [m]	Apply equal frequency binning to the feature Tree Age with an element frequency of 4.					
2	6	-					
9	26						
9	11	1. So	rt the data				
13	31	2. Dis	tribute elements	to bins			
29	86						
47	61						
48	60		0	- A7	77		
51	96		2 5	29 7.	64 ''		
64	91		9	51	90		
77	118		13	40	80		
80	88						
90	107	_	young	medium	Old		

Tree Age [years]	Tree Height [m]	Apply equal frequency binning to the feature Tree Age with an element _ frequency of 4.					
young	6						
young	26						
young	11	1. Sor	t the data				
young	31	2. Dis	tribute elements	s to bins			
medium	86						
medium	61	1					
medium	60		0		A7	. 17	
medium	96		2 5	29	-1.	64	
old	91		9		51	90	
old	118		13	48		80	
old	88						
old	107	_	young	medi	um	OID	

Key Points

- Raw data has no value, we need to extract information
- Not just known unknowns, also unknown unknowns
- Visual exploration is a vital first step (initial understanding, spotting data quality problems, building trust, etc.)
 - Humans have pretty good visual pattern recognition abilities use them!

... or, how to avoid misleading information and visualizations.

"There are lies, damn lies, and statistics"

- Anonymous

Mark Twain?

Benjamin Disraeli?

- Design choice in presenting data and statistics have a huge impact!
- ... Even if what is shown is **technically true**

- Design choices in presenting data and statistics have a huge impact!
- ... Even if what is shown is **technically true**
- For an extreme example, search the case of **Sally Clark** (Discretion advised)

... or, how to avoid misleading information and visualizations.

In some cases, rather than lying, the design is just **hilariously bad.**

As an Indian woman, I can confirm that too much of my time is spent hiding behind a rock praying the terrifying gang of international giant ladies and their Latvian general don't find me

5

... or, how to avoid misleading information and visualizations.

In some cases, rather than lying, the design is just **hilariously bad.**

... or, how to avoid misleading information and visualizations.

Gun deaths in Florida

Number of murders committed using firearms

... or, how to avoid misleading information and visualizations.

The Wall Street Journal, 2012

Wrap up

- Data is vital, but hard to manage!
- Obtaining insights is a looping process, not a one-off application of algorithms
- Various criticalities, such as noise and bias
- Visualization is always fundamental...
- ...and comes with its own challenges!

Next up: Decision Trees

