

Elements of Machine Learning & Data Science

Decision Trees

Lecture 7

Prof. Wil van der Aalst

Marco Pegoraro, M.Sc. Harry Beyel, M.Sc.

Classification problem: Red or Green?

Winner Nexar traffic light challenge: On average, it takes only 3 pixels to turn red into green or green into red!

We start with simple tabular data and models that are easy to interpret!

Wicker, M., Huang, X., Kwiatkowska, M. (2018). Feature-Guided Black-Box Safety Testing of Deep Neural Networks. TACAS 2018. https://doi.org/10.1007/978-3-319-89960-2_22

Outline

- **1. Introduction to Decision Trees**
- 2. Entropy
- 3. ID3 Algorithm
- 4. Quantifying Information Gain
- 5. Pruning
- 6. Ensembles
- 7. Continuous Data

Intuition and Interpretation

features

Fruity Example

Fruity Example

Rain	Wind	Temperature (°C)	Play tennis	Target feature	
Yes	Yes	15	No		
No	No	34	Yes		
Yes	No	23	Yes		
Yes	Yes	20	Yes		
No	Yes	28	No		
Descriptive features					

Rain	Wind	Temperature (°C)	Play tennis
Yes	Yes	15	No
No	No	34	Yes
Yes	No	23	Yes
Yes	Yes	20	Yes
No	Yes	28	No

Decision Tree Construction

Tree Structure

- Three types of nodes: root node, interior nodes and leaf nodes
- Root node refers to all instances
- Interior nodes partition the set of instances based on a descriptive feature
- Leaf nodes have a label (target feature value) (usually based on the label of the majority of instances in this node)

Decision Tree Construction

Tree Structure

- Three types of nodes: root node, interior nodes and leaf nodes
- Root node refers to all instances
- Interior nodes partition the set of instances based on a descriptive feature
- Leaf nodes have a label (target feature value) (usually based on the label of the majority of instances in this node)

There are two goals (often conflicting)

- The tree is small and simple
- The leaves are homogeneous in terms of the target feature

Comparing Decision Trees (1/2)

Weather	Traffic	Night flight	Flight delayed
Cloudy	No	Yes	Yes
Cloudy	Yes	No	Yes
Cloudy	Yes	No	Yes
Clear	Yes	Yes	No
Clear	No	No	No
Clear	No	No	No

Comparing Decision Trees (1/2)

Comparing Decision Trees (2/2)

Weather	Traffic	Night flight	Flight delayed
Cloudy	No	Yes	Yes
Cloudy	Yes	No	Yes
Cloudy	Yes	No	Yes
Clear	Yes	Yes	No
Clear	No	No	No
Clear	No	No	No

All instances correctly classified

Comparing Decision Trees

Both trees correctly classify all observed instances, but the 'simpler' one seems 'better'.

Key concepts:

- avoid overfitting
- apply Occam's razor
- prefer shallow trees

Characteristics Decision Trees

- A very simple model!
- In some cases, preferable to more complex and modern models (such as neural networks):
 - Fewer data points/attributes (managing overfitting is easier)
 - In domains where explainability and transparency are required
 - The choices of a tree are very easy to explain and show!
- There are extensions of decision trees that aim to combine simplicity and transparency with the ability to handle more complex data

Information Gain

Information gain = improvement in knowledge (predictability of target label in nodes)

Entropy - Intuition

Idea

- Measure of impurity
- Uncertainty when
 guessing
- Incompressibility

Worst case entropy for 3 values: $\log_2 3 \approx 1.58$

Entropy - Formula

$$H(t) = -\sum_{k=1}^{K} (P(t=k) \cdot \log_{s}(P(t=k)))$$

 $H(color) = -\left(\frac{7}{14} \cdot \log_2(\frac{7}{14}) + \frac{3}{14} \cdot \log_2(\frac{3}{14}) + \frac{4}{14} \cdot \log_2(\frac{4}{14})\right) \approx 1.49$

t: examined target feature (color in the example)

K: number of possible values of the target feature $(K = |\{blue, gold, green\}| = 3$ in the example)

 $P(t=k) \in [0,1]$: probability that a random value in t equals the $k {\rm th}$ value in the set of possible values

s: logarithm base (we use s = 2 by convention)

Entropy - Formula

$$H(t) = -\sum_{k=1}^{K} (P(t=k) \cdot \log_{s}(P(t=k)))$$

 $H(color) = -(\frac{2}{5} \cdot \log_2(\frac{2}{5}) + \frac{0}{5} \cdot \log_2(\frac{0}{5}) + \frac{3}{5} \cdot \log_2(\frac{3}{5})) \approx 0.97$

Entropy - Formula

$$H(t) = -\sum_{k=1}^{K} (P(t=k) \cdot \log_{s}(P(t=k)))$$

 $H(color) = -(\frac{2}{5} \cdot \log_2(\frac{2}{5}) + \frac{0}{5} \cdot \log_2(\frac{0}{5}) + \frac{3}{5} \cdot \log_2(\frac{3}{5})) \approx 0.97$

$$(0, 0, 3)$$

$$H(color) = -(\frac{0}{3} \cdot \log_2(\frac{0}{3}) + \frac{0}{3} \cdot \log_2(\frac{0}{3}) + \frac{3}{3} \cdot \log_2(\frac{3}{3})) = 0$$

Suppose that we have *K* possible values (colors) and *N* instances (balls).

$$H(t) = -\sum_{k=1}^{K} (P(t=k) \cdot \log_s(P(t=k)))$$

What distribution of the *N* instances over the *K* <u>possible</u> values yields the lowest entropy?

Suppose that we have *K* <u>possible</u> values (colors) and *N* instances (balls).

$$H(t) = -\sum_{k=1}^{K} (P(t=k) \cdot \log_s(P(t=k)))$$

What distribution of the *N* instances over the *K* possible values yields the lowest entropy?

$$H(color) = -(1 \cdot log_2(1)) = 0$$

 \rightarrow all instances have the same value

Suppose that we have *K* possible values (colors) and *N* instances (balls).

What distribution of the *N* instances over the *K* <u>possible</u> values yields the highest entropy?

Suppose that we have *K* <u>possible</u> values (colors) and *N* instances (balls).

 $H(t) = -\sum_{k=1}^{K} (P(t=k) \cdot \log_s(P(t=k)))$

What distribution of the *N* instances over the *K* possible values yields the highest entropy?

 $H(color) = -\sum_{k=1}^{K} \left(\frac{1}{K} \cdot \log_2(\frac{1}{K})\right)$ $= -\left(K \cdot \frac{1}{K} \cdot \log_2(\frac{1}{K})\right)$ $= -\log_2(\frac{1}{K})$ $= \log_2(K)$

→ Even distribution over all possible values

Overall Entropy

Overall entropy H_W is the weighted average of the individual entropies:

$$H_W(t) = \sum_{node \in nodes} \left(\frac{|node|}{N} \cdot H^{node}(t)\right)$$

Overall Entropy

Overall entropy H_W is the weighted average of the individual entropies:

$$H_W(t) = \sum_{node \in nodes} \left(\frac{|node|}{N} \cdot H^{node}(t)\right)$$

Example: N = 72, K = 8

8 homogeneously colored balls: $H^{node}(color) = -(\frac{8}{8} \cdot \log_2(\frac{8}{8}) = 0$

Overall Entropy

Overall entropy H_W is the weighted average of the individual entropies:

$$H_W(t) = \sum_{node \in nodes} \left(\frac{|node|}{N} \cdot H^{node}(t)\right)$$

Example: N = 72, K = 8

Even distribution of 8 colors over 8 balls: $H^{node}(color) = -\sum_{k=1}^{8} \frac{1}{8} \cdot log_2(\frac{1}{8}) = \log_2(8) = 3$

Overall Entropy

Overall entropy H_W is the weighted average of the individual entropies:

$$H_W(t) = \sum_{node \in nodes} \left(\frac{|node|}{N} \cdot H^{node}(t)\right)$$

Overall Entropy

Overall entropy H_W is the weighted average of the individual entropies:

$$H_W(t) = \sum_{node \in nodes} \left(\frac{|node|}{N} \cdot H^{node}(t)\right)$$

$$H_W(color) = \frac{8}{72} \cdot 0 + \frac{8}{72} \cdot 3 = \frac{24}{72} \approx 0.33$$

Even distribution of 8 colors over 72 balls: $H_W(color) = \frac{72}{72} \cdot \left(-\sum_{k=1}^8 \left(\frac{9}{72} \cdot log_2(\frac{9}{72}) \right) \right) = \log_2(8) = 3$

Overall entropy H_W is the weighted average of the individual entropies:

$$H_W(t) = \sum_{node \in nodes} \left(\frac{|node|}{N} \cdot H^{node}(t)\right)$$

$$H_W(color) = \frac{8}{72} \cdot 0 + \frac{8}{72} \cdot 3 = \frac{24}{72} \approx 0.33$$

Information Gain

Information Gain

Information Gain - Example Revisited

Weather	Traffic	Night flight	Flight delayed
Cloudy	No	Yes	Yes
Cloudy	Yes	No	Yes
Cloudy	Yes	No	Yes
Clear	Yes	Yes	No
Clear	No	No	No
Clear	No	No	No

Information Gain - Example Revisited

 $\begin{aligned} H^{cloudy}(\text{delayed}) &= 0 \\ H^{clear}(\text{delayed}) &= 0 \end{aligned}$

H(delayed) = 1

No

Yes

Yes

Yes

No

No

Weather Traffic

Cloudy

Cloudy

Cloudy

Clear

Clear

Clear

ed) = 1			$H_W^{weather}(\text{delayed}) = 0$		
Night Flight flight delayed			Weather	Flight delayed	
Yes	Yes		Cloudy	Yes	
No	Yes		Cloudy	Yes	
No	Yes		Cloudy	Yes	
Yes	No		Clear	No	
No	No		Clear	No	
No	No		Clear	No	

Information Gain - Example Revisited

$H^{cloudy}(\text{delayed}) = 0$	
$H^{clear}(\text{delayed}) = 0$	

H(delayed) = 1

Weather	Traffic	Night flight	Flight delayed
Cloudy	No	Yes	Yes
Cloudy	Yes	No	Yes
Cloudy	Yes	No	Yes
Clear	Yes	Yes	No
Clear	No	No	No
Clear	No	No	No

$H_W^{weather}(\text{delayed}) = 0$			
Weather	Flight delayed		
Cloudy	Yes		
Cloudy	Yes		
Cloudy	Yes		
Clear	No		
Clear	No		
Clear	No		

 $H^{traffic_yes}(\text{delayed}) = 0.92$ $H^{traffic_no}(\text{delayed}) = 0.92$

H_W^{tra}	$\frac{ffic}{floc}(delayed) =$	0.92

Traffic	Flight delayed
No	Yes
Yes	Yes
Yes	Yes
Yes	No
No	No
No	No
$H^{cloudy}(\text{delayed}) = 0$	

$H^{clear}(\text{delayed}) = 0$	

H(delayed) =	= 1
--------------	-----

Weather	Traffic	Night flight	Flight delayed
Cloudy	No	Yes	Yes
Cloudy	Yes	No	Yes
Cloudy	Yes	No	Yes
Clear	Yes	Yes	No
Clear	No	No	No
Clear	No	No	No

$H_W^{weather}(\mathrm{de}$	layed) = 0
Weather	Flight delayed
Cloudy	Yes
Cloudy	Yes
Cloudy	Yes
Clear	No
Clear	No
Clear	No

 $H^{traffic_yes}(\text{delayed}) = 0.92$ $H^{traffic_no}(\text{delayed}) = 0.92$

 $H_W^{traffic}(\text{delayed}) = 0.92$

Traffic	Flight delayed
No	Yes
Yes	Yes
Yes	Yes
Yes	No
No	No
No	No

 $H^{night_yes}(\text{delayed}) = 0$ $H^{night_no}(\text{delayed}) = 1$

 $H_W^{night_flight}$ (delayed) ≈ 0.67

Flight delayed	Night flight
No	Yes
Yes	No
Yes	No
No	Yes
No	No
No	No

				$H^{cloudy}(\text{dela})$ $H^{clear}(\text{delay})$	$ \begin{array}{ll} \text{(yed)} = 0 & H^{traffic_yes}(\text{delayed}) = 0.92 & H^{night_yes}(\text{delayed}) = 0 \\ \text{(red)} = 0 & H^{traffic_no}(\text{delayed}) = 0.92 & H^{night_no}(\text{delayed}) = 0.92 \end{array} $				$\begin{aligned} \text{elayed}) &= 0\\ \text{layed}) &= 1 \end{aligned}$)	
	$H(\text{delayed}) = 1 \qquad \qquad H_W^{weather}(\text{delayed}) = 0 \qquad H_W^{traffic}(\text{delayed}) = 0.92 \qquad \qquad H_W^{night_flight}(\text{delayed}) = 0.92 \qquad \qquad H_W^{night_flight}($		delayed) \approx	0.67							
Weather	Traffic	Night flight	Flight delayed	Weather	Flight delayed		Traffic	Flight delayed	Night flight	Flight delayed	-
Cloudy	No	Yes	Yes	Cloudy	Yes		No	Yes	Yes	No	
		•••									

 $IG(weather) = H(delayed) - H_W^{weather}(delayed) = 1 - 0 = 1$

				$H^{cloudy}(\text{dela})$ $H^{clear}(\text{delay})$		$H^{tra}_{H^{tra}}$	fic_yes (de) fic_no (de)	layed) = 0.9 $ayed) = 0.92$	$\begin{array}{ccc} 2 & H^n \\ 2 & H^n \end{array}$	$de^{ight_yes}(de)$	$\begin{aligned} \text{elayed}) &= 0\\ \text{layed}) &= 1 \end{aligned}$
	H(delaye)	ed) = 1		$H_W^{weather}(\mathrm{de})$	layed) = 0	H_W^{tra}	ffic (delaye	ed) = 0.92	H_W^n	$_{V}^{vight_flight}(e$	delayed) ≈ 0.67
Weather	Traffic	Night flight	Flight delayed	Weather	Flight delayed		Traffic	Flight delayed		Night flight	Flight delayed
Cloudy	No	Yes	Yes	Cloudy	Yes		No	Yes		Yes	Νο

 $IG(weather) = H(delayed) - H_W^{weather}(delayed) = 1 - 0 = 1$

 $IG(\textit{traffic}) = H(\textit{delayed}) - H_W^{\textit{traffic}}(\textit{delayed}) = 1 - 0.92 = 0.08$

				$H^{cloudy}(\text{dela})$ $H^{clear}(\text{delay})$	(red) = 0 $ (red) = 0$	H^{tra} H^{tra}	$\frac{ffic_yes}{ffic_no}$ (del	layed) = 0.9 $ayed) = 0.92$	$\begin{array}{ccc} 2 & H^{\prime} \\ 2 & H^{\prime} \end{array}$	$hight_yes(\mathrm{de})$	elayed) = 0 $layed) = 1$)
	H(delaye)	ed) = 1		$H_W^{weather}(de)$	layed) = 0	H_W^{tra}	ffic (delaye	ed) = 0.92	H_V'	$_{V}^{night_flight}(e$	delayed) \approx	0.67
Weather	Traffic	Night flight	Flight delayed	Weather	Flight delayed		Traffic	Flight delayed		Night flight	Flight delayed	-
Cloudy	No	Yes	Yes	Cloudy	Yes		No	Yes		Yes	No	
		•••										

 $IG(weather) = H(delayed) - H_W^{weather}(delayed) = 1 - 0 = 1$

 $IG(traffic) = H(delayed) - H_W^{traffic}(delayed) = 1 - 0.92 = 0.08$

 $IG(\textit{night_flight}) = H(\textit{delayed}) - H_W^{\textit{night_flight}}(\textit{delayed}) = 1 - 0.67 = 0.33$

				$H^{cloudy}(\text{delayed}) = 0 \qquad H^{traffic_yes}(\text{delayed}) = 0 \qquad H^{traffic_no}(\text{delayed}) = 0$			$\begin{aligned} \text{layed}) &= 0, \\ \text{ayed}) &= 0.2 \end{aligned}$.92 H^{i} 92 H^{i}	$night_yes$ (den $night_no$ (del	$\begin{aligned} \text{layed}) &= 0\\ \text{ayed}) &= 1 \end{aligned}$		
$H^{cloudy}(delayed) = 0 \qquad H^{traffic_yes}(delayed) = 0.92 \qquad H^{night_yes}(delayed) = 0 \\ H^{clear}(delayed) = 0 \qquad H^{traffic_yes}(delayed) = 0.92 \qquad H^{night_yes}(delayed) = 1 \\ \hline H(delayed) = 1 \qquad H^{weather}(delayed) = 0 \\ \hline Weather \ Traffic \ flight \ delayed \\ \hline Cloudy \ No \ Yes \ Yes \\ \dots \ \dots$								0.67				
Weather	Traffic	Night flight	Flight delayed	Weather	Flight delayed		Traffic	Flight delayed		Night flight	Flight delayed	
Cloudy	No	Yes	Yes	Cloudy	Yes		No	Yes		Yes	No	
											•••	
				veather (11	7) 1	0 1						
IG(weath)	ner) = F	H (delay	$(ed) - H_W^a$	V_V	(ed) = 1 -	-0 = 1		g	ood			
IG(traffi	c) = H((delaye	$d) - H_W^{traj}$	$f^{fic}(delayed)$	= 1 - 0.	92 = 0.0	08	v	vorst			
IG(night	_flight)	=H(d	elayed) –	$H_W^{night_flight}$	(delayed)) = 1 - 1	0.67 = 0).33 n	ot so g	ood		

ID3 (Iterative Dichotomiser 3) - Key Idea

Approach

- 1. For each feature: calculate the resulting entropy splitting the dataset \mathcal{X} using the selected feature
- 2. Split the set \mathcal{X} into subsets using the feature for which the resulting entropy (after splitting) is minimal (equivalently, information gain is maximum)
- 3. Create a decision tree node based on that feature
- 4. Recurse on subsets using remaining features (until stopping criteria are reached)

When to Stop?

Three stopping criteria

- When all of the instances have the same classification (label = consensus value)
- When there are no features left (label = majority value)
- When the dataset is empty (label = majority parent)

Algorithm

ID3 algorithm:

- 1. if all the instances in X have the same classification
 - (a) **return** a decision tree with one leaf node with consensus value as a label
- 2. else if there are no features left
 - (a) **return** a decision tree with one leaf node with majority value as a label
- 3. else if the dataset is empty
 - (a) **return** a decision tree with one leaf node with majority parent value as a label

4. **else**

- (a) pick a feature that maximizes information gain
- (b) once a feature is picked along a path from the root, it cannot be used again
- (c) create subproblems based on the selected feature

three stopping criteria

recursively constructing the tree ID3 Algorithm

Example

 $H(\text{Customer}) = -(\frac{2}{7} \cdot \log_2(\frac{2}{7}) + \frac{3}{7} \cdot \log_2(\frac{3}{7}) + \frac{2}{7} \cdot \log_2(\frac{2}{7})) = 1.5567$

ID	Insurance	Education	Employment	Customer
1	Yes	Bachelor	Employed	Basic
2	Yes	High school	Unemployed	Premium
3	Yes	Bachelor	Self-employed	Premium
4	No	Bachelor	Self-employed	Basic
5	No	Master	Employed	Economy
6	Yes	Bachelor	Retired	Economy
7	Yes	Bachelor	Employed	Premium

ID3 Algorithm	ID	Insurance	Education	Employment	Customer
	1	Yes	Bachelor	Employed	Basic
Example	2	Yes	High school	Unemployed	Premium
	3	Yes	Bachelor	Self-employed	Premium
H(Customer) = 1.5567	4	No	Bachelor	Self-employed	Basic
(Cubtomer) = 1.0001	5	No	Master	Employed	Economy
	6	Yes	Bachelor	Retired	Economy
	7	Yes	High school	Employed	Premium

Split by feature	Possible Values	Instances	Entropy	Overall Entropy	Information Gain	
_	No	4, 5	1	1 765	1 5567 1 265 - 0 2017	
Insurance	Yes	1, 2, 3, 6, 7	1.3710	1.205	1.5507 - 1.205 - 0.2917	
	High school	2, 7	0			
Education	Master	5	0	0.8571	1.5567 – 0.8571 = 0.6996	
	Bachelor	1, <mark>3</mark> , 4, 6	1.5			
Employment	Employed	1, 5, 7	1.5850			
	Unemployed	2	0	0.0650	1 5567 0 0650- 0 5017	
	Self-employed	<mark>3,</mark> 4	1	0.9030	1.5507 – 0.9650= 0.5917	
	Retired	6	0			

	ID	Insurance	Education	Employment	Customer
nnlo	1	Yes	Bachelor	Employed	Basic
	2	Yes	High school	Unemployed	Premium
	3	Yes	Bachelor	Self-employed	Premium
= 1.5567	4	No	Bachelor	Self-employed	Basic
1.0001	5	No	Master	Employed	Economy
	6	Yes	Bachelor	Retired	Economy
	7	Yes	High school	Employed	Premium

Split by feature	Possible Values	Instances	Entropy	Overall Entropy	Information Gain	
Insurance	No	4, 5	1	1.265	1 FF67 1 26F - 0 2017	_
	Yes	1, 2, 3, 6, 7	1.3710		1.5567 - 1.265 = 0.2917	
	High school	2, 7	0			
Education	Master	5	0	0.8571	1.5567 – 0.8571 = 0.6996	
	Bachelor	1, <mark>3</mark> , 4, 6	1.5			
Employment	Employed	1, 5, 7	1.5850	0.9650		
	Unemployed	2	0		1.5567 – 0.9650= 0.5917	
	Self-employed	3, 4	1			
	Retired	6	0			

ID3 Algorithm

Alternative Information Gain Notions

- Information gain aims to measure the improvement in purity / predictability / compressibility
- Example approaches:
 - Entropy-based information gain (IG)
 - Information gain ratio (GR)
 - Gini index (Gini)

Alternative Information Gain Notions

- Information gain aims to measure the improvement in purity / predictability / compressibility
- Example approaches:
 - Entropy-based information gain (IG)
 - Information gain ratio (GR)
 - Gini index (Gini)

Entropy of target feature t before splitting $H(t) = -\sum_{k=1}^{K} (P(t = k) \cdot \log_s(P(t = k)))$ $H_W(t) = \sum_{node \in nodes(d)} (\frac{|node|}{N} \cdot H_{node}(t))$ Weighted entropy of target feature t after splitting based on d

$$IG(d) = H(t) - H_W^d(t)$$

(seen before)

Alternative Information Gain Notions

- Information gain aims to measure the improvement in purity / predictability / compressibility
- Example approaches:
 - Entropy-based information gain (IG)
 - Information gain ratio (GR)
 - Gini index (Gini)

Information Gain Ratio

- Entropy-based information gain favors features with many different values (split in many subsets decreases entropy)
- Information gain ratio addresses this issue:

 \rightarrow we can think of it as making an absolute value relative

Information Gain Ratio - Example

split based on feature d

split based on feature d'

IG(d) = 0.46

Information Gain Ratio - Example

 $GR(d) = \frac{0.46}{-(\frac{4}{6} \cdot \log_2(\frac{4}{6}) + \frac{2}{6} \cdot \log_2(\frac{2}{6}))}$

 $=\frac{0.46}{0.92}=0.5$

split based on feature d'

IG(d') = 0.67

$$GR(d') = \frac{0.67}{-\left(\frac{2}{6} \cdot \log_2\left(\frac{2}{6}\right) + \frac{2}{6} \cdot \log_2\left(\frac{2}{6}\right) + \frac{1}{6} \cdot \log_2\left(\frac{1}{6}\right) + \frac{1}{6} \cdot \log_2\left(\frac{1}{6}\right)\right)} = \frac{0.67}{1.92} = 0.35$$

$$GR(d) = \frac{IG(d)}{H(d)} = \frac{H(t) - H_W^d(t)}{-\sum_{k=1}^{K} (P(d=k) \cdot \log_2(P(d=k)))}$$

Information Gain Ratio - Example

split based on feature d'

IG(d') = 0.67

$$GR(d') = \frac{0.67}{-\left(\frac{2}{6} \cdot \log_2\left(\frac{2}{6}\right) + \frac{2}{6} \cdot \log_2\left(\frac{2}{6}\right) + \frac{1}{6} \cdot \log_2\left(\frac{1}{6}\right) + \frac{1}{6} \cdot \log_2\left(\frac{1}{6}\right)\right)} = \frac{0.67}{1.92} = 0.35$$

$$GR(d) = \frac{IG(d)}{H(d)} = \frac{H(t) - H_W^d(t)}{-\sum_{k=1}^K (P(d=k) \cdot \log_2(P(d=k)))}$$

Gini Index

- An alternative measure of impurity
- Expected misclassification rate when guessing based on the observed distribution

- With probability P(t = k) we guess that *class* equals the *k*th possible value and with probability P(t = k) this guess is correct
- Can be seen as the probability of guessing the wrong label

Gini Index - Example

$$Gini(t) = 1 - \sum_{k=1}^{K} P(t=k)^2$$

Gini Index - Example

split based on feature d

split based on feature *d*'

$$Gini(t) = 1 - \sum_{k=1}^{K} P(t=k)^2$$

Gini Index - Example

split based on feature d'

 $Gini_W(color) = \frac{4}{6} \cdot 0.375 = 0.25$ $IG_{Gini}(d) = 0.5 - 0.25 = 0.25$

 $Gini_W(color) = \frac{2}{6} \cdot 0.5 = 0.166$ $IG_{Gini}(d') = 0.5 - 0.166 = 0.33$

compute weighted average and information gain as before

$$Gini(t) = 1 - \sum_{k=1}^{K} P(t=k)^2$$

Comparison

 $IG_{Entropy}(d) = 0.4591$ GR(d) = 0.5 $IG_{Gini}(d) = 0.25$

Entropy-based information gain Information gain ratio Gini-based information gain ratio $IG_{Entropy}(d') = 0.6667$ GR(d') = 0.34 $IG_{Gini}(d') = 0.33$

Comparison

 $IG_{Entropy}(d) = 0.4591$ GR(d) = 0.5 $IG_{Gini}(d) = 0.25$

Entropy-based information gain Information gain ratio Gini-based information gain ratio $IG_{Entropy}(d') = 0.6667$ GR(d') = 0.34 $IG_{Gini}(d') = 0.33$

Pruning Decision Trees

- Possible problems:
 - Decision tree is overfitting the data
 - Decision tree is too complex or too deep
- Two solution directions:
 - Pre-pruning (early stopping/forward)
 - Post-pruning (reduced error/backward)
- To generalize and avoid overfitting

Pre-pruning

- Stop creating subtrees and use majority vote to determine the label
- Many possible stopping criteria:
 - lower bound for number of instances
 - lower bound for information gain

— ...

May create trees that are not consistent with respect to the data

Pre-pruning

Pre-pruning

efficient, but we may miss strong dependencies at lower levels of trees
Post-pruning

• First, build the whole decision tree; then cut off branches that do not add much

• Common approach is to split the data into a training set and a validation/test set

• Measure the performance of splits based on a validation/test set

Post-pruning

- Decision tree learned on a training set
- Numbers indicate misclassifications based on a validation set

Post-pruning

Less efficient, but based on the complete tree

Idea

- Rather than creating a single decision tree, we aim to create a set of trees (called a model ensemble)
- Models should complement each other
- Different models can "vote" on the label (votes may be weighted)
- Multiple trees may give different answers (select the most frequent value or the average)
- Many variations of the same idea...

Boosting

Correct iteratively

- Iteratively update the data set based on misclassifications
- Instances that are wrongly classified get a higher weight when learning the next model
- Each iteration new models are added to the ensemble

Boosting - Example

Boosting - Example

Boosting - Example

 $\bullet \bullet \bullet$

Bagging

Split data upfront

- Each model is based on a random sample of the data set
- Avoids model depending on a specific sample of the data set (learning decision trees may be very sensitive to small variations)
- Many variants (e.g. remove some instances and duplicate others)

Bagging - Example

Subspace Sampling

- Each model is based on a random set of descriptive features
- More efficient and less likely to be overfitting when focusing on just a few features

Subspace sampling

Random Forest

Combine of bagging and subspace sampling

- Split data twice
 - random sample of instances

(bagging)

- random set of descriptive features (subspace sampling)
- Find a model for each subset of data created this way

Random Forest

Low

Medium

High

Low

High High Low Medium High Low

Dealing with Continuous Variables

- Thus far we assumed features were categorical •
- We can use binning to make continuous features catego •

orical	continuous target feature
f _D	class
59.99	5043
50.00	4598
39.50	3248

			features		
	f ₁	f ₂	•••	f _D	class
Ses	high	88		59.99	5043
stanc	high	76		50.00	4598
SUI	low	32		39.50	3248
	low	89	continuous	49.99	5466
	high	21	descriptive features	59.99	7682

Continuous Descriptive Features

- Challenge: determine suitable boundaries (infinite number of thresholds is possible)
- Idea:
 - sort instances based on the continuous descriptive feature
 - look for changes in target feature labels
- Change points are candidate thresholds
- Select the threshold with the highest information gain

ID	Insurance	Income	Employment	Customer
1	Yes	3500	Employed	Basic
2	Yes	0	Unemployed	Premium
3	Yes	1000	Self-employed	Premium
4	No	2000	Self-employed	Basic
5	No	5000	Employed	Economy
6	Yes	5100	Retired	Economy
7	Yes	3000	Employed	Premium

sort

ID	Insurance	Income	Employment	Customer
2	Yes	0	Unemployed	Premium
3	Yes	1000	Self-employed	Premium
4	No	2000	Self-employed	Basic
7	Yes	3000	Employed	Premium
1	Yes	3500	Employed	Basic
5	No	5000	Employed	Economy
6	Yes	5100	Retired	Economy

sort

ID	Insurance	Income	Employment	Customer
2	Yes	0	Unemployed	Premium
3	Yes	1000	Self-employed	Premium
4	No	2000	Self-employed	Basic
7	Yes	3000	Employed	Premium
1	Yes	3500	Employed	Basic
5	No	5000	Employed	Economy
6	Yes	5100	Retired	Economy

Thresholds: middle values of continuous feature in between changed target features

ID	Insurance	Income	Employment	Customer
2	Yes	0	Unemployed	Premium
3	Yes	1000	Self-employed	Premium
4	No	2000	Self-employed	Basic
7	Yes	3000	Employed	Premium
1	Yes	3500	Employed	Basic
5	No	5000	Employed	Economy
6	Yes	5100	Retired	Economy

ID	Insurance	Income	Employment	Customer
2	Yes	0	Unemployed	Premium
3	Yes 1500	1000	Self-employed	Premium
4	No 2500	2000	Self-employed	Basic
7	Yes 3250	3000	Employed	Premium
1	Yes 4250	3500	Employed	Basic
5	No	5000	Employed	Economy
6	Yes	5100	Retired	Economy
	Four candio threshold	date ds		

Thresholds: middle values of continuous feature in between changed target features

Threshold	Instances	Partition Entropy	Overall Entropy	Information Gain
≥1500	2, 3	0	1 0971	0 1081
	1, 4, 5, 6, <mark>7</mark>	1.5219	1.0071	Compute
≥2500	2, 3, 4	0.9183	1.2507	
	1, 5, 6, <mark>7</mark>	1.5		0.500
≥3250	2, 3, 4, 7	0.8113	0.8572 0.6995	0.000
	1, 5, 6	0.9183		0.6995
≥4250	1, 2, 3, 4, 7	0.9710		0.0634
	5, 6	0	0.6935	0.8631

Threshold	Instances	Partition Entropy	Overall Entropy	Information Gain
≥1500	2, 3	0	1 0971	0 1091
	1, 4, 5, 6, <mark>7</mark>	1.5219	1.0871	0.1981
≥2500	2, 3, 4	0.9183	1.2507	0.206
	1, 5, 6, <mark>7</mark>	1.5		0.300
≥3250	2, 3, 4, 7	0.8113	0.8572	0 0005
	1, 5, 6	0.9183		0.0995
≥4250	1, 2, 3, 4, 7	0.9710	0.6935	0.0001
	5, 6	0		0.8631 best

Continuous Target Features

- Goal: find descriptive features that 'nicely' partition the target feature axis
- Impurity = Variance within a partition
- We cannot use the target feature itself
- We 'color the dots' based on a selected descriptive feature

Continuous Target Features

Good Classification

- Three leaves (purple, green, blue show mapping based on descriptive feature)
- Impurity as measure of quality: variance within a leaf of the decision tree

Reasonable Classification

Variance within Leaf 1 and Leaf 3 increased with respect to the 'good classification'

Continuous Target Features

Poor Classification

Variance within all leaves is high compared to the 'good classification'

Impurity

Variance in a Node/Leaf

Adapting the ID3 Algorithm

ID3 algorithm:

- 1. if all the instances in the dataset have the same classification
 - (a) **return** a decision tree with one leaf node with consensus value as a label
- 2. else if there are no features left
 - (a) **return** a decision tree with one leaf node with majority value as a label
- 3. else if the dataset is empty
 - (a) **return** a decision tree with one leaf node with majority parent value as a label

4. **else**

- (a) pick a feature that lowers the weighted variance most within the subtrees
- (b) once a feature is picked along a path from the root, it cannot be used again
- (c) create subproblems based on the selected feature

Stopping criteria (add pruning strategies to avoid overfitting)

Instead of maximizing information gain Conclusion

Note that we presented a toolbox! (Not one specific algorithm.)

Many variations are possible by combining ideas

There is no best solution, it all depends on your data

Performance on unseen test data is what counts

Avoid overfitting the data!

Split data into training and test data

Topics such as accuracy and confusion matrix be discussed later

Decision Trees - Conclusion

- Supervised learning aims to explain the target feature in terms of descriptive features
- Decision trees are easy to understand and interpret
- Focus on categorical variables but extensions to continuous data are possible
- Many variations based on the basic ID3 algorithm
 - Pruning
 - Ensembles
 - Information gain definitions
 - ...

Next: Clustering techniques