

# Elements of Machine Learning & Data Science

# Clustering

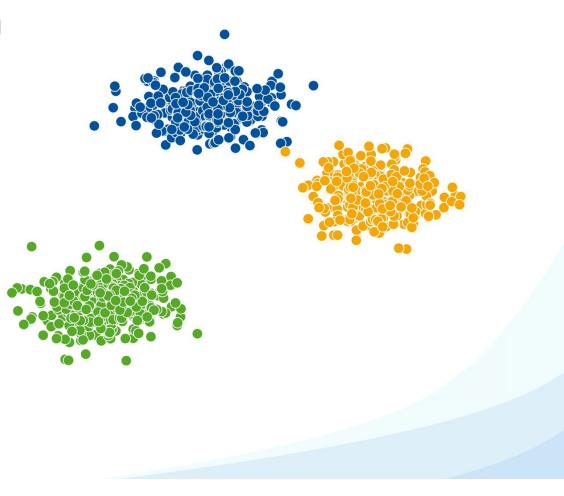
Lecture 8

Prof. Wil van der Aalst

Marco Pegoraro, M.Sc. Christopher Schwanen, M.Sc. Tsunghao Huang, M.Sc.

#### Clustering

- 1. Introduction to Unsupervised Learning
- 2. Introduction to Clustering
- 3. Similarity and Dissimilarity
- 4. K-means and K-medoids
- 5. Agglomerative Clustering
- 6. Density-Based (DBSCAN)
- 7. Closing







## **Unsupervised Learning**

#### **Unsupervised Learning**

- Obtain a model that represents the data...
- ...without a target variable or label

| _ | price | calories | vegetarian | spicy | bestseller |
|---|-------|----------|------------|-------|------------|
|   | 12.99 | 800      | Yes        | No    | Yes        |
|   | 9.99  | 600      | Yes        | Yes   | No         |
|   | 14.99 | 1000     | No         | Yes   | No         |
|   | 11.99 | 700      | No         | No    | Yes        |
|   | 8.99  | 500      | Yes        | No    | No         |

#### features

descriptive features

#### **Unsupervised Learning**

 Recall from intro lecture: labeled vs unlabeled

| -          | price | calories | vegetarian | spicy | bestseller |
|------------|-------|----------|------------|-------|------------|
| - es       | 12.99 | 800      | Yes        | No    | Yes        |
| лс         | 9.99  | 600      | Yes        | Yes   | No         |
| ita<br>ita | 14.99 | 1000     | No         | Yes   | No         |
| SUI        | 11.99 | 700      | No         | No    | Yes        |
|            | 8.99  | 500      | Yes        | No    | No         |

features

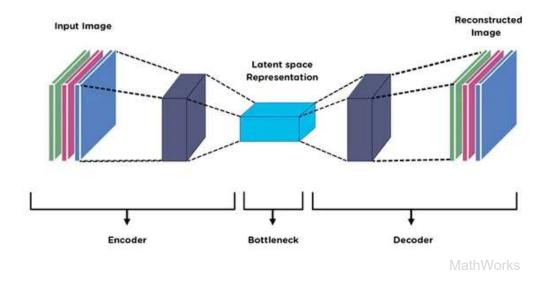
|             |       |          | <u> </u>   |       |            |                |
|-------------|-------|----------|------------|-------|------------|----------------|
|             | price | calories | vegetarian | spicy | bestseller |                |
| n           | 12.99 | 800      | •          |       |            | target feature |
| 0<br>0<br>0 |       |          | Yes        | No    | Yes        | (class label)  |
| מור         | 9.99  | 600      | Yes        | Yes   | No         |                |
|             | 14.99 | 1000     | No         | Yes   | No         |                |
| =           | 11.99 | 700      | No         | No    | Yes        |                |
|             | 8.99  | 500      | Yes        | No    | No         |                |

features

#### **Unsupervised Learning**

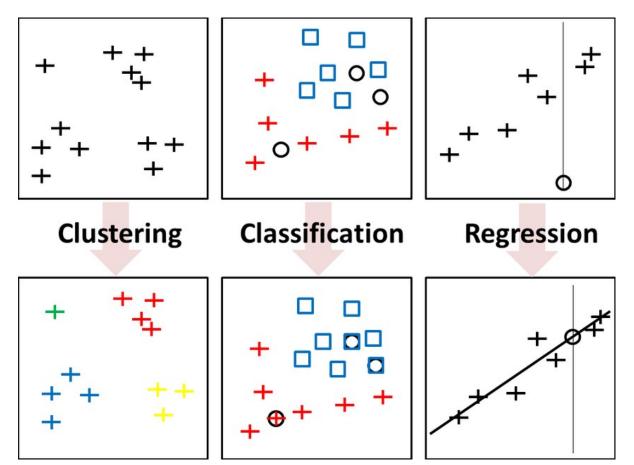
- Obtain a model that represents the data...
- ...without a target variable or label
- Why?
  - When a target feature is hard to identify
  - Maybe we are not sure something is even there!
  - To search for patterns in the data
  - To learn a representation

#### A complex example: autoencoding



Autoencoding: automatically finding a semantics-rich representation of the data in a latent vector space (with the desired dimensionality)

#### **Unsupervised vs. Supervised Learning: Models**



In unsupervised learning, the model typically explains relationships between instances

In supervised learning, the model typically explains the values of one or more features

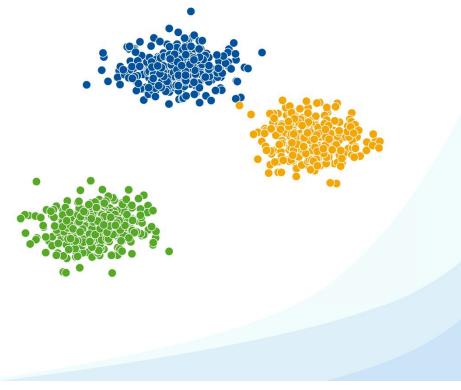
## **Unsupervised Learning**

- Obtain a model that represents the data...
- ...without a target variable or label
- Challenges:
  - The ground truth might be hard to identify
  - This meaning that designing an evaluation can be very hard

## Clustering

#### **Clustering: motivation**

- Find clusters (groups of instances) such that:
  - Instances within the cluster are similar
  - Instances in different clusters are dissimilar
- Applications:
  - To find unexpected groups
  - To do data preprocessing e.g., discover (process) models for each cluster
  - Unlabeled data is cheaper than labeled data!



#### **Clustering Use Cases**

Spotify



| User   | Song 1 | Song 2 | Song 3 |  |
|--------|--------|--------|--------|--|
| User 1 | 4      | 0      | 5      |  |
| User 2 | 0      | 1      | 0      |  |
| User 3 | 3      | 2      | 9      |  |
|        | •••    |        |        |  |

- 456 million active listeners
- 195 million premium subscribers
- Over 80 million songs

(As of January 2023)

#### **Clustering Use Cases**

Amazon



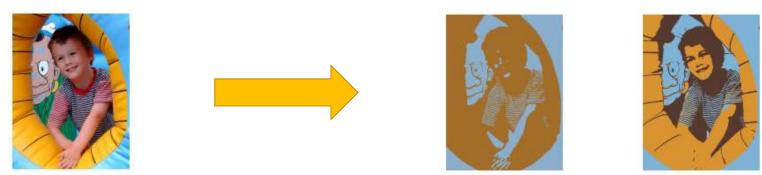
| Customer   | Prod 1 | Prod 2 | Prod 3 | ••• |
|------------|--------|--------|--------|-----|
| Customer 1 | 1      | 0      | 0      |     |
| Customer 2 | 0      | 0      | 1      |     |
| Customer 3 | 1      | 1      | 0      |     |
|            |        |        |        |     |

- 300 million active users
- Over 2 million third-party seller businesses
- Around 350 million items on the marketplace

(As of January 2023)

#### **Clustering Use Cases**

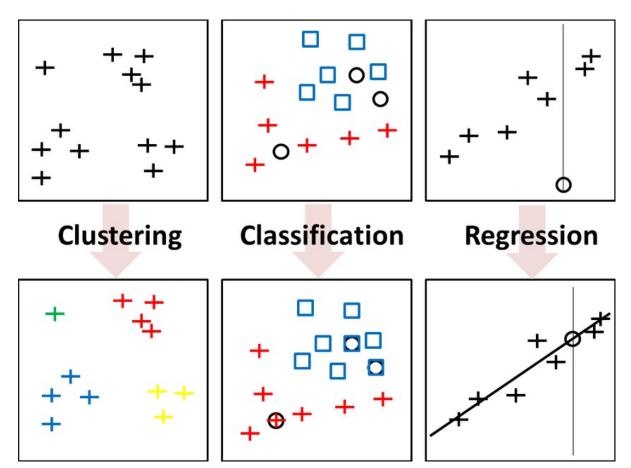
Image Segmentation



C. Bishop, 2006

- Goal: finding regions in a picture with homogeneous appearance
- Applications in computer graphics, e.g. subject detection, edge detection

#### **Clustering, classification and regression**



F. Nielsen, Parallel Linear Algebra, 2016

Do not mix up classification with clustering!

When doing classification, we have a training set of correctly classified instances.

When doing clustering, we do not (usually)

#### **Clustering Approaches**

- Partitioning methods (split into subsets)
  - Centroid-based (e.g., k-means)
  - Medoids-based (e.g., k-medoids)
- Hierarchical methods (build dendrogram)
  - Agglomerative (bottom-up)
  - Divisive (top-down)
- Density-based methods (e.g., **DBSCAN**)
- Grid-based methods

#### **Similarity / Dissimilarity**

Goal: instances within a cluster are similar, instances in different clusters are dissimilar

$$\mathbf{x}_{\mathbf{i}} = (x_{i1}, x_{i2}, \dots, x_{iD}) \iff \mathbf{x}_{\mathbf{j}} = (x_{j1}, x_{j2}, \dots, x_{jD})$$

**Similarity** (or proximity)

- Numerical measure of how alike two instances
   are
- Higher when instances are more alike
- Often falls in the range [0, 1]

**Dissimilarity** (or distance)

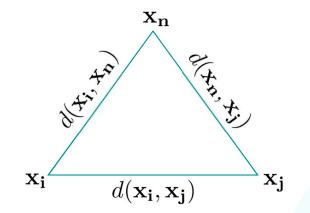
- Numerical measure of how different two instances are
- Lower when instances are more alike
- Minimum dissimilarity is often 0
- Upper limit varies



#### **Metric Space Characteristics**

 $\mathbf{x}_{\mathbf{i}} = (x_{i1}, x_{i2}, \dots, x_{iD}) \iff \mathbf{x}_{\mathbf{j}} = (x_{j1}, x_{j2}, \dots, x_{jD})$ 

- Non-negativity distance is a non-negative number  $d(\mathbf{x_i}, \mathbf{x_j}) \ge 0$
- Identity of indiscernibles the distance of an object to itself is 0  $d(\mathbf{x_i}, \mathbf{x_i}) = 0$
- Symmetry distance is a symmetric function  $d({\bf x_i},{\bf x_j})=d({\bf x_j},{\bf x_i})$
- Triangle inequality going directly from object to object in space is no more than going through any other object  $d(\mathbf{x_i}, \mathbf{x_i}) \le d(\mathbf{x_i}, \mathbf{x_n}) + d(\mathbf{x_n}, \mathbf{x_i})$



## **Examples of Similarity / Dissimilarity Measures**

- Binary/Nominal features:
  - Simple matching coefficient
  - Jaccard similarity coefficient
- Continuous features:
  - Euclidean distance  $d(\mathbf{x_i}, \mathbf{x_j}) = \sqrt{(x_{i1} x_{j1})^2 + (x_{i2} x_{j2})^2 + \dots + (x_{iD} x_{jD})^2}$
  - Manhattan distance  $d(\mathbf{x_i}, \mathbf{x_j}) = |x_{i1} x_{j1}| + |x_{i2} x_{j2}| + \dots + |x_{iD} x_{jD}|$
  - Minkowski distance (generalization)
  - Cosine similarity (non-metric measure)

#### **Binary symmetric: Simple matching distance**

- Assumes no clear asymmetry between group 0 and 1
- Example: two right-handed persons are as similar as two left-handed persons

|              | <i>y</i> = 1 | <i>y</i> = 0 |
|--------------|--------------|--------------|
| <i>x</i> = 1 | а            | b            |
| x = 0        | С            | d            |

$$SMD(x, y) = \frac{b+c}{a+b+c+d}$$

- a = number of attributes where x and y are both 1
- b = number of attributes where x is 1 and y is 0
- c = number of attributes where x is 0 and y is 1
- d = number of attributes where x and y are both 0

#### **Binary asymmetric: Jaccard distance**

- Asymmetry between group 0 and 1
- Example: two persons that won a Turing Award are more similar than two people without a Turing Award

|              | <i>y</i> = 1 | y = 0 |
|--------------|--------------|-------|
| <i>x</i> = 1 | а            | b     |
| x = 0        | С            | d     |

$$d_J(i,j) = \frac{b+c}{a+b+c}$$

- a = number of attributes where x and y are both 1
- b = number of attributes where x is 1 and y is 0
- c = number of attributes where x is 0 and y is 1
- d = number of attributes where x and y are both 0

#### Nominal: Simple matching distance

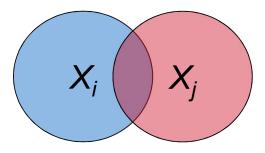
- *mm*: total number of variables where objects *i* and *j* mismatch
- *p*: total number of variables

$$SMD(i,j) = \frac{mm}{p}$$

• Simple matching coefficient: SMC = 1 - SMD

## **Nominal: Jaccard Similarity Coefficient**

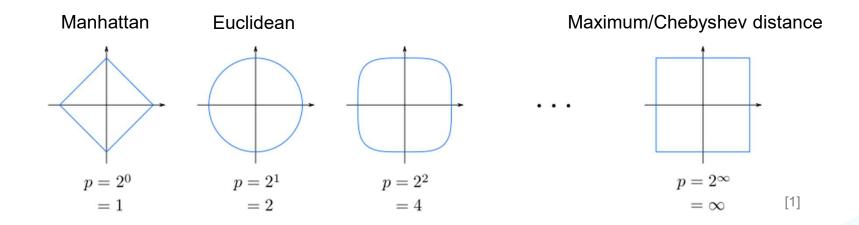
- Assumes instances are represented by sets
- Jaccard similarity between two sets  $X_i$  and  $X_j$  $J(X_i, X_j) = \frac{|X_i \cap X_j|}{|X_i \cup X_j|}$
- Jaccard distance between two sets  $X_i$  and  $X_j$  $d_J(X_i, X_j) = \frac{|X_i \cup X_j| - |X_i \cap X_j|}{|X_i \cup X_j|} = 1 - J(X_i, X_j)$
- Jaccard distance is a metric, i.e., distance is non-negative, distance to itself is zero, symmetric, and satisfies the triangle inequality
- Used for comparing item sets (e.g., products ordered, words appearing in documents, courses taken, and songs played)



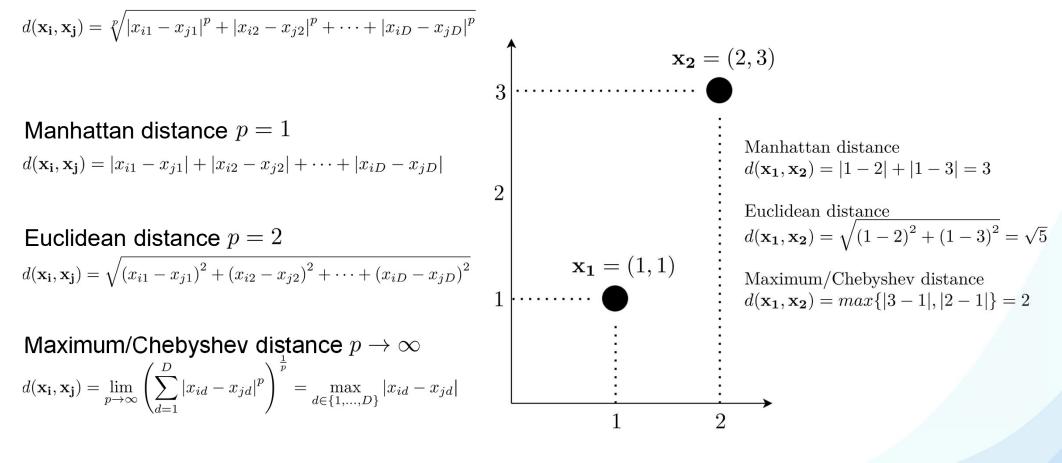
#### Minkowski Distance (Metric)

Generalization of Manhattan and Euclidean distance to any natural dimension  $p \ge 1$  (also called  $L^p$  norm)

$$d(\mathbf{x_i}, \mathbf{x_j}) = \sqrt[p]{|x_{i1} - x_{j1}|^p} + |x_{i2} - x_{j2}|^p + \dots + |x_{iD} - x_{jD}|^p$$

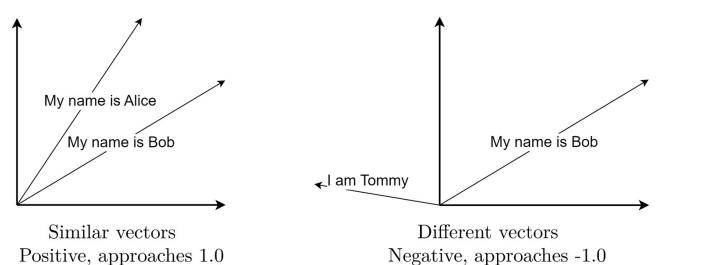


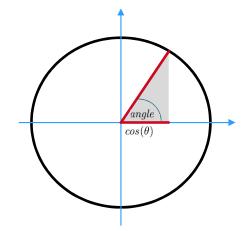
#### Minkowski Distance – Examples



#### **Cosine Similarity (Non-Metric)**

- Cosine similarity between two vectors  $\mathbf{v}$  and  $\mathbf{w}$  $S_C(\mathbf{x_i}, \mathbf{x_j}) = cos(\theta) = \frac{\mathbf{x_i} \cdot \mathbf{x_j}}{\|\mathbf{x_i}\| \|\mathbf{x_j}\|}$
- Used for sparse data (focus on angle rather than distance)
- Often used for comparing representations of textual data





| angle | cos(θ)  |
|-------|---------|
| 0°    | 1.0000  |
| 45°   | 0.7071  |
| 90°   | 0.0000  |
| 135°  | -0.7071 |
| 180°  | -1.0000 |
| 270°  | 0.0000  |
| 360°  | 1.0000  |

#### **Mixing Different Types of Features**

- Commonly used approach normalize all features ranges to [0, 1]
- One can give different weights to different features (i.e., distances are not the same in all dimensions)
- One can exclude features, because they would lead to obvious clusters (providing no insights)

#### K-means – Idea

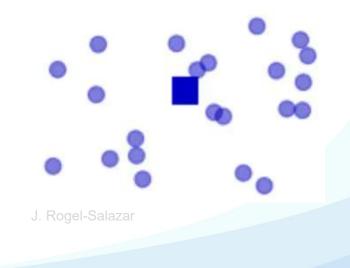
- Let's start with very strong assumptions
  - And therefore, a simpler problem
- What if we could represent a cluster with a single point in space?
- Then, grouping the instances in clusters would be very easy:
- Given an instance, find the closest representative, and assign the corresponding cluster

#### K-means – Idea

• Let's consider the opposite problem:

From the set of instances that we assume to belong to a cluster, how do we find this representative?

- A natural choice is to pick the point at the geometric center of the instances
- Or, equivalently, the center of the smallest sphere that contains all the instances
  - (given a certain distance metric)
- Also easy!
- Let's call this representative a centroid



#### K-means – Idea

- But then...
  - Finding the instances in a cluster given its centroid is easy
  - Finding a centroid given the instances in its cluster is also easy
  - But we have neither!
  - A chicken and egg problem!

#### K-means – Idea

- But then...
  - Finding the instances in a cluster given its centroid is easy
  - Finding a centroid given the instances in its cluster is also easy
  - But we have neither!
  - A chicken and egg problem
- Solution: we start with random points in space as centroids, and we iteratively refine

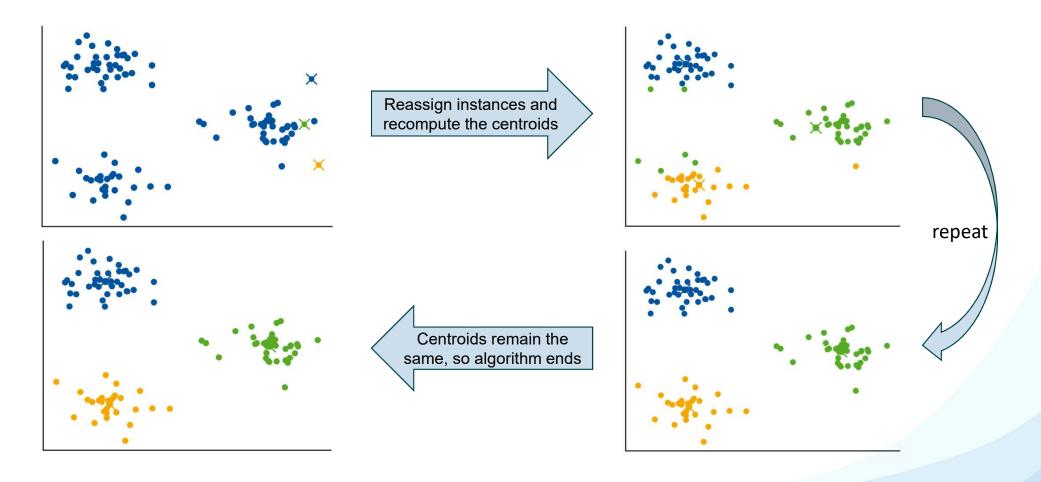
#### **K-means**

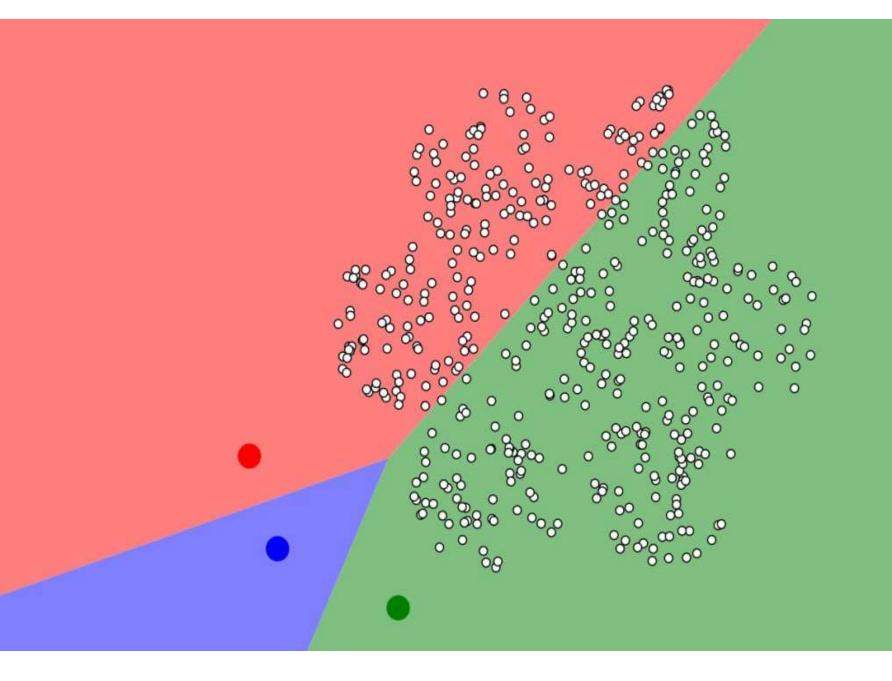
- Algorithm for clustering / partitioning data
- Each cluster's center (the **centroid**) is represented by the mean value of the instances (points) in the cluster
- Simple and fast to compute

#### K-means algorithm:

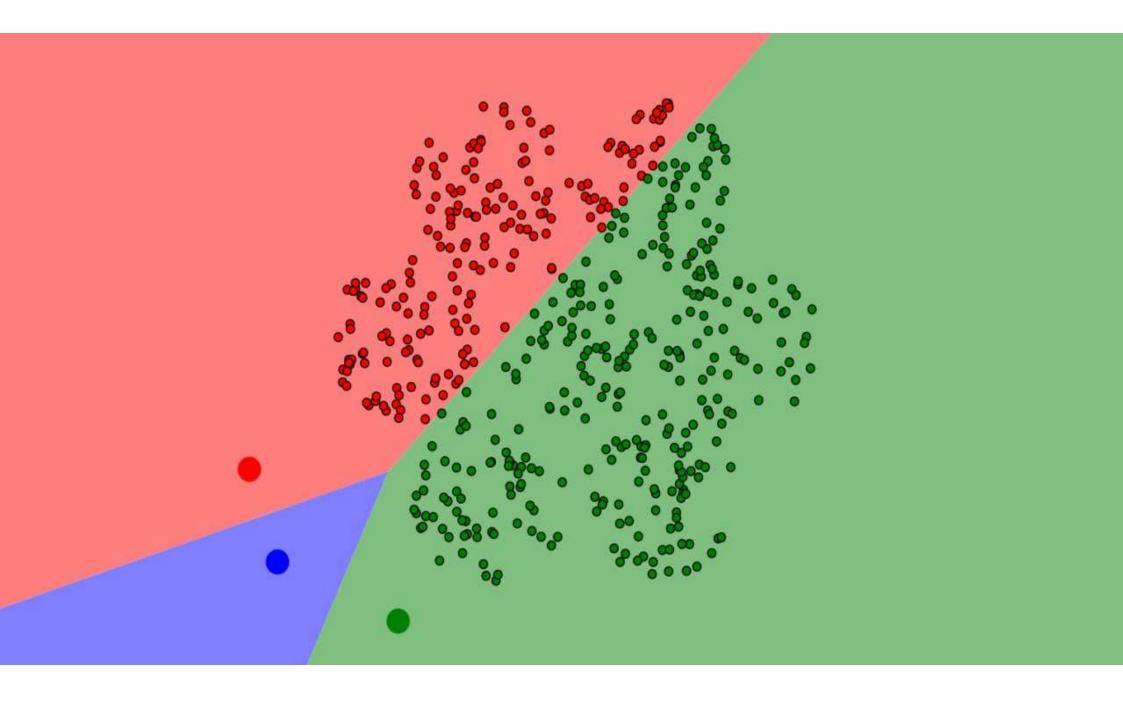
- 1. randomly choose k instances from the dataset  $\mathcal{X}$  as the initial cluster centers
- 2. repeat until no change
  - (a) reassign each instance to the cluster with the closest centroid
  - (b) recompute the centroid  $\mathbf{c_i}$  for each cluster  $\mathcal{C}_i$  for  $i = 1, \ldots, k$

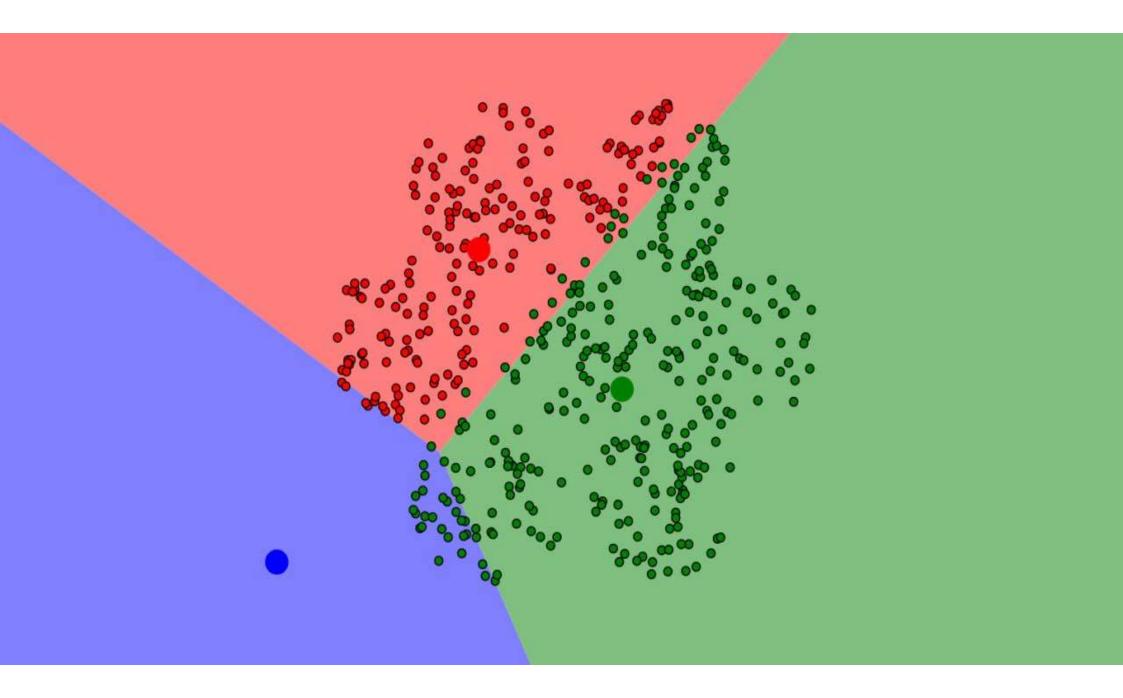
#### K-means – Example

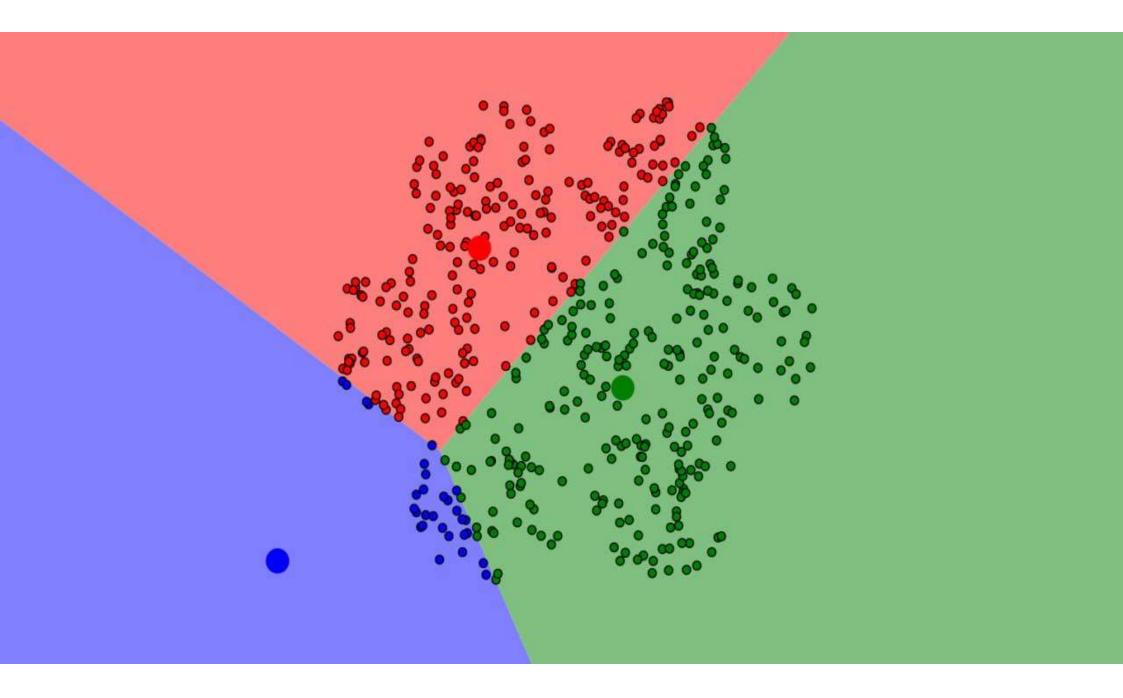


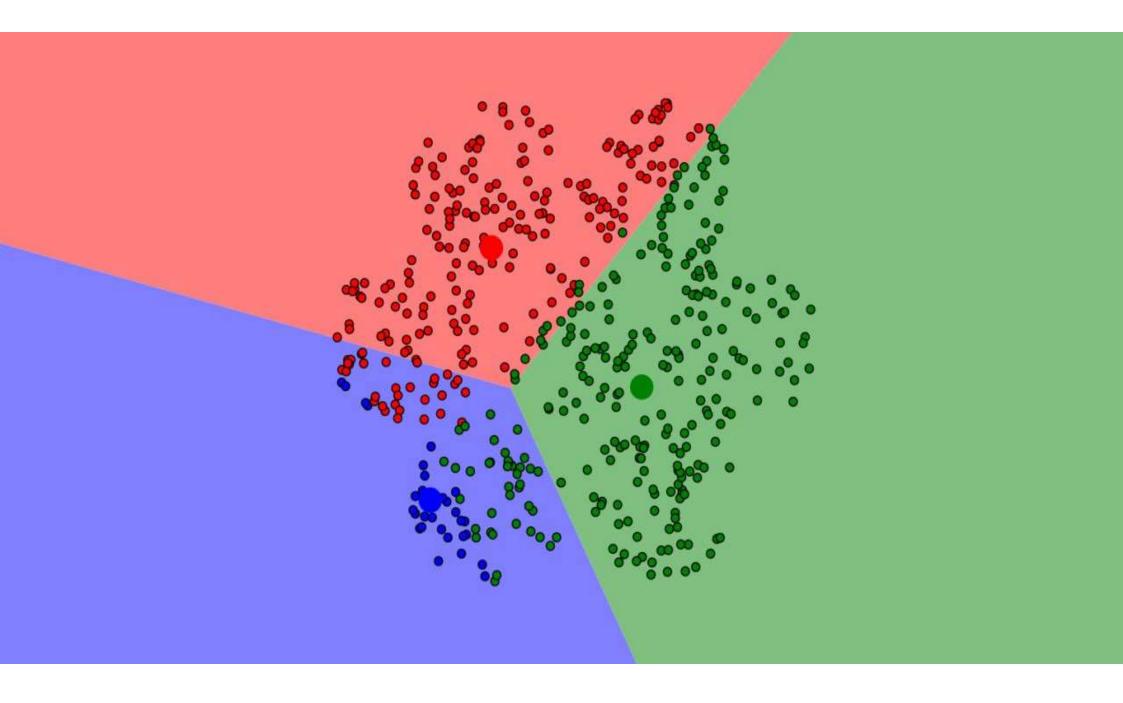


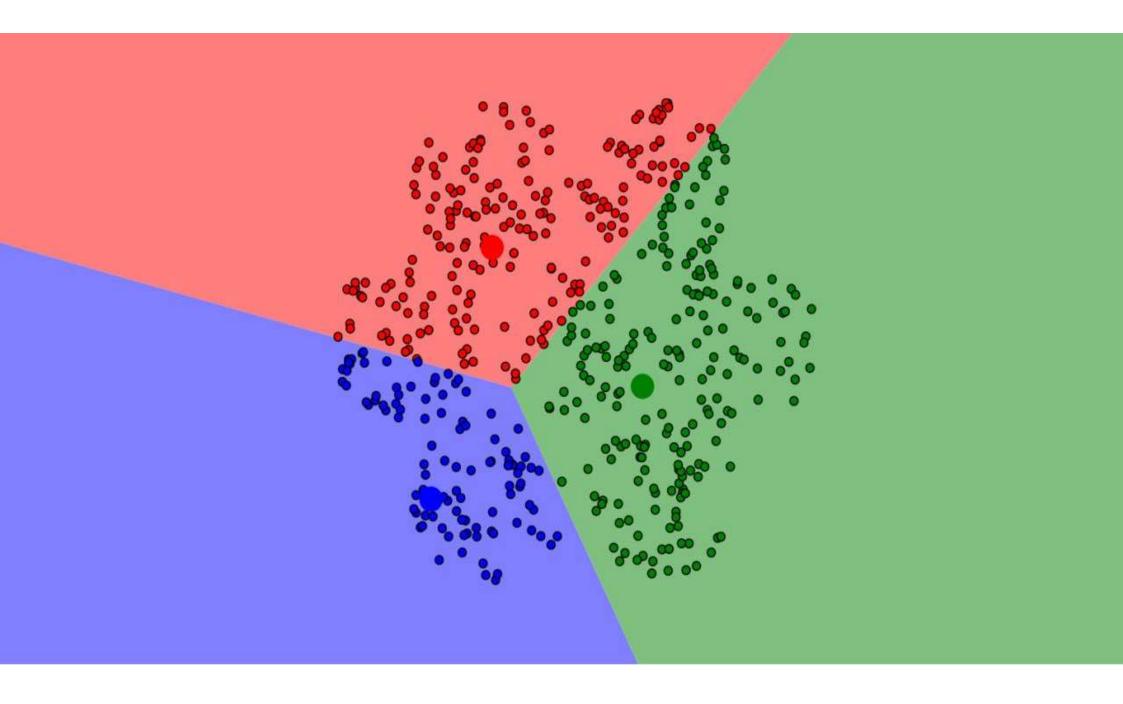
naftaliharris.com

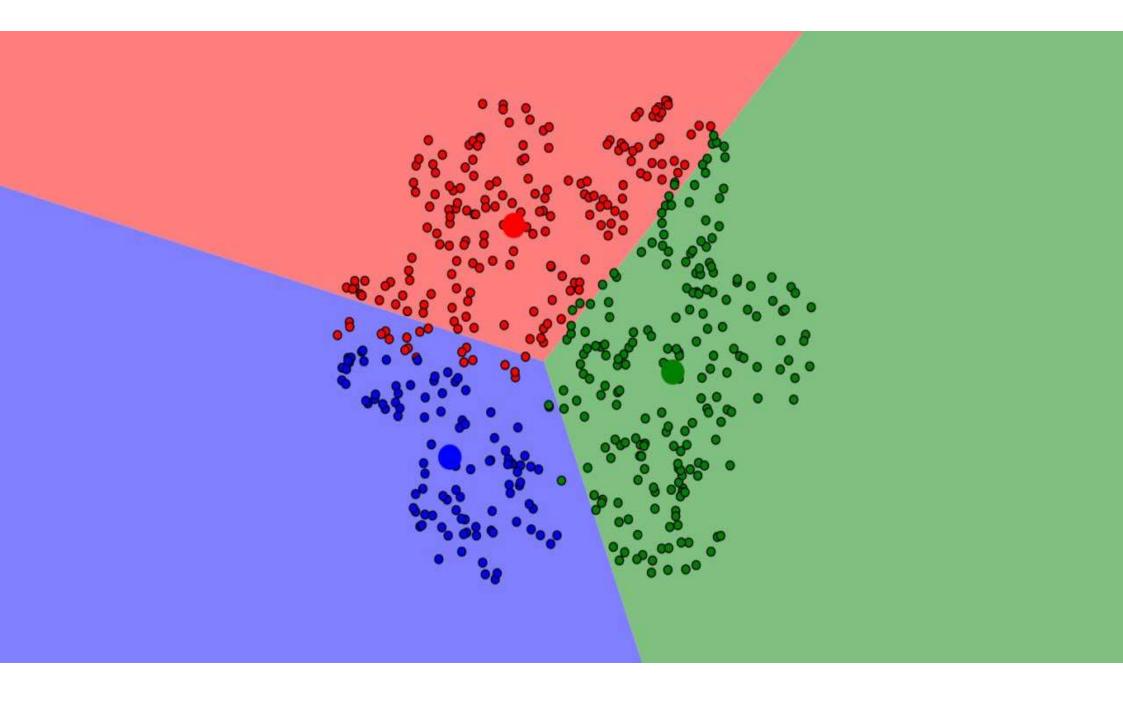


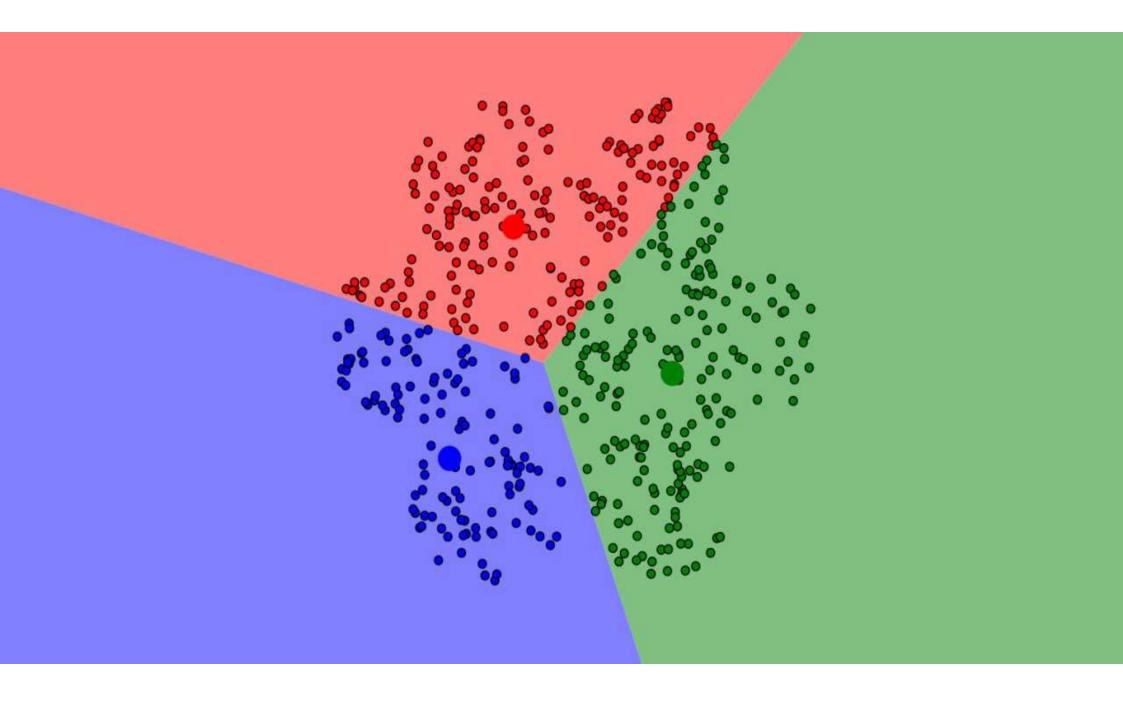


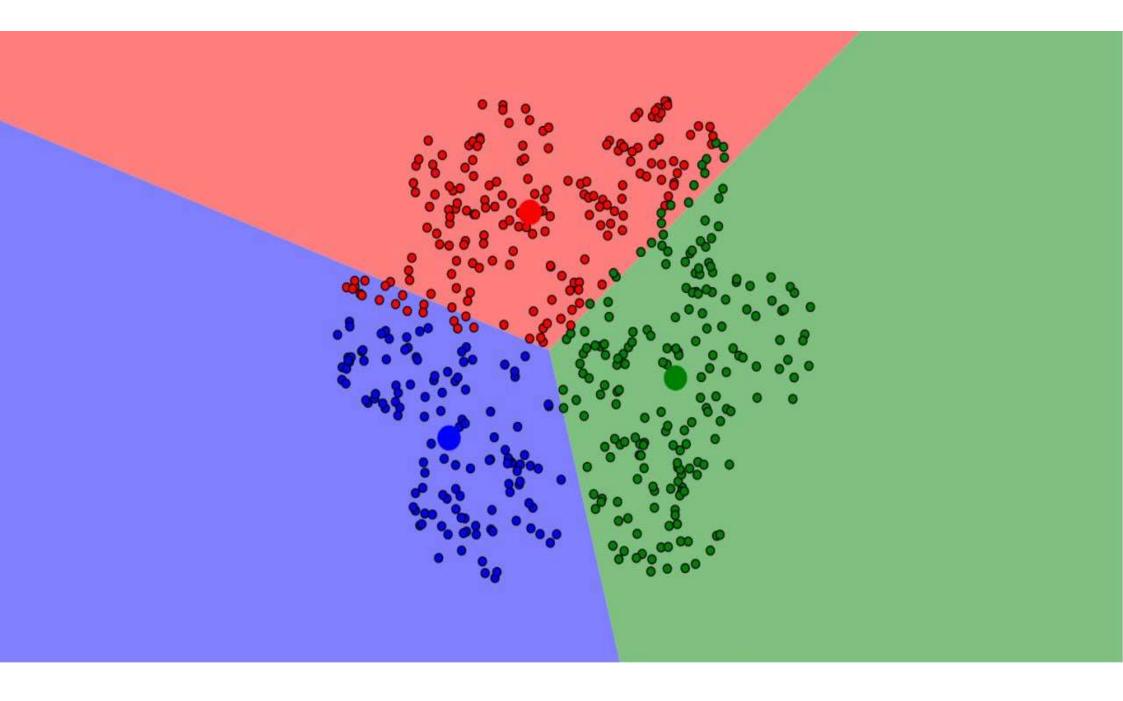


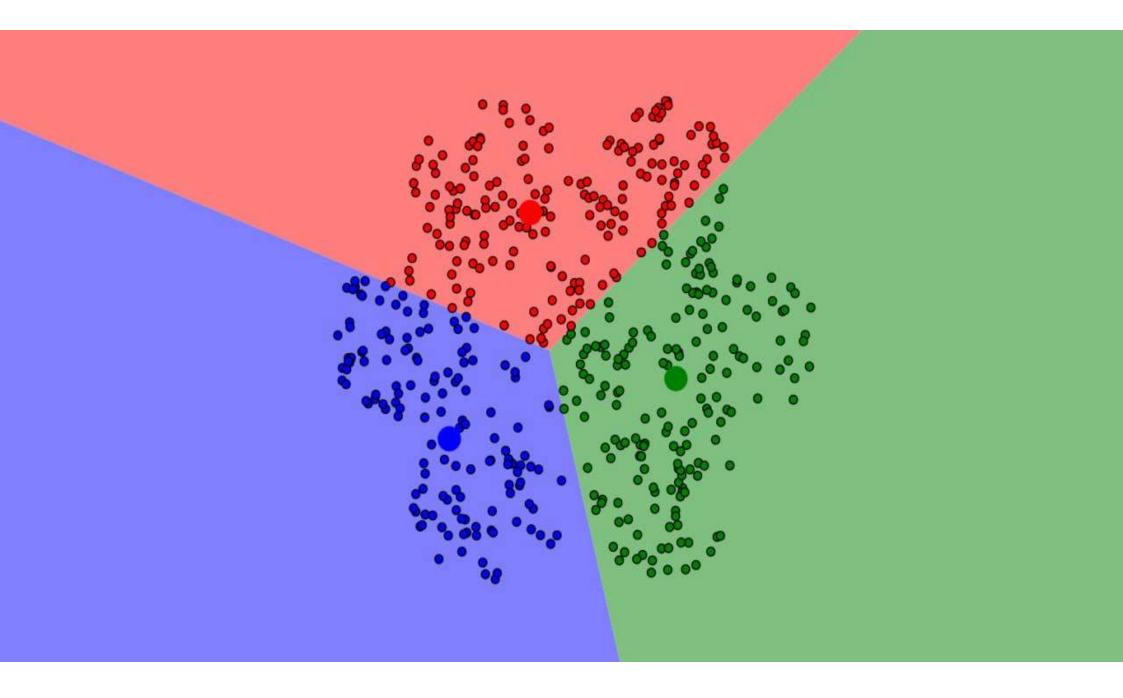








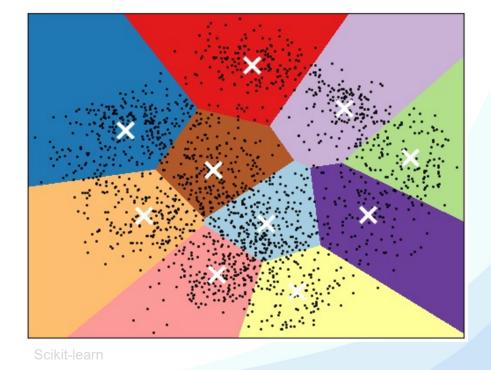




#### K-means – Example

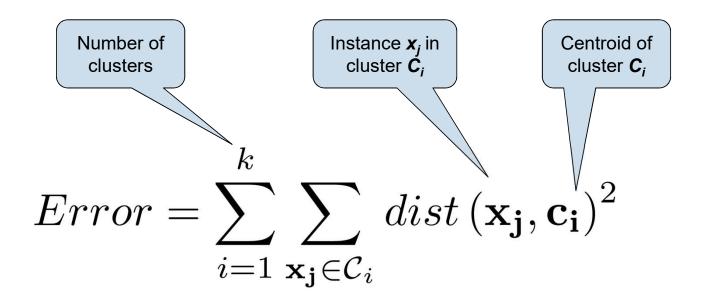
• Note: even though you can think of K-means clusters as (truncated) spheres enclosing instances, the final goal is to partition the instance space:





#### K-means – Quality of Clusters

Error is typically described as the sum of all squared errors between all instances and their closest centroids



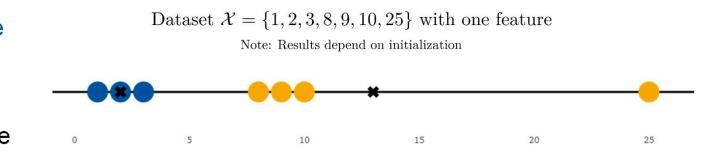
## **Image Segmentation with K-means**



C. Bishop, 2006

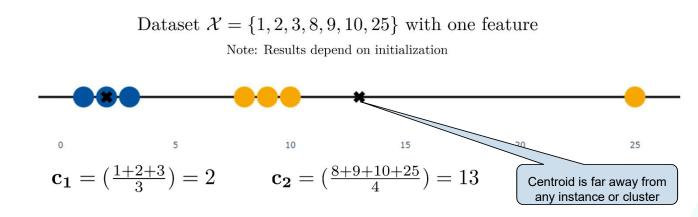
#### **K-means – Limitations**

- Number k and the distance metric need to be chosen beforehand
- Assumes that clusters have spherical shape and similar density
- Different initial points often lead to different results (in practice k-means is run multiple times to minimize this problem)
- Sensitive to outliers



#### **K-means – Limitations**

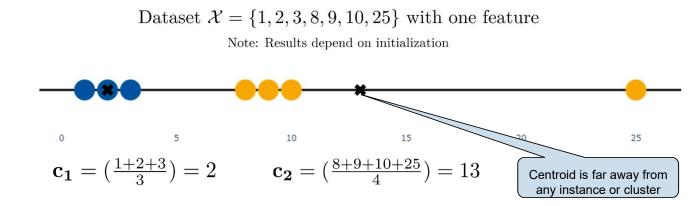
- Number k and the distance metric need to be chosen beforehand
- Assumes that clusters have spherical shape and similar density
- Different initial points often lead to different results (in practice k-means is run multiple times to minimize this problem)
- Sensitive to outliers



Algorithm terminates because each instance is assigned to correct centroid

#### **K-means – Limitations**

- Number k and the distance metric need to be chosen beforehand
- Assumes that clusters have spherical shape and similar density
- Different initial points often lead to different results (in practice k-means is run multiple times to minimize this problem)
- Sensitive to outliers



Algorithm terminates because each instance is assigned to correct centroid

$$Error_{\mathcal{C}_1} = (1-2)^2 + (2-2)^2 + (3-2)^2 = 2$$
  

$$Error_{\mathcal{C}_2} = (8-13)^2 + (9-13)^2 + (10-13)^2 + (25-13)^2 = 194$$
  

$$Error = Error_{\mathcal{C}_1} + Error_{\mathcal{C}_2} = 196$$

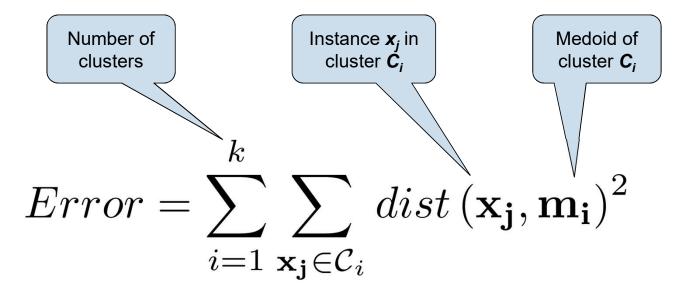
## **K-means – Limitations**

- Number k and the distance metric need to be chosen beforehand
- Assumes that clusters have spherical shape and similar density
- Different initial points often lead to different results (in practice k-means is run multiple times to minimize this problem)
- Sensitive to outliers



#### K-medoids – Idea

- Uses concrete instances (medoids) as cluster's centers rather than the mean values (centroids)
- Similar idea to K-means
- Error is again based on the distances



# K-medoids – Algorithm

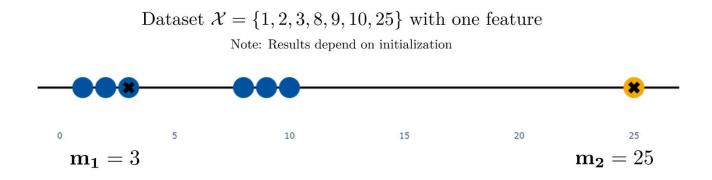
- Uses concrete instances (medoids) as cluster's centers rather than the mean values (centroids)
- In literature medoids are also known as representative instances

#### K-medoids algorithm:

- 1. randomly choose k instances from the dataset  $\mathcal{X}$  as the initial cluster centers
- 2. repeat until no change
  - (a) reassign each instance to the cluster with the closest medoid
  - (b) for each medoid  $\mathbf{m_i}$  and each non-medoid instance  $\mathbf{x_j}$ 
    - i. compute the error for the clustering assuming that we **swap** medoid  $\mathbf{m_i}$  by  $\mathbf{x_j}$
    - ii. if the error is lower, perform the **swap**

## **Comparing K-medoids and K-means**

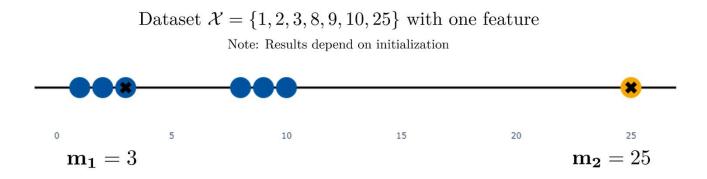
- More robust to outliers (e.g., 1D example on the right)
- K-medoids is more flexible (can be used with any similarity measure)
- K-medoids is more timeconsuming (although the effect of swaps is limited to the instances that change medoid)



Algorithm terminates because there is no swap that lowers the error

## **Comparing K-medoids and K-means**

- More robust to outliers (e.g., 1D example on the right)
- K-medoids is more flexible (can be used with any similarity measure)
- K-medoids is more timeconsuming (although the effect of swaps is limited to the instances that change medoid)

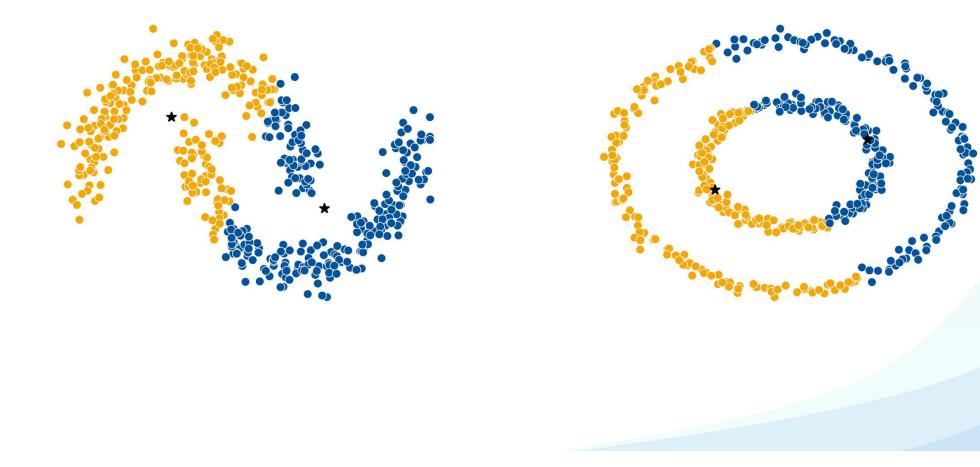


Algorithm terminates because there is no swap that lowers the error

 $Error_{\mathcal{C}_1} = (1-3)^2 + (2-3)^2 + (3-3)^2 + (8-3)^2 + (9-3)^2 + (10-3)^2 = 115$   $Error_{\mathcal{C}_2} = (25-25)^2 = 0$  $Error = Error_{\mathcal{C}_1} + Error_{\mathcal{C}_2} = 115$ 

K-means error was 196

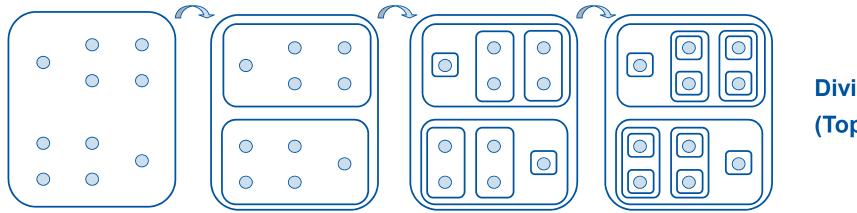
## K-means and K-medoids – Shape Limitations



## K-means and K-medoids – Choosing K

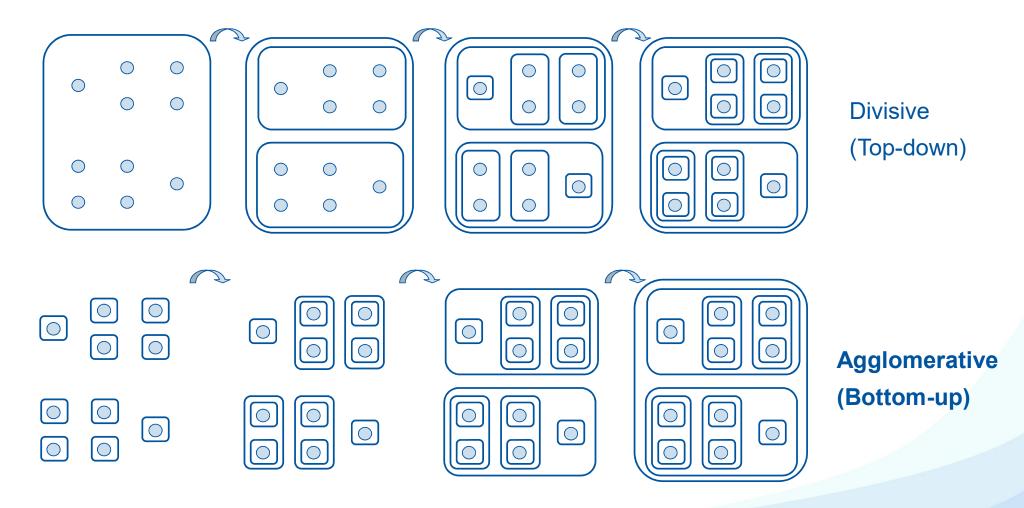
- The choice of a good value for K is quite hard!
- Connects with the more general issue of evaluation of unsupervised learning approaches
- Some ideas:
  - Domain knowledge: the guidance of the data owners is important!
  - Random restart: we perform clustering multiple times with multiple Ks, we keep the best
  - Holdout: we split the dataset, we test various Ks on part of the data and measure the error on another
  - Bayesian: sometimes, we may have a prior on values of K

## **Hierarchical Clustering**



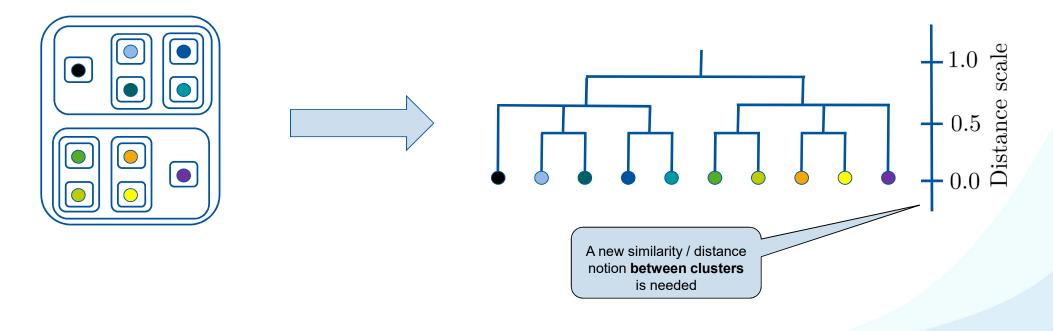
Divisive (Top-down)

## **Hierarchical Clustering**



#### Dendrogram

- Look for two clusters that are most similar and create a new cluster by merging them
- Value depicted when merged is the similarity / distance before merging



#### Linkage Measures

- The distance between clusters is otherwise known as linkage measure
- Four widely used linkage measures:

Minimum distance:  $\operatorname{dist}_{\min} (\mathcal{C}_i, \mathcal{C}_j) = \min_{\mathbf{x_n} \in \mathcal{C}_i, \mathbf{x_m} \in \mathcal{C}_j} \{ \| \mathbf{x_n} - \mathbf{x_m} \| \}$ 

Maximum distance:  $\operatorname{dist}_{\max} (\mathcal{C}_i, \mathcal{C}_j) = \max_{\mathbf{x_n} \in \mathcal{C}_i, \mathbf{x_m} \in \mathcal{C}_j} \{ \|\mathbf{x_n} - \mathbf{x_m}\| \}$ Mean distance:  $\operatorname{dist}_{\operatorname{mean}} (\mathcal{C}_i, \mathcal{C}_j) = \|\mathbf{c_i} - \mathbf{c_j}\|$  (centroid) of cluster  $C_i$ 

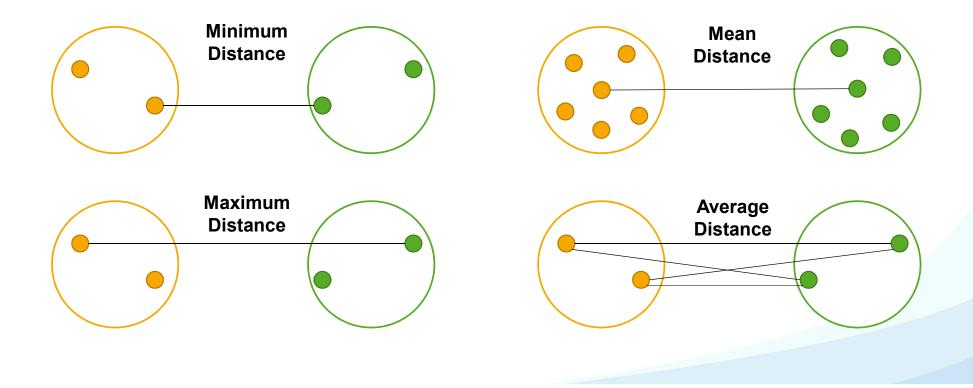
Distance between any

two instances  $\boldsymbol{x}_n$  and  $\boldsymbol{x}_m$ 

Average distance: dist<sub>avg</sub> 
$$(C_i, C_j) = \frac{1}{|C_i| \cdot |C_j|} \sum_{\mathbf{x_n} \in C_i, \mathbf{x_m} \in C_j} \|\mathbf{x_n} - \mathbf{x_m}\|$$
  
Clusters  $C_i$   
and  $C_j$   
 $|C_i|$  is the number of instances in cluster  $C_i$ 

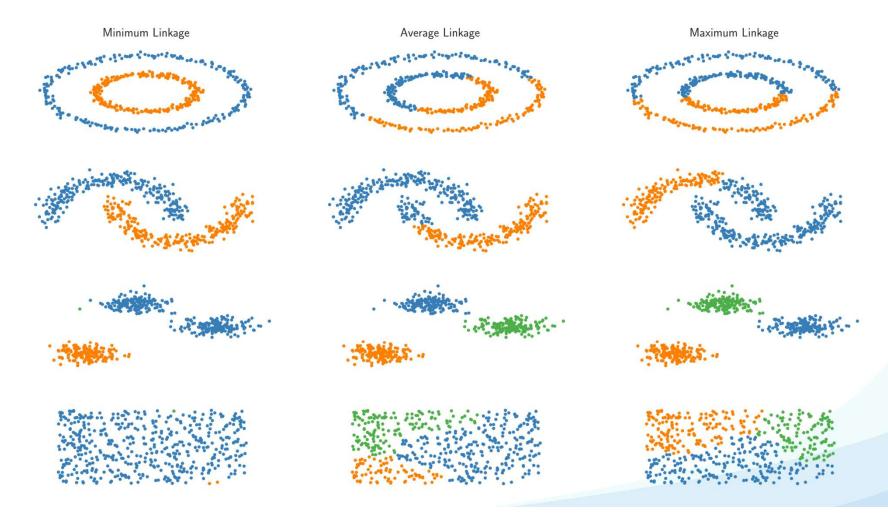
#### Linkage Measures

- The distance between clusters is otherwise known as linkage measure
- Four widely used linkage measures:



## Linkage Measures

#### Different linkage measures may lead to different results



#### Algorithm

Simplistic version (many variants possible)

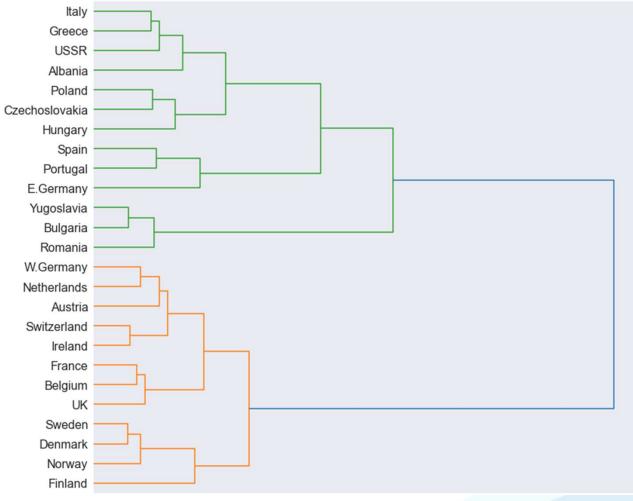
#### Agglomerative hierarchical clustering algorithm:

- 1. create a singleton cluster  $C_i$  for each instance  $\mathbf{x_i}$
- 2. repeat until one cluster is left
  - (a) compute the pairwise distance (using some linkage measure) between any two clusters  $C_i$  and  $C_j$
  - (b) merge the two closest clusters
- 3. return dendrogram

#### **Dendrogram – Example**

Countries clustered by source of average protein consumption

Note that the agglomerative clustering procedure "discovers" geographic proximity!

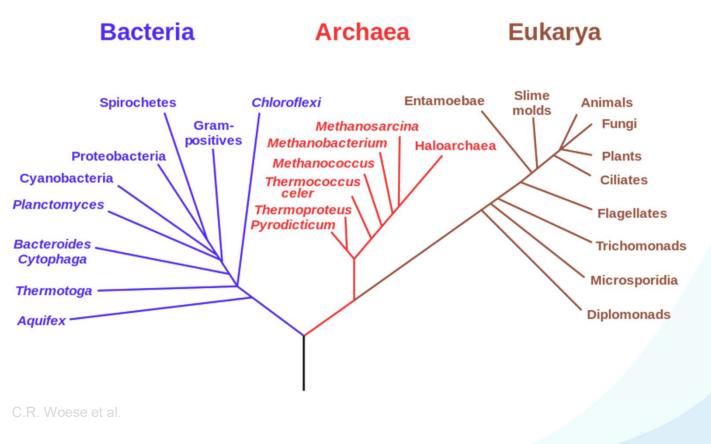


<sup>-</sup>. Karabiber

#### **Dendrogram – Example**

Phylogenetic trees:

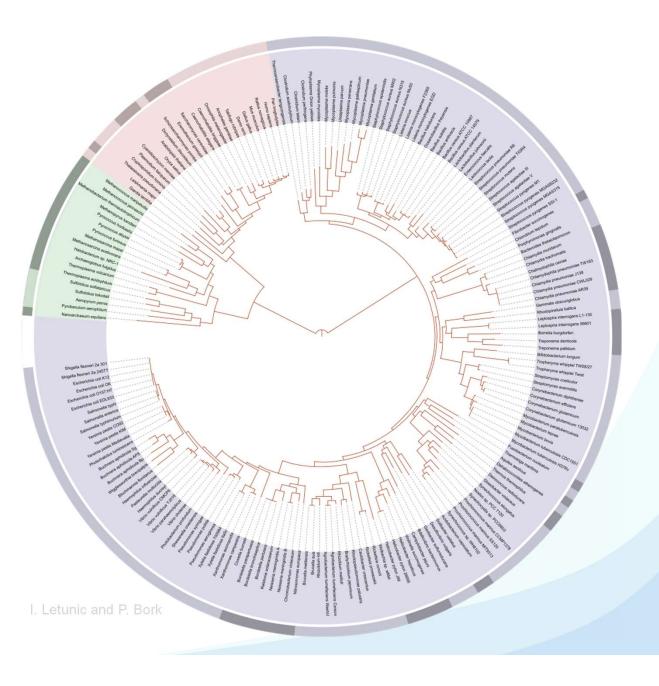
Dendrograms obtained through clustering by genetic information (in this case, tRNA)



## **Dendrogram – Example**

Phylogenetic trees:

Dendrograms obtained through clustering by genetic information (in this case, full genome sequencing)



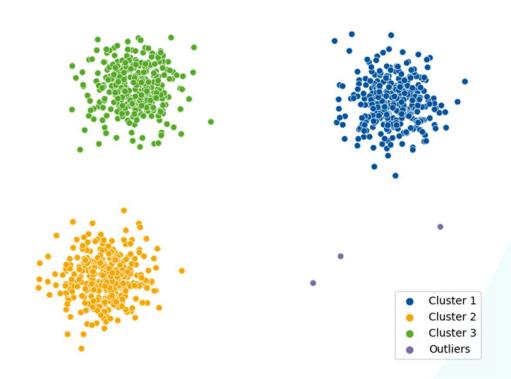
#### **Properties**

- No a priori information / decision about the number of clusters is required
- Dendrogram allows analysts to "play" with abstraction level
- The algorithm cannot undo joins that turn out to be undesirable
- There is no approach to objectively minimize some well-defined errors



- Clusters are areas of higher density
- Used to find clusters of any shape (contrary to partitioning and hierarchical methods which tend to find spherical clusters)

- Clusters are areas of higher density
- Used to find clusters of any shape (contrary to partitioning and hierarchical methods which tend to find spherical clusters)
- Instances in sparse areas are considered to be outliers
- Example Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

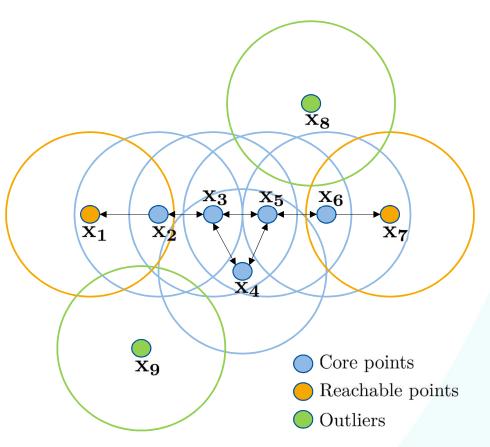


- Two instances  $x_i$  and  $x_j$  are **densityconnected** if there is a core point  $x_k$  such that both  $x_i$  and  $x_j$  are reachable from  $x_k$
- Density-connectedness is symmetric (unlike reachability)
- A **cluster** satisfies the following two properties:
  - All instances within the cluster are mutually density-connected
  - Any two density-connected core points are part of the cluster



## **DBSCAN**

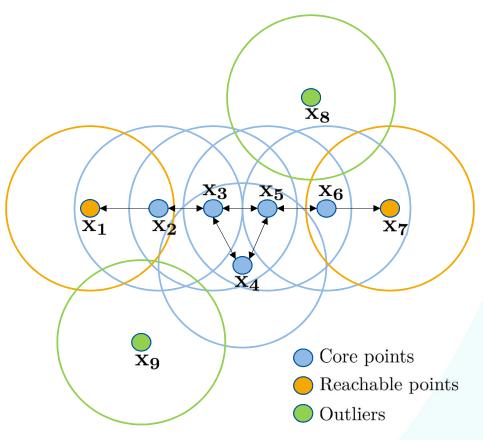
- Two parameters:
  - $\epsilon$  (fixed neighborhood size)
  - *MinPts* (density threshold for dense regions)
- $\epsilon$  is the maximum radius of the neighborhood from  $\mathbf{x}_{\mathbf{i}}$
- Instance x<sub>i</sub> is a core point if at least *MinPts* are within distance *ε* (including x<sub>i</sub>)



 $\epsilon$  is indicated by circles and MinPts=3

## **DBSCAN - Example**

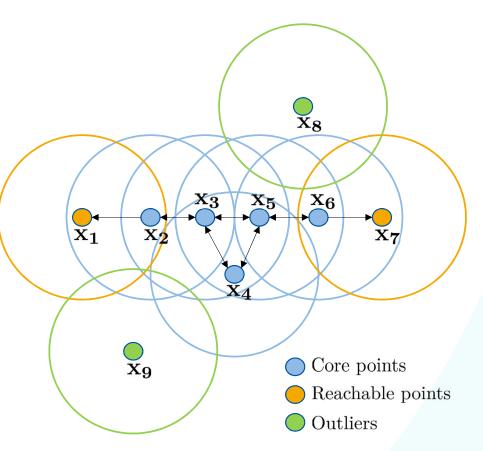
An instance x<sub>j</sub> is directly reachable from x<sub>i</sub> if x<sub>j</sub> is within distance ε from x<sub>i</sub> and x<sub>i</sub> is a core point



 $\epsilon$  is indicated by circles and MinPts = 3

## **DBSCAN - Example**

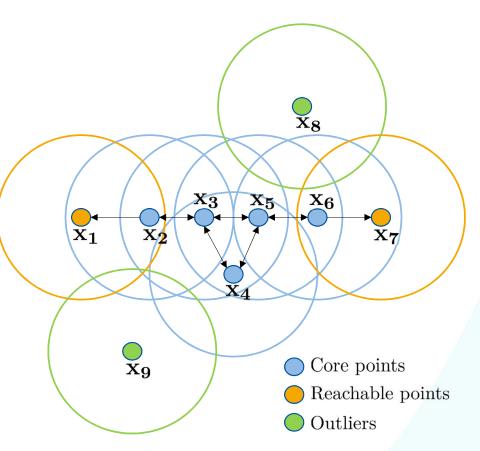
- An instance x<sub>j</sub> is directly reachable from x<sub>i</sub> if x<sub>j</sub> is within distance ε from x<sub>i</sub> and x<sub>i</sub> is a core point
- An instance x<sub>j</sub> is reachable from x<sub>i</sub> if there is a path (y<sub>1</sub>, y<sub>2</sub>, ..., y<sub>K</sub>) with y<sub>1</sub> = x<sub>i</sub> and y<sub>K</sub> = x<sub>j</sub> where each y<sub>k</sub> is directly reachable from y<sub>k-1</sub>
- All the points on the path must be core points, except for x<sub>i</sub>, i.e., y<sub>1</sub>, y<sub>2</sub>, ..., y<sub>n-1</sub> are core points



 $\epsilon$  is indicated by circles and MinPts=3

## **DBSCAN - Example**

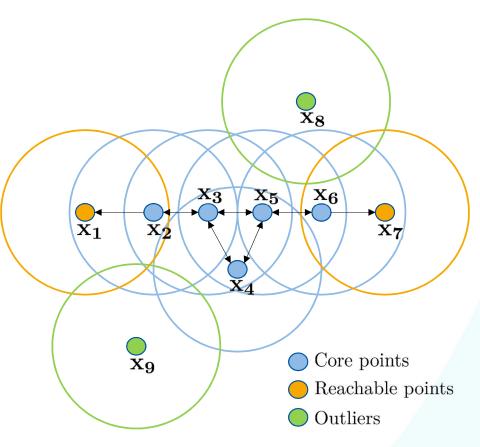
- An instance x<sub>j</sub> is directly reachable from x<sub>i</sub> if x<sub>j</sub> is within distance ε from x<sub>i</sub> and x<sub>i</sub> is a core point
- An instance x<sub>j</sub> is reachable from x<sub>i</sub> if there is a path (y<sub>1</sub>, y<sub>2</sub>, ..., y<sub>K</sub>) with y<sub>1</sub> = x<sub>i</sub> and y<sub>K</sub> = x<sub>j</sub> where each y<sub>k</sub> is directly reachable from y<sub>k-1</sub>
- All the points on the path must be core points, except for x<sub>i</sub>, i.e., y<sub>1</sub>, y<sub>2</sub>, ..., y<sub>n-1</sub> are core points
- All points not reachable from any other point are outliers



 $\epsilon$  is indicated by circles and MinPts=3

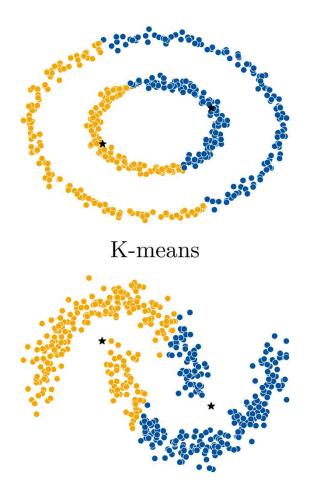
## **DBSCAN - Approach**

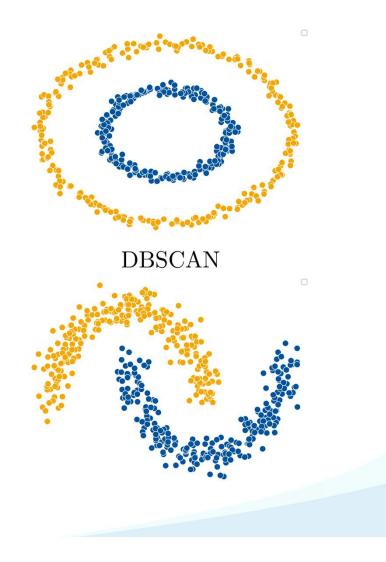
- The approach iteratively selects a core point x<sub>i</sub> not yet part of a cluster and creates a cluster for it
- The cluster is incrementally extended by adding all neighboring points of core points in the cluster
- If a cluster cannot be extended anymore, the next unvisited core point is considered
- The approach is not entirely deterministic: Points reachable from more than one cluster are assigned based on the processing order



 $\epsilon$  is indicated by circles and MinPts = 3

## **DBSCAN - Graphical Examples**



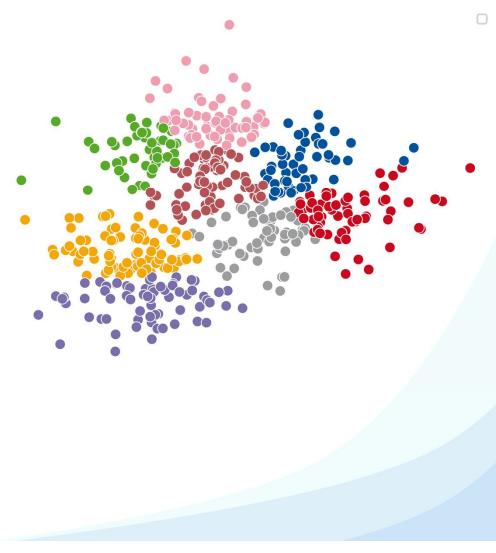


# Conclusion

#### Closing

#### **General Problem – Cluster Interpretation**

- Cluster quality may be good, but this does not imply that the clusters reveal new insights
- Describe clusters in terms of their features (e.g., compare centroids)
- Use simple visualization techniques like boxplots
   to compare clusters



#### Closing

#### **Takeaways**

- Clustering: grouping together unlabeled instances
- Useful for explorative analysis, and when choosing a label does not make sense
- However, results are often hard to validate!
- Various approaches:
  - Based on (spatial) distance
  - By agglomeration
  - By density
- And many more!
- Next up: Frequent Itemsets

