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Unsupervised Learning

Introduction to Unsupervised Learning

• Obtain a model that represents the data…

• …without a target variable or label

features
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price calories vegetarian spicy bestseller

12.99 800 Yes No Yes

9.99 600 Yes Yes No

14.99 1000 No Yes No

11.99 700 No No Yes

8.99 500 Yes No No



Unsupervised Learning

Introduction to Unsupervised Learning

• Recall from intro lecture:
labeled vs unlabeled

features
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price calories vegetarian spicy bestseller

12.99 800 Yes No Yes

9.99 600 Yes Yes No

14.99 1000 No Yes No

11.99 700 No No Yes

8.99 500 Yes No No
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(class label)

descriptive features

price calories vegetarian spicy bestseller

12.99 800 Yes No Yes

9.99 600 Yes Yes No

14.99 1000 No Yes No

11.99 700 No No Yes

8.99 500 Yes No No

features



Unsupervised Learning

Introduction to Unsupervised Learning

• Obtain a model that represents the data…

• …without a target variable or label

• Why?

• When a target feature is hard to identify

• Maybe we are not sure something is even there!

• To search for patterns in the data

• To learn a representation



A complex example: autoencoding

Introduction to Unsupervised Learning

Autoencoding: automatically finding a semantics-rich representation of 
the data in a latent vector space (with the desired dimensionality)

MathWorks



Unsupervised vs. Supervised Learning: Models

Introduction to Unsupervised Learning

F. Nielsen, Parallel Linear Algebra, 2016

In unsupervised 
learning, the model 
typically explains 
relationships
between instances

In supervised 
learning, the model 
typically explains the 
values of one or 
more features



Unsupervised Learning

Introduction to Unsupervised Learning

• Obtain a model that represents the data…

• …without a target variable or label

• Challenges:

• The ground truth might be hard to identify

• This meaning that designing an evaluation can be very hard



Clustering



Clustering: motivation

Introduction to Clustering

• Find clusters (groups of instances) such that:

- Instances within the cluster are similar

- Instances in different clusters are dissimilar

• Applications:
- To find unexpected groups

- To do data preprocessing
e.g., discover (process) models for each cluster

- Unlabeled data is cheaper than
labeled data!



Clustering Use Cases

Introduction to Clustering

Spotify

• 456 million active listeners

• 195 million premium subscribers

• Over 80 million songs

(As of January 2023)

User Song 1 Song 2 Song 3 …

User 1 4 0 5 …

User 2 0 1 0 …

User 3 3 2 9 …

… … … … …



Clustering Use Cases

Introduction to Clustering

Amazon

• 300 million active users

• Over 2 million third-party seller businesses

• Around 350 million items on the marketplace

(As of January 2023)

Customer Prod 1 Prod 2 Prod 3 …

Customer 1 1 0 0 …

Customer 2 0 0 1 …

Customer 3 1 1 0 …

… … … … …



Clustering Use Cases

Introduction to Clustering

Image Segmentation

• Goal: finding regions in a picture with homogeneous appearance

• Applications in computer graphics, e.g. subject detection, edge detection

C. Bishop, 2006



Clustering, classification and regression

Introduction to Clustering

F. Nielsen, Parallel Linear Algebra, 2016

Do not mix up 
classification with 
clustering!

When doing 
classification, we 
have a training set of 
correctly classified 
instances.

When doing 
clustering, we do not 
(usually)



Clustering Approaches

• Partitioning methods (split into subsets)

• Centroid-based (e.g., k-means)

• Medoids-based (e.g., k-medoids)

• Hierarchical methods (build dendrogram)

• Agglomerative (bottom-up)

• Divisive (top-down)

• Density-based methods (e.g., DBSCAN)

• Grid-based methods

Introduction to Clustering



Similarity and Dissimilarity



Similarity / Dissimilarity

Similarity and Dissimilarity

Similarity (or proximity) Dissimilarity (or distance)

• Numerical measure of how alike two instances 
are

• Higher when instances are more alike
• Often falls in the range [0, 1]

• Numerical measure of how different two 
instances are

• Lower when instances are more alike
• Minimum dissimilarity is often 0
• Upper limit varies

Goal: instances within a cluster are similar, instances in different clusters are dissimilar

inverse



Metric Space Characteristics

• Non-negativity - distance is a non-negative 
number

• Identity of indiscernibles - the distance of an 
object to itself is 0

• Symmetry - distance is a symmetric function

• Triangle inequality - going directly from object  
to object in space is no more than going 
through any other object

Similarity and Dissimilarity



Examples of Similarity / Dissimilarity Measures

• Binary/Nominal features:

• Simple matching coefficient

• Jaccard similarity coefficient

• Continuous features:

• Euclidean distance

• Manhattan distance

• Minkowski distance (generalization)

• Cosine similarity (non-metric measure)

Similarity and Dissimilarity



Binary symmetric: Simple matching distance

• Assumes no clear asymmetry between group 0 and 1

• Example: two right-handed persons are as similar as two left-handed persons

Similarity and Dissimilarity

𝒚 = 𝟏 𝒚 = 𝟎

𝒙 = 𝟏 𝑎 𝑏

𝒙 = 𝟎 𝑐 𝑑

𝑆𝑀𝐷 𝑥, 𝑦 =
𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐 + 𝑑

• a = number of attributes where x and y are both 1

• b = number of attributes where x is 1 and y is 0

• c = number of attributes where x is 0 and y is 1

• d = number of attributes where x and y are both 0



Binary asymmetric: Jaccard distance

• Asymmetry between group 0 and 1

• Example: two persons that won a Turing Award are more similar 
than two people without a Turing Award

Similarity and Dissimilarity

𝒚 = 𝟏 𝒚 = 𝟎

𝒙 = 𝟏 𝑎 𝑏

𝒙 = 𝟎 𝑐 𝑑

𝑑௃ 𝑖, 𝑗 =
𝑏 + 𝑐

𝑎 + 𝑏 + 𝑐

• a = number of attributes where x and y are both 1

• b = number of attributes where x is 1 and y is 0

• c = number of attributes where x is 0 and y is 1

• d = number of attributes where x and y are both 0



Nominal: Simple matching distance

• : total number of variables where objects and mismatch

• : total number of variables

• Simple matching coefficient: 

Similarity and Dissimilarity

𝑆𝑀𝐷 𝑖, 𝑗 =
𝑚𝑚

𝑝



Nominal: Jaccard Similarity Coefficient

• Assumes instances are represented by sets

• Jaccard similarity between two sets      and     

• Jaccard distance between two sets and

• Jaccard distance is a metric, i.e., distance is non-negative, distance
to itself is zero, symmetric, and satisfies the triangle inequality

• Used for comparing item sets (e.g., products ordered, words
appearing in documents, courses taken, and songs played)

Similarity and Dissimilarity

Xi Xj



Minkowski Distance (Metric)

Generalization of Manhattan and Euclidean distance to any natural 
dimension             (also called      norm)

Similarity and Dissimilarity

Manhattan Euclidean Maximum/Chebyshev distance

[1]



Minkowski Distance – Examples

Manhattan distance

Euclidean distance

Maximum/Chebyshev distance

Similarity and Dissimilarity



Cosine Similarity (Non-Metric)

• Cosine similarity between two vectors     and     

• Used for sparse data (focus on angle rather than distance)

• Often used for comparing representations of textual data

Similarity and Dissimilarity

angle cos(θ)

0° 1.0000

45° 0.7071

90° 0.0000

135° -0.7071

180° -1.0000

270° 0.0000

360° 1.0000



Mixing Different Types of Features

• Commonly used approach – normalize all features ranges to [0, 1]

• One can give different weights to different features (i.e., distances are not the same in all 
dimensions)

• One can exclude features, because they would lead to obvious clusters (providing no 
insights)

Similarity and Dissimilarity



K-means and K-medoids



K-means – Idea

• Let’s start with very strong assumptions

 And therefore, a simpler problem

• What if we could represent a cluster with a single point in space?

• Then, grouping the instances in clusters would be very easy:

• Given an instance, find the closest representative, and assign the corresponding 
cluster

K-means and K-medoids



K-means – Idea

• Let’s consider the opposite problem:
From the set of instances that we assume to belong to a cluster, how do we find this 
representative?

• A natural choice is to pick the point at the geometric center of the instances

• Or, equivalently, the center of the smallest sphere
that contains all the instances

 (given a certain distance metric)

• Also easy!

• Let’s call this representative a centroid

K-means and K-medoids

J. Rogel-Salazar



K-means – Idea

• But then…

 Finding the instances in a cluster given its centroid is easy

 Finding a centroid given the instances in its cluster is also easy

 But we have neither!

 A chicken and egg problem!

K-means and K-medoids



K-means – Idea

• But then…

 Finding the instances in a cluster given its centroid is easy

 Finding a centroid given the instances in its cluster is also easy

 But we have neither!

 A chicken and egg problem

• Solution: we start with random points in space as centroids, and we iteratively refine

K-means and K-medoids



K-means

• Algorithm for clustering / partitioning data

• Each cluster’s center (the centroid) is represented by the mean value of the 
instances (points) in the cluster

• Simple and fast to compute

K-means and K-medoids



K-means – Example

K-means and K-medoids

Reassign instances and 
recompute the centroids

Centroids remain the 
same, so algorithm ends

repeat



naftaliharris.com





















K-means – Example

K-means and K-medoids

• Note: even though you can think of K-means clusters as (truncated) spheres 
enclosing instances, the final goal is to partition the instance space:

Scikit-learnJ. Mx



K-means – Quality of Clusters

K-means and K-medoids

Number of 
clusters

Instance xj in 
cluster Ci

Centroid of 
cluster Ci

Error is typically described as the sum of all squared errors between all 
instances and their closest centroids



Image Segmentation with K-means

K-means and K-medoids

C. Bishop, 2006



K-means – Limitations

K-means and K-medoids

• Number k and the distance 
metric need to be chosen 
beforehand

• Assumes that clusters have 
spherical shape and similar 
density

• Different initial points often lead 
to different results (in practice 
k-means is run multiple times to 
minimize this problem)

• Sensitive to outliers



K-means – Limitations

K-means and K-medoids

• Number k and the distance 
metric need to be chosen 
beforehand

• Assumes that clusters have 
spherical shape and similar 
density

• Different initial points often lead 
to different results (in practice 
k-means is run multiple times to 
minimize this problem)

• Sensitive to outliers

Centroid is far away from 
any instance or cluster



K-means – Limitations

K-means and K-medoids

• Number k and the distance 
metric need to be chosen 
beforehand

• Assumes that clusters have 
spherical shape and similar 
density

• Different initial points often lead 
to different results (in practice 
k-means is run multiple times to 
minimize this problem)

• Sensitive to outliers

Centroid is far away from 
any instance or cluster



• Number k and the distance 
metric need to be chosen 
beforehand

• Assumes that clusters have 
spherical shape and similar 
density

• Different initial points often lead 
to different results (in practice 
k-means is run multiple times to 
minimize this problem)

• Sensitive to outliers

K-means – Limitations

K-means and K-medoids



K-medoids – Idea

• Uses concrete instances (medoids) as cluster’s centers rather than the mean values (centroids)

• Similar idea to K-means

• Error is again based on the distances

K-means and K-medoids

Number of 
clusters

Medoid of 
cluster Ci

Instance xj in 
cluster Ci



K-medoids – Algorithm

• Uses concrete instances (medoids) as cluster’s centers rather than the mean values (centroids)

• In literature medoids are also known as representative instances

K-means and K-medoids



Comparing K-medoids and K-means

K-means and K-medoids

• More robust to outliers (e.g., 
1D example on the right)

• K-medoids is more flexible 
(can be used with any 
similarity measure)

• K-medoids is more time-
consuming (although the 
effect of swaps is limited to the 
instances that change medoid)



Comparing K-medoids and K-means

• More robust to outliers (e.g., 
1D example on the right)

• K-medoids is more flexible 
(can be used with any 
similarity measure)

• K-medoids is more time-
consuming (although the 
effect of swaps is limited to the 
instances that change medoid)

K-means and K-medoids

K-means error was 196



K-means and K-medoids – Shape Limitations

K-means and K-medoids



K-means and K-medoids – Choosing K

• The choice of a good value for K is quite hard!

• Connects with the more general issue of evaluation of unsupervised learning approaches

• Some ideas:

• Domain knowledge: the guidance of the data owners is important!

• Random restart: we perform clustering multiple times with multiple Ks, we keep the best

• Holdout: we split the dataset, we test various Ks on part of the data and measure the error on 
another

• Bayesian: sometimes, we may have a prior on values of K

K-means and K-medoids



Agglomerative Clustering



Hierarchical Clustering

Agglomerative Clustering

Divisive

(Top-down)



Hierarchical Clustering

Agglomerative Clustering

Agglomerative

(Bottom-up)

Divisive

(Top-down)



• Look for two clusters that are most similar and create a new cluster by merging them

• Value depicted when merged is the similarity / distance before merging

Dendrogram

Agglomerative Clustering

A new similarity / distance 
notion between clusters 

is needed



• The distance between clusters is otherwise known as linkage measure

• Four widely used linkage measures:

Linkage Measures

Agglomerative Clustering

Clusters Ci

and Cj

Distance between any 
two instances xn and xm

ci is the mean 
(centroid) of cluster Ci

|Ci| is the number of 
instances in cluster Ci



Linkage Measures

Agglomerative Clustering

Minimum
Distance

Maximum
Distance

Average
Distance

Mean
Distance

• The distance between clusters is otherwise known as linkage measure

• Four widely used linkage measures:



Linkage Measures

Agglomerative Clustering

Different linkage measures may lead to different results



Simplistic version (many variants possible)

Algorithm

Agglomerative Clustering



Dendrogram – Example

Agglomerative Clustering

Countries clustered by source 
of average protein 
consumption

Note that the agglomerative 
clustering procedure 
“discovers” geographic 
proximity! 

F. Karabiber



Dendrogram – Example

Agglomerative Clustering

Phylogenetic trees:

Dendrograms obtained through 
clustering by genetic 
information (in this case, tRNA)

C.R. Woese et al.



Dendrogram – Example

Agglomerative Clustering

Phylogenetic trees:

Dendrograms obtained through 
clustering by genetic 
information (in this case, full 
genome sequencing)

I. Letunic and P. Bork



Properties

Agglomerative Clustering

• No a priori information / decision about the number 
of clusters is required

• Dendrogram allows analysts to “play” with 
abstraction level

• The algorithm cannot undo joins that turn out to be 
undesirable

• There is no approach to objectively minimize some 
well-defined errors



Density-Based Clustering



Density-Based Clustering

• Clusters are areas of higher density

• Used to find clusters of any shape (contrary to partitioning and hierarchical methods 
which tend to find spherical clusters)

Density-Based (DBSCAN)



Density-Based Clustering

• Clusters are areas of higher density

• Used to find clusters of any shape (contrary 
to partitioning and hierarchical methods which 
tend to find spherical clusters)

• Instances in sparse areas are considered to be 
outliers

• Example – Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN)

Density-Based (DBSCAN)



Density-Based Clustering

• Two instances 𝐢 and 𝐣 are density-

connected if there is a core point 𝐤 such that 

both 𝐢 and 𝐣 are reachable from 𝐤

• Density-connectedness is symmetric (unlike 
reachability)

• A cluster satisfies the following two properties:

• All instances within the cluster are mutually 
density-connected

• Any two density-connected core points are 
part of the cluster

Density-Based (DBSCAN)



DBSCAN

• Two parameters:

• (fixed neighborhood size)

• (density threshold for dense regions)

• is the maximum radius of the neighborhood 
from xi

• Instance xi is a core point if at least are 
within distance (including xi)

Density-Based (DBSCAN)



DBSCAN - Example

Density-Based (DBSCAN)

• An instance xj is directly reachable from xi if xj

is within distance from xi and xi is a core point



• An instance xj is directly reachable from xi if xj

is within distance from xi and xi is a core point

• An instance xj is reachable from xi if there is a 
path y𝟏 y𝟐 y𝐊  with y1 xi and yK = xj where 
each yk is directly reachable from yk-1 

• All the points on the path must be core points, 
except for xj, i.e., y𝟏 y𝟐 y𝐧ି𝟏 are core points

DBSCAN - Example

Density-Based (DBSCAN)



DBSCAN - Example

• An instance xj is directly reachable from xi if xj

is within distance from xi and xi is a core point

• An instance xj is reachable from xi if there is a 
path y𝟏 y𝟐 y𝐊  with y1 xi and yK = xj where 
each yk is directly reachable from yk-1

• All the points on the path must be core points, 
except for xj, i.e., y𝟏 y𝟐 y𝐧ି𝟏 are core points

• All points not reachable from any other point 
are outliers

Density-Based (DBSCAN)



DBSCAN - Approach

• The approach iteratively selects a core point xi 

not yet part of a cluster and creates a cluster 
for it

• The cluster is incrementally extended by 
adding all neighboring points of core points in 
the cluster

• If a cluster cannot be extended anymore, the 
next unvisited core point is considered

• The approach is not entirely deterministic:
Points reachable from more than one cluster are 
assigned based on the processing order

Density-Based (DBSCAN)



DBSCAN - Graphical Examples

Density-Based (DBSCAN)



Conclusion



General Problem – Cluster Interpretation

• Cluster quality may be good, but this does not 
imply that the clusters reveal new insights

• Describe clusters in terms of their features (e.g., 
compare centroids)

• Use simple visualization techniques like boxplots 
to compare clusters

Closing



Takeaways

• Clustering: grouping together unlabeled instances

• Useful for explorative analysis, and when 
choosing a label does not make sense

• However, results are often hard to validate!

• Various approaches:

• Based on (spatial) distance

• By agglomeration

• By density

• And many more!

• Next up: Frequent Itemsets

Closing


