

Elements of Machine Learning & Data Science

Frequent Itemsets

Lecture 9

Prof. Wil van der Aalst

Marco Pegoraro, M.Sc. Christopher Schwanen, M.Sc. Tsunghao Huang, M.Sc.

Frequent Itemsets

- **1. Introduction**
- 2. Properties of Frequent Itemsets
- 3. A-Priori Algorithm
- 4. FP-Growth Algorithm

Pattern Mining

- Finding surprising patterns in the input data
- Types of patterns:
	- Frequent itemsets
	- Association rules
	- Sequential patterns
	- Partial orders
	- Subgraphs

Itemset Data

Itemset Data – Example

Itemset Data – Example

Itemset Data – Example

Other Itemset Data Examples

Application of Frequent Itemsets

NETFLIX

Frequent Itemsets (movies)

Application of Frequent Itemsets

Frequent Itemsets

- A notorious success story: the Tesco Clubcard
- Introduced in 1995, it was the first loyalty card with automatic data collection
- Widely regarded as responsible for Tesco's supremacy in the UK
- 1bn£ of increase in sales (4%) in one year
- Today, the Clubcard program is still incredibly profitable, even though Tesco gives away about 1bn£ in rewards and discounts each year!

"You know more about my customers after three months than I know after 30 years."

- Lord MacLaurin, chairman for Tesco, talking to the data scientists of the Clubcard program

Frequent Itemsets – Notation

- $\mathcal{I} = \{I_1, I_2, \ldots, I_D\}$ is the set of all possible items
- $\mathcal{A} \subseteq \mathcal{I}$ is an itemset
- A transaction T is a non-empty itemset
- A dataset $\mathcal X$ is a collection of transactions
- **Technically** $\mathcal{X} \in \mathbb{M}(\mathbb{P}(\mathcal{I}))$ such that $\emptyset \notin \mathcal{X}$ (M is the multiset and P is the powerset operator)

Frequent Itemsets – Notation Example

- Set of all items $\mathcal{I} = \{Che, Bre, Chi, Mil, \dots, Pas\}$
- Transaction $\mathcal{T}_1 = \{Che, Mil, Pas\} \subseteq \mathcal{I}$
- Dataset with four transactions $\mathcal{X} = [{\{Che, Mil, Pas\}, \{Chi, Mil\}, \{Che, Bre\}, \{Bre\} }]$
- Dataset with ten transactions $\mathcal{X} = [\{Che, Mil, Pas\}^4, \{Chi, Mil\}^3, \{Che, Bre\}^2, \{Bre\}^1]$

Frequent Itemsets – Notation Generalization

- Set of all items $\mathcal{I} = \{Che, Bre, Chi, Mil, \dots, Pas\}$
- Transaction $\mathcal{T}_1 = [Che^2, Mil^3, Pas^2] \in \mathbb{M}(\mathcal{I})$
- Dataset with four transactions $\mathcal{X} = [[Che^2, Mil^3, Pas^2], [Chi, Mil], [Che^2, Bre], [Bre]]$

We will consider only itemsets that are proper sets (not multisets). However, generalization is trivial.

Frequent Itemsets – Support

$$
\text{support}(\mathcal{A}) = \frac{|\lbrack \mathcal{T} \in \mathcal{X} | \mathcal{A} \subseteq \mathcal{T} \rbrack}{|\mathcal{X}|}
$$
\n(relative)

Fraction of transactions $\mathcal T$ in dataset $\mathcal X$ that cover the itemset $\mathcal A$

$$
support_count(\mathcal{A}) = |[\mathcal{T} \in \mathcal{X} \mid \mathcal{A} \subseteq \mathcal{T}]|
$$

(absolute, also called frequency or count)

Frequent Itemsets – Support

$$
\text{support}(\mathcal{A}) = \frac{|\mathcal{T} \in \mathcal{X} | \mathcal{A} \subseteq}{|\mathcal{X}|}
$$
\n(relative)

Fraction of transactions $\mathcal T$ in dataset $\mathcal X$ that cover the itemset $\mathcal A$

$$
support_count(\mathcal{A}) = |[\mathcal{T} \in \mathcal{X} \mid \mathcal{A} \subseteq \mathcal{T}]|
$$

(absolute, also called frequency or count)

- Minimum support threshold min_sup : lower bound for $support(A)$
- An itemset is **frequent** if its support is higher than min_sup
- Frequent itemsets are used to find **association rules**

Support – Example

Dataset $\mathcal{X} = [{\text{Che, Mil}, \text{Pas}}, {\text{Chi}, \text{Mil}}, {\text{Che}, \text{Bre}}, {\text{Che}, \text{Bre}, \text{Mil}}]$

Support – Example

Dataset $\mathcal{X} = [{\{Che, Mil, Pas\}, \{Chi, Mil\}, \{Che, Bre\}, \{Che, Bre, Mil\} }]$

Itemset $A = \{Che, Mil\} \subseteq \mathcal{I}$ support_count(A) = $|[\mathcal{T} \in \mathcal{X} \mid \mathcal{A} \subseteq \mathcal{T}]| = |[\mathcal{T}_1, \mathcal{T}_4]| = 2$ support $(\mathcal{A}) = \frac{\left| [\mathcal{T} \in \mathcal{X} | \mathcal{A} \subseteq \mathcal{T}] \right|}{\left| \mathcal{X} \right|} = \frac{\left| [\mathcal{T}_1, \mathcal{T}_4] \right|}{4} = \frac{2}{4}$ A is frequent if min_sup ≤ 0.5

Support – Example

Dataset $\mathcal{X} = \{\{Che, Mil, Pas\}, \{Chi, Mil\}, \{Che, Bre\}, \{Che, Bre, Mil\}\}\$

Itemset $\mathcal{A} = \{Che, Mil\} \subseteq \mathcal{I}$ support_count(A) = $|[\mathcal{T} \in \mathcal{X} \mid \mathcal{A} \subseteq \mathcal{T}]|$ = $|[\mathcal{T}_1, \mathcal{T}_4]|$ = 2 support $(\mathcal{A}) = \frac{\left| [\mathcal{T} \in \mathcal{X} | \mathcal{A} \subseteq \mathcal{T}] \right|}{\left| \mathcal{X} \right|} = \frac{\left| [\mathcal{T}_1, \mathcal{T}_4] \right|}{4} = \frac{2}{4}$ A is frequent if min_sup ≤ 0.5

Itemset $\mathcal{B} = \{Mil\} \subset \mathcal{I}$ support_count $(\mathcal{B}) = |[\mathcal{T} \in \mathcal{X} \mid \mathcal{A} \subseteq \mathcal{T}]| = |[\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_4]| = 3$ support $(\mathcal{B}) = \frac{\left| [\mathcal{T} \in \mathcal{X} | \mathcal{B} \subseteq \mathcal{T}] \right|}{\left| \mathcal{X} \right|} = \frac{\left| [\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_4] \right|}{4} = \frac{3}{4}$ B is frequent if min_sup ≤ 0.75

Support – Example

Support – Summary

Support

- A measure of the popularity (frequency) of an itemset.
- Calculated as the fraction of transactions in a dataset that contain the itemset.

$$
\text{support}(\mathcal{A}) = \frac{||\mathcal{T} \in \mathcal{X} | \mathcal{A} \subseteq \mathcal{T}]|}{|\mathcal{X}|}
$$

- Any itemset with a support below the threshold is considered to be infrequent.
- Support is also used to find association rules

Frequent Itemsets

- 1. Introduction
- **2. Properties of Frequent Itemsets**
- 3. A-Priori Algorithm
- 4. FP-Growth Algorithm

Problem Statement

Given dataset $X \in M(\mathbb{P}(\mathcal{I}))$ and minimum support threshold min_sup , find all frequent non-empty itemsets:

$$
\{\mathcal{A}\subseteq\mathcal{I}\mid\mathrm{support}(\mathcal{A})\geq\min\mathrm{sup}\}
$$

Naïve Approach

- Given $A \subseteq \mathcal{I}$, it is possible to check whether $support(A) \geq min_sup$ by testing all transactions
- If there are \bm{D} unique items, then there are $\bm{2^D-1}$ candidate itemsets that can all be tested individually
- However, this can be very time consuming...

Assume $D = 50000$ products

$2^D - 1 =$

Subsets of Frequent Itemsets Are Also Frequent

- Assume $\mathcal{A} = \{ I_1, I_2, \ldots, I_{100} \}$ and $support(\mathcal{A}) \geq min_sup$
- All subsets of A are also frequent
- There are $\binom{100}{4}$ $\mathbf{1}$ $= 100$ frequent itemsets having 1 item
- There are $\binom{100}{L}$ \boldsymbol{k} frequent itemsets having \bm{k} items ("100 choose k ")
- There are $\binom{100}{4}$ $\mathbf{1}$ $+$ **100** $\mathbf{2}$ $+ \cdots$ **100** 99 $= 2^{100} - 2 = 1.27 \times 10^{30}$ smaller frequent itemsets contained in A

$$
\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)...(n-k+1)}{k(k-1)...1}
$$

Summary

- We should avoid exhaustively testing all candidate itemsets
- We need to focus on the "interesting" ones
- \rightarrow Closed itemsets

Closed Itemsets

- An itemset $\mathcal A$ is closed if there is no proper superset $\mathcal B\supset\mathcal A$ that has the same support
- If A is closed, then support(A) > support(B) for any $B \supset A$

adding any item to $\mathcal A$ will always **reduce support**

Closed Frequent Itemsets

- An itemset $\mathcal A$ is closed if there is no proper superset $\mathcal B\supset\mathcal A$ that has the same support
- If A is closed, then support(A) > support(B) for any $B \supset A$

• $\mathcal A$ is frequent if its support is higher than threshold min_sup

closed frequent itemsets are **closed and frequent**

Maximal Frequent Itemsets

An itemset $\mathcal A$ is a maximal frequent itemset if:

- \cdot $\mathcal A$ is frequent
- there is no proper superset $\mathcal{B} \supset \mathcal{A}$ that is also frequent

Relationships

An itemset A is a closed frequent itemset if:

- $\mathcal A$ is frequent
- there is no proper superset $\mathcal{B} \supset \mathcal{A}$ that has the same support

An itemset A is a maximal frequent itemset if:

- $\mathcal A$ is frequent
- there is no proper superset $\mathcal{B} \supset \mathcal{A}$ that is also frequent

Hence, maximal frequent itemsets are closed by definition.

Example

Assume:

$$
\mathcal{I} = \{I_1, I_2, \ldots, I_{100}\}, \text{min_sup} = \frac{5}{20} = 0.25
$$

$$
\mathcal{X} = [\{I_1, I_2, \ldots, I_{50}\}^{10}, \{I_1, I_2, \ldots, I_{100}\}^{10}]
$$

- There are $2^{100} 1 = 1.27 \times 10^{30}$ itemsets; all are frequent.
- There are two closed frequent itemsets:

•
$$
\mathcal{A} = \{I_1, I_2, \ldots, I_{50}\}
$$
 with support(\mathcal{A}) = $\frac{20}{20}$

•
$$
B = \{I_1, I_2, ..., I_{100}\}
$$
 with **support** $(B) = \frac{10}{20}$

• There is only one maximal frequent itemset: $\mathcal{B} = \{I_1, I_2, \ldots, I_{100}\}\$

Example

Assume:

$$
\mathcal{I} = \{I_1, I_2, \ldots, I_{100}\}, \text{min_sup} = \frac{15}{20} = 0.75
$$

$$
\mathcal{X} = [\{I_1, I_2, \ldots, I_{50}\}^{10}, \{I_1, I_2, \ldots, I_{100}\}^{10}]
$$

- There are $2^{50} 1 = 3.17 \times 10^{15}$ itemsets that are frequent.
- There is one closed frequent itemsets:

•
$$
A = \{I_1, I_2, ..., I_{50}\}
$$
 with **support**(A) = $\frac{20}{20}$

• There is only one maximal frequent itemset: $\mathcal{A} = \{I_1, I_2, \ldots, I_{50}\}$

Example

Assume:

$$
\mathcal{I} = \{I_1, I_2, \ldots, I_{100}\}, \boldsymbol{min_sup} = \frac{15}{20} \\ \mathcal{X} = \left[\{I_1, I_2, \ldots, I_{99}\}\right]^{10}, \{I_2, I_3, \ldots, I_{100}\}^{10}\right]
$$

- There are $2^{98} 1 = 1.17 \times 10^{29}$ itemsets that are frequent.
- There is one closed frequent itemset:

•
$$
\mathcal{A} = \{I_2, I_3, \ldots, I_{99}\} \text{ with } support(\mathcal{A}) = \frac{20}{20}
$$

• There is only one maximal frequent itemset: $\mathcal{A} = \{I_2, I_3, \ldots, I_{99}\}\$

Observations

- The supports of the closed frequent itemsets provide complete information about the supports of all frequent item sets
- Formally, assume:
	- $A \subset \mathcal{B}$,
	- β is a closed frequent itemset, and
	- there is no closed frequent itemset B'such that $A \subseteq B' \subset B$. Then $support(\mathcal{A}) = support(\mathcal{B}).$
- \rightarrow It suffices to store closed frequent itemsets (maximal frequent itemsets provide less information)

Summary

- Both maximal frequent itemsets and closed frequent itemsets are subsets of frequent itemsets.
- Maximal frequent itemsets are closed by definition.
- Closed frequent itemsets provide a more comprehensive list of frequent patterns

no proper superset has the same support

no proper superset that is also frequent

Frequent Itemsets

- 1. Introduction
- 2. Properties of Frequent Itemsets
- **3. Apriori Algorithm**
- 4. FP-Growth Algorithm

- Introduced by Rakesh Agrawal and Ramakrishnan Srikant in "Fast Algorithms for Mining Association Rules in Large Databases. VLDB 1994: 487-499"
- Computes frequent itemsets / association rules in a dataset
- Uses a "bottom up" approach (starts with candidate itemsets of size one)
- Extends frequent subsets one item at a time (candidate generation)
- Avoids unnecessary checks by re-using information from smaller subsets and exploiting frequent itemsets' properties

 $f\mathcal{L}_k = \{ \mathcal{A} \subseteq \mathcal{I} ~|~ support(\mathcal{A}) \geq \min\sup \wedge |\mathcal{A}| = k \}$ frequent itemsets of length k

1. Candidate generation: use the set \mathcal{L}_k of frequent itemsets of length k to generate the candidate set \mathcal{C}_{k+1} of candidate itemsets with length $k+1$

 $f\mathcal{L}_k = \{ \mathcal{A} \subseteq \mathcal{I} ~|~ support(\mathcal{A}) \geq \min\sup \wedge |\mathcal{A}| = k \}$ frequent itemsets of length k

1. Candidate generation: use the set \mathcal{L}_k of frequent itemsets of length k to generate the candidate set \mathcal{C}_{k+1} of candidate itemsets with length $k+1$

does not need the input data (efficient)

 $f_k = \{A \subseteq \mathcal{I} \mid support(A) \geq \min\sup \wedge |\mathcal{A}| = k\}$ frequent itemsets of length k

- 1. Candidate generation: use the set \mathcal{L}_k of frequent itemsets of length k to generate the candidate set \mathcal{C}_{k+1} of candidate itemsets with length $k+1$
- 2. Pruning (antimonotonicity): all nonempty subsets of a frequent itemset must also be frequent \rightarrow superset of an infrequent itemset cannot be frequent

does not need the input data (efficient)

 $f_k = \{A \subseteq \mathcal{I} \mid support(A) \geq \min\sup \wedge |\mathcal{A}| = k\}$ frequent itemsets of length k

- 1. Candidate generation: use the set \mathcal{L}_k of frequent itemsets of length k to generate the candidate set \mathcal{C}_{k+1} of candidate itemsets with length $k+1$
- 2. Pruning (antimonotonicity): all nonempty subsets of a frequent itemset must also be frequent \rightarrow superset of an infrequent itemset cannot be frequent
- 3. Testing candidates: use the dataset to filter the infrequent itemsets from \mathcal{C}_{k+1} and obtain \mathcal{L}_{k+1}

needs the input data (inefficient)

does not need the

input data (efficient)

 $f_k = \{A \subseteq \mathcal{I} \mid support(A) \geq \min\sup \wedge |\mathcal{A}| = k\}$ frequent itemsets of length k

- Candidate generation: use the set \mathcal{L}_k of frequent itemsets of length k to generate the candidate set \mathcal{C}_{k+1} of candidate itemsets with length $k+1$
- 2. Pruning (antimonotonicity): all nonempty subsets of a frequent itemset must also be frequent \rightarrow superset of an infrequent itemset cannot be frequent
- 3. Testing candidates: use the dataset to filter the infrequent itemsets from \mathcal{C}_{k+1} and obtain \mathcal{L}_{k+1}

needs the input data (inefficient)

does not need the

input data (efficient)

 \mathcal{L}_1

Candidate Generation – Leveling

Candidate Generation – Leveling

Leveling is used to generate candidate itemset \mathcal{C}_{k+1} from \mathcal{L}_k :

For any $A \in \mathcal{L}_{k+1}$ there exist $\mathcal{A}', \mathcal{A}'' \in \mathcal{L}_k$ such that $\mathcal{A} = \mathcal{A}' \cup \mathcal{A}''$

Assume that the items are ordered (I_1, I_2, \dots) and that $\mathcal{A} = \{I_1, I_2, \ldots, I_{k-1}, I_k, I_{k+1}\} \in \mathcal{L}_{k+1}$

If A is frequent, its subsets must be frequent, in particular: $\mathcal{A}' = \{I_1, I_2, \ldots, I_{k-1}, I_k\} \in \mathcal{L}_k$ $\mathcal{A}'' = \{I_1, I_2, \ldots, I_{k-1}, I_{k+1}\} \in \mathcal{L}_k$ $\mathcal{A}' \cup \mathcal{A}'' = \{I_1, I_2, \ldots, I_{k-1}, I_k, I_{k+1}\} \in \mathcal{L}_{k+1} = \mathcal{A}$

Candidate Generation – Leveling

Leveling is used to generate candidate itemset \mathcal{C}_{k+1} from \mathcal{L}_k :

For any $A \in \mathcal{L}_{k+1}$ there exist $\mathcal{A}', \mathcal{A}'' \in \mathcal{L}_k$ such that $\mathcal{A} = \mathcal{A}' \cup \mathcal{A}''$

Assume that the items are ordered (I_1, I_2, \dots) and that $\mathcal{A} = \{I_1, I_2, \ldots, I_{k-1}, I_k, I_{k+1}\} \in \mathcal{L}_{k+1}$

If A is frequent, its subsets must be frequent, in particular: $\mathcal{A}' = \{I_1, I_2, \ldots, I_{k-1}, I_k\} \in \mathcal{L}_k$ $\mathcal{A}'' = \{I_1, I_2, \ldots, I_{k-1}, I_{k+1}\} \in \mathcal{L}_k$ $\mathcal{A}' \cup \mathcal{A}'' = \{I_1, I_2, \ldots, I_{k-1}, I_k, I_{k+1}\} \in \mathcal{L}_{k+1} = \mathcal{A}$

 \Rightarrow We can generate \mathcal{C}_{k+1} by joining itemsets $\mathcal{A}', \mathcal{A}'' \in \mathcal{L}_k$ which differ in one item

Candidate Generation

Thanks to leveling:

- Apriori creates the set of candidate itemsets of length k+1, \mathcal{C}_{k+1} , by joining two frequent itemsets of length *k*
- This can be done efficiently without creating duplicates
- Next, we prune the set \mathcal{C}_{k+1} based on infrequent subsets

If A is frequent, its subsets must be frequent, in particular: $\mathcal{A}' = \{I_1, I_2, \ldots, I_{k-1}, I_k\} \in \mathcal{L}_k$ $\mathcal{A}'' = \{I_1, I_2, \ldots, I_{k-1}, I_{k+1}\} \in \mathcal{L}_k$ $\mathcal{A}' \cup \mathcal{A}'' = \{I_1, I_2, \ldots, I_{k-1}, I_k, I_{k+1}\} \in \mathcal{L}_{k+1} = \mathcal{A}$

 \Rightarrow We can generate \mathcal{C}_{k+1} by joining itemsets $\mathcal{A}', \mathcal{A}'' \in \mathcal{L}_k$ which differ in one item

all itemsets of length $k+1$

 \mathcal{C}_{k+1} before pruning

 \mathcal{C}_{k+1} after pruning \mathcal{L}_{k+1}

Pruning – Antimonotonicity

Antimonotonicity is used to prune the candidate set:

If B is a frequent itemset, any subset $A \subseteq B$ must be frequent \Rightarrow If a subset $A \subseteq B$ is infrequent, then B is infrequent

For any $\mathcal{A} \subset \mathcal{I}$ and $\mathcal{B} \subset \mathcal{I}$:

- 1. If $A \subseteq \mathcal{B}$, then support $(A) \geq$ support (\mathcal{B})
- 2. If $A \subseteq B$ and support $(B) \ge \min$ -sup, then support $(\mathcal{A}) \geq \min$ sup
- 3. If $A \subseteq B$ and support $(A) < \min$ sup, then support (\mathcal{B}) < min_sup

Pruning – Antimonotonicity

Antimonotonicity is used to prune the candidate set:

If B is a frequent itemset, any subset $A \subseteq B$ must be frequent \Rightarrow If a subset $A \subseteq B$ is infrequent, then B is infrequent

- 1. If {Apple} or {Banana} is infrequent, then {Apple, Banana} is infrequent
- 2. If {Grapes} or {Banana} is infrequent, then {Grapes, Banana} is infrequent
- 3. If {Apples} or {Grapes} is infrequent, then {Apples, Grapes} is infrequent

Pruning – Antimonotonicity

Antimonotonicity is used to prune the candidate set:

If B is a frequent itemset, any subset $A \subseteq B$ must be frequent \Rightarrow If a subset $A \subseteq B$ is infrequent, then B is infrequent

- 1. If {Apple} or {Banana} is infrequent, then {Apple, Banana} is infrequent
- 2. If {Grapes} or {Banana} is infrequent, then {Grapes, Banana} is infrequent
- 3. If {Apples} or {Grapes} is infrequent, then {Apples, Grapes} is infrequent

Pruning – Antimonotonicity

Antimonotonicity is used to prune the candidate set:

If \mathcal{B} is a frequent itemset, any subset $\mathcal{A} \subseteq \mathcal{B}$ must be frequent \Rightarrow If a subset $A \subseteq B$ is infrequent, then B is infrequent

Testing Candidates

- After candidate generation and pruning test the remaining candidate itemsets
- We scan the dataset $\mathcal X$ and remove all infrequent candidate itemsets from \mathcal{C}_{k+1} to obtain \mathcal{L}_{k+1}

Testing Candidates

- After candidate generation and pruning test the remaining candidate itemsets
- We scan the dataset $\mathcal X$ and remove all infrequent candidate itemsets from \mathcal{C}_{k+1} to obtain \mathcal{L}_{k+1}
- Consider all transactions $\mathcal{T} \in \mathcal{X} \in \mathbb{M}(\mathbb{P}(\mathcal{I}))$
- For each candidate itemset $A \in \mathcal{C}_k$ increment the corresponding counter if $\mathcal{A} \subseteq \mathcal{T}_k$
- This returns the frequencies (**support_count**) of the candidate itemsets and we can compute \mathcal{L}_{k+1} from \mathcal{C}_{k+1}

$$
\mathcal{L}_{k+1} = \{ \mathcal{A} \in \mathcal{C}_{k+1} | \text{support}(\mathcal{A}) \ge \text{min_sup} \}
$$

Algorithm

Apriori algorithm:

Example

 \mathcal{C}_1

Example

 \mathcal{C}_2

Example

 \mathcal{X}

Optimizations

Further optimizations

- Distributing the data (can be done in various ways)
- Gradually removing transactions not containing any frequent itemset of length k
- **Sampling**

Limitations

- It may remain challenging to generate the candidate sets (may be huge)
- Each candidate needs to be tested against the whole dataset
- \rightarrow FP-Growth is an approach that aims to overcome these limitations

Frequent Itemsets

- 1. Introduction
- 2. Properties of Frequent Itemsets
- 3. Apriori Algorithm
- **4. FP-Growth Algorithm**

Frequent Pattern Growth Algorithm

- Introduced by Jiawei Han, Jian Pei, Yiwen Yin in "Mining Frequent Patterns without Candidate Generation. SIGMOD Conference 2000: 1-12"
- Based on constructing the Frequent Pattern Tree (FP-Tree)
- Avoids generation of many candidates
- Depth-first rather than breadth-first
- Requires only two passes over the (potentially huge) dataset

Motivation

FP-Growth vs Apriori Runtime

Graph is based on Jiawei Han, Jian Pei, Yiwen Yin in "Mining Frequent Patterns without Candidate Generation. SIGMOD Conference 2000: 1-12"
FP-Growth Steps

- 1. Determine the frequency of each item (first pass through the dataset)
- 2. Sort $\mathcal{I} = \{I_1, \ldots, I_D\}$ based on their frequencies $(I_1$ is most frequent, I_D is the least frequent)
- 3. Remove the non-frequent items
- 4. The remaining items in each transactions are ordered by frequency (same as above)
- 5. This can be used to build a so-called prefix tree (second pass trough the dataset)

FP-Growth Steps

- 1. Determine the frequency of each item (first pass through the dataset)
- 2. Sort $\mathcal{I} = \{I_1, \ldots, I_D\}$ based on their frequencies (I_1 is most frequent, I_D is the least frequent)
- 3. Remove the non-frequent items
- 4. The remaining items in each transactions are ordered by frequency (same as above)
- 5. This can be used to build a so-called prefix tree (second pass trough the dataset)

6. The resulting FP-tree contains all information needed to find the frequent itemsets of any length (no need to traverse the dataset again)

Dataset $\mathcal{X} \in \mathbb{M}(\mathbb{P}(\mathcal{J}))$

1. Determine the frequencies of items

 $\overline{2}$

 $\overline{5}$

2. Order the items based on frequency

Dataset $\mathcal{X} \in \mathbb{M}(\mathbb{P}(\mathcal{J}))$

- 1. Determine the frequencies of items
- 2. Order the items based on frequency

- 3. Remove non-frequent items
- 4. Sort the items in the transactions

 $\overline{5}$

Coop

5. Build the FP-tree going through each transaction

0

5. Build the FP-tree going through each transaction

 $\overline{5}$

Coop

 $\overline{5}$

Coo

FP-Tree – Encodes The Dataset

We can read the transactions from the FP-tree

 $\mathcal{X} = [\{B, A, G\}^{1-0}, \{B, A\}^{3-1}, \{B, G\}^{2-0}, \{A, G\}^{1-0}]$ $=[\{B, A, G\}, \{B, A\}^2, \{B, G\}^2, \{A, G\}]$

FP-Growth Algorithm

FP-Tree – Cannot Cut Naïvely

FP-Growth Algorithm

FP-Tree – Frequent Itemsets

Next: 6. Mining the FP-tree to obtain frequent itemsets

6

FP-Tree Encodes Dataset – Another Example

Mining the FP-Tree – Overview

- For each frequent item, create a conditional FP-tree (starting with the least frequent one)
- The conditional FP-tree considers all transactions ending with this item
- Apply this recursively
- Due to recursion, we also consider postfixes that contain multiple elements
- The ordering ensures that postfixes are considered only once

Node Links

Node Links

Node links are like 'altitude lines' because of total order of items

Consider Postfix G

Consider Postfix G

Towards the Conditional FP-Tree for Postfix G

Towards the Conditional FP-Tree for Postfix G

Towards the Conditional FP-Tree for Postfix G

Conditional FP-Tree for Postfix G

{ … , G } Mine the Conditional FP-Tree for *G* to find frequent itemsets that contain *G* (Recursion)

Conditional FP-Tree for Postfix G

Conditional FP-Tree for Postfix G

Consider Postfix A

Consider Postfix A

Consider Postfix A

Towards the Conditional FP-Tree for Postfix A

Towards Conditional FP-Tree for Postfix A

Determined frequencies of items

Conditional FP-Tree for Postfix A

Consider Postfix B

Consider Postfix B

Towards Conditional FP-Tree for Postfix B

Conditional FP-Tree for Postfix B

Conditional FP-tree is empty, i.e., no additional frequent itemsets with *B*

0

Conditional FP-Tree for Postfix B

0

FP-Tree Mining

All Frequent Itemsets Generated

Frequent itemsets mined

FP-Growth Algorithm – Summary

- Idea: frequent pattern growth based on FP-tree
- Method:
	- Construct the FP-tree from the dataset (previous video)
	- For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
	- Recursively repeat the process on each newly created conditional FP-tree until the tree is empty

FP-Growth Algorithm – Summary

• Advantages:

 \checkmark Only two passes through the dataset are needed (when constructing the tree)

- \checkmark Avoiding testing many hopeless candidates
- \checkmark Very fast when FP-tree fits in main memory
- However: approach has problems when FP-tree is too large to fit into memory

Frequent Itemsets – Summary

- Pattern mining is a form of unsupervised learning
- Frequent itemsets are the basis for finding patterns (ideas can be transferred to other patterns)
- Two well-known algorithms using generally applicable concepts:
	- Apriori algorithm
	- FP-growth algorithm
- Outlook
	- There may be many frequent "patterns"
	- How to determine which ones are surprising / interesting?

Association Rules – Preview

(one of the topics of the next lecture)

{Cheese, Bread} \Rightarrow {Milk}

People that buy Cheese and Bread also tend to buy Milk.

 ${Track1, Track2} \Rightarrow {Track3}$

Students that take the Track 1 and Track 2 modules of BridgingAI also tend to take the Track 3 courses. (We hope you do!)

 ${Bitburger} \Rightarrow {Heineken, Palm}$

People that buy Bitburger beer tend to buy both Heineken and Palm beer.

- ${Carbonara, Margherita } \Rightarrow {Espresso, Tiramisu}$ People that buy Carbonara and Margherita also tend to buy Espresso and Tiramisu.
- {part-245, part-345, part-456} \Rightarrow {part-372} When Parts 245, 345, and 456 are replaced, then often also Part 372 is replaced.