
Elements of Machine Learning

& Data Science

Prof. Wil van der Aalst

Marco Pegoraro, M.Sc.
Christopher Schwanen, M.Sc.
Tsunghao Huang, M.Sc.

Frequent Itemsets
Lecture 9

Frequent Itemsets

1. Introduction

2. Properties of Frequent Itemsets

3. A-Priori Algorithm

4. FP-Growth Algorithm

Pattern Mining

Introduction

• Finding surprising patterns in the input data

• Types of patterns:

- Frequent itemsets

- Association rules

- Sequential patterns

- Partial orders

- Subgraphs

Itemset Data

Introduction

f1 f2 f3 f4 … fD

Each feature refers to an item

(e.g., a product, disease, song,

course, or error code)

Each cell describes the

presence of the item (Boolean

0/1 or Positive Integer Count)

ID

1

2

3

4

5

…

Each instance is a

transaction

Itemset Data – Example

Introduction

Itemset Data – Example

Introduction

ID …

1 2 2 0 3 2

2 0 0 1 1 0

3 2 1 0 0 0

4 0 1 0 0 0

5 0 0 0 0 2

… … … … … …

Itemset Data – Example

Introduction

ID …

1 True True False True True

2 False False True True False

3 True True False False False

4 False True False False False

5 False False False False True

… … … … … …

Other Itemset Data Examples

Introduction

Rows Columns

EdX users Courses taken

Spotify users Songs Played

Netflix users Movies Watched

Patients in hospital Diseases

Repair bills Components replaced

… …

Application of Frequent Itemsets

Introduction

ID …

1 True True False True True

2 False False True True False

3 True True False True False

4 False True False True False

5 False False False False True

… … … … … …

Frequent Itemsets (movies)

Application of Frequent Itemsets

Introduction

ID …

1 True True False True True

2 True True True False False

3 True True False True False

4 True False False False False

5 False False False False True

… … … … …

Frequent Itemsets

Introduction

• A notorious success story: the Tesco

Clubcard

• Introduced in 1995, it was the first loyalty

card with automatic data collection

• Widely regarded as responsible for Tesco’s

supremacy in the UK

• 1bn£ of increase in sales (4%) in one year

• Today, the Clubcard program is still

incredibly profitable, even though Tesco

gives away about 1bn£ in rewards and

discounts each year!

“You know more about my customers after

three months than I know after 30 years.”

- Lord MacLaurin, chairman for Tesco, talking

to the data scientists of the Clubcard program

Frequent Itemsets – Notation

Introduction

• is the set of all possible items

• is an itemset

• A transaction is a non-empty itemset

• A dataset is a collection of transactions

• Technically
(is the multiset and is the powerset operator)

Frequent Itemsets – Notation Example

• Set of all items

• Transaction

• Dataset with four transactions

• Dataset with ten transactions

Introduction

ID …

1 2 (true) 0 (false) 0 (false) 3 (true) 0 (false) 2 (true)

2 0 (false) 0 (false) 1 (true) 1 (true) 0 (false) 0 (false)

3 2 (true) 1 (true) 0 (false) 0 (false) 0 (false) 0 (false)

4 0 (false) 1 (true) 0 (false) 0 (false) 0 (false) 0 (false)

Che Bre Chi Mil Pas

• Set of all items

• Transaction

• Dataset with four transactions

ID …

1 2 (true) 0 (false) 0 (false) 3 (true) 0 (false) 2 (true)

2 0 (false) 0 (false) 1 (true) 1 (true) 0 (false) 0 (false)

3 2 (true) 1 (true) 0 (false) 0 (false) 0 (false) 0 (false)

4 0 (false) 1 (true) 0 (false) 0 (false) 0 (false) 0 (false)

Frequent Itemsets – Notation Generalization

Introduction

We will consider only itemsets that are proper sets (not multisets). However, generalization is trivial.

Che Bre Chi Mil Pas

Frequent Itemsets – Support

Introduction

Fraction of transactions in

dataset that cover the itemset
(relative)

(absolute, also called frequency or count)

Frequent Itemsets – Support

• Minimum support threshold 𝒎𝒊𝒏_𝒔𝒖𝒑: lower bound for 𝒔𝒖𝒑𝒑𝒐𝒓𝒕 𝐴

• An itemset is frequent if its support is higher than 𝒎𝒊𝒏_𝒔𝒖𝒑

• Frequent itemsets are used to find association rules

Introduction

Fraction of transactions in

dataset that cover the itemset
(relative)

(absolute, also called frequency or count)

Support – Example

Introduction

ID …

1 2 (true) 0 (false) 0 (false) 3 (true) 0 (false) 2 (true)

2 0 (false) 0 (false) 1 (true) 1 (true) 0 (false) 0 (false)

3 2 (true) 1 (true) 0 (false) 0 (false) 0 (false) 0 (false)

4 1 (true) 1 (true) 0 (false) 1 (true) 0 (false) 0 (false)

Che Bre Chi Mil Pas

Support – Example

Introduction

ID …

1 2 (true) 0 (false) 0 (false) 3 (true) 0 (false) 2 (true)

2 0 (false) 0 (false) 1 (true) 1 (true) 0 (false) 0 (false)

3 2 (true) 1 (true) 0 (false) 0 (false) 0 (false) 0 (false)

4 1 (true) 1 (true) 0 (false) 1 (true) 0 (false) 0 (false)

Che Bre Chi Mil Pas

Support – Example

Introduction

ID …

1 2 (true) 0 (false) 0 (false) 3 (true) 0 (false) 2 (true)

2 0 (false) 0 (false) 1 (true) 1 (true) 0 (false) 0 (false)

3 2 (true) 1 (true) 0 (false) 0 (false) 0 (false) 0 (false)

4 1 (true) 1 (true) 0 (false) 1 (true) 0 (false) 0 (false)

Che Bre Chi Mil Pas

Support – Example

Introduction

General rule:

Subset of an itemset has higher or

equal support than this itemset

ID …

1 2 (true) 0 (false) 0 (false) 3 (true) 0 (false) 2 (true)

2 0 (false) 0 (false) 1 (true) 1 (true) 0 (false) 0 (false)

3 2 (true) 1 (true) 0 (false) 0 (false) 0 (false) 0 (false)

4 1 (true) 1 (true) 0 (false) 1 (true) 0 (false) 0 (false)

Che Bre Chi Mil Pas

Support – Summary

Support

• A measure of the popularity (frequency) of an itemset.

• Calculated as the fraction of transactions in a dataset that contain the itemset.

• Any itemset with a support below the threshold is considered to be infrequent.

• Support is also used to find association rules

Introduction

Frequent Itemsets

1. Introduction

2. Properties of Frequent Itemsets

3. A-Priori Algorithm

4. FP-Growth Algorithm

Problem Statement

Given dataset and minimum support threshold 𝒎𝒊𝒏_𝒔𝒖𝒑,

find all frequent non-empty itemsets:

Properties of Frequent Itemsets

Naïve Approach

• Given , it is possible to check whether 𝒔𝒖𝒑𝒑𝒐𝒓𝒕() ≥ 𝒎𝒊𝒏_𝒔𝒖𝒑 by testing all transactions

• If there are 𝑫 unique items, then there are 𝟐𝑫 − 𝟏 candidate itemsets that can all be tested

individually

• However, this can be very time consuming…

Properties of Frequent Itemsets

Assume 𝑫 = 𝟓𝟎 𝟎𝟎𝟎 products

Properties of Frequent Itemsets

𝟐𝐷 − 𝟏 =
3,160,699,436,856,317,896,135,924,659,945,691,788,984,676,387,834,935,666,847,743,155,564,943,937,902,009,550,651,067,144,922,529,420,974,282,690,343,798,061,622,891,650,247,060,091,533,595,130,170,365,868,108,099,970,116,531,087,467,047,583,722,093,787,639,674,649,765,662,074,366,466,883,324,927,932,743,926,222,226,256,325,646,619,479,597,070,853,065,410,126,319,556,64

5,095,487,584,255,731,625,229,939,513,738,335,892,649,026,005,867,435,951,184,963,615,454,162,198,009,836,540,553,902,746,189,836,926,616,803,054,602,986,713,771,300,764,236,103,912,584,316,984,387,046,421,891,042,940,862,409,285,760,387,607,642,178,660,447,084,278,582,343,741,975,788,782,575,397,255,679,835,385,509,255,617,699,530,378,773,285,612,149,746,612,966,192,65

1,253,693,114,313,273,858,994,605,409,771,445,163,688,490,715,356,137,720,041,811,636,018,280,718,733,780,759,203,810,695,576,005,864,810,237,900,789,639,882,550,370,233,732,760,551,157,423,186,221,777,437,962,235,113,685,057,004,875,812,625,837,741,639,074,014,635,869,254,467,870,669,671,658,811,749,944,572,950,947,120,522,955,828,413,262,134,950,123,343,450,944,893,38

1,086,445,704,327,516,608,478,853,295,735,214,794,279,795,422,828,861,127,478,241,396,081,419,738,759,639,852,247,634,596,698,774,287,547,984,270,270,829,223,110,217,158,518,692,621,481,994,384,293,987,162,186,350,943,113,710,209,892,772,971,716,110,929,927,731,636,487,052,992,987,749,952,582,075,199,999,823,623,336,378,201,206,536,182,409,135,673,260,858,434,397,680,32

4,294,431,695,532,313,988,094,705,825,127,170,281,671,342,756,132,130,834,630,626,735,161,518,877,001,479,353,099,675,421,568,669,161,387,971,545,385,350,702,911,535,042,214,105,270,064,184,049,195,321,693,402,645,502,131,017,185,839,794,236,528,392,026,118,916,801,534,722,139,870,222,746,741,395,902,492,128,586,493,084,122,499,921,428,423,167,659,386,991,199,053,145,44

0,232,918,025,337,294,792,121,480,817,320,557,424,817,134,341,166,560,131,328,380,547,089,162,451,960,863,019,896,841,277,608,267,473,071,032,610,361,884,348,741,832,609,100,033,764,267,372,951,754,668,207,732,140,976,344,881,559,366,912,679,236,124,697,823,644,196,584,984,332,119,466,217,601,083,183,663,311,742,410,337,555,621,104,734,292,489,903,235,192,160,821,330,89

8,029,535,914,395,120,861,478,951,157,725,966,695,019,256,259,017,910,724,870,747,305,048,741,631,683,422,158,829,592,626,998,675,935,495,968,355,706,034,794,377,249,704,826,237,385,353,428,041,477,614,977,159,200,366,168,819,484,882,369,473,577,673,820,234,304,059,320,536,368,181,780,663,852,770,156,176,045,997,023,854,188,210,931,505,764,603,497,418,111,116,833,045,59

4,683,460,761,810,060,347,938,666,107,376,407,376,538,161,433,794,082,201,152,452,755,038,680,915,248,667,576,037,816,448,107,114,928,454,957,358,973,769,979,101,775,081,280,563,858,425,659,985,551,853,002,945,198,136,847,407,803,098,731,016,476,002,188,721,167,044,725,016,609,620,417,517,264,461,388,623,721,099,795,827,561,842,233,211,027,265,707,652,869,227,549,971,36

0,421,138,523,837,935,337,610,829,930,530,940,245,818,717,397,767,877,474,556,856,115,648,381,712,850,949,057,429,834,689,786,923,900,238,199,668,462,420,124,975,014,460,176,937,757,543,706,037,088,013,809,808,763,009,055,350,430,278,490,509,069,412,005,546,309,455,095,193,839,024,869,890,529,164,588,776,426,256,822,355,723,140,640,821,450,894,163,789,455,395,044,742,35

8,602,248,211,119,402,554,274,364,607,815,242,974,440,790,954,476,462,235,421,343,042,061,888,188,431,752,632,527,921,982,019,539,829,676,482,175,124,356,602,558,024,358,281,709,710,521,718,828,251,944,407,816,772,714,544,977,673,460,983,558,935,168,237,819,654,683,418,376,457,904,080,539,202,530,627,669,869,881,215,398,947,957,922,545,005,739,842,763,519,814,852,704,76

5,560,828,463,466,036,149,792,281,182,326,943,206,886,419,926,850,135,063,162,179,241,871,274,796,024,802,742,686,225,024,907,605,632,447,471,332,642,008,409,940,104,913,983,385,874,283,001,746,786,647,879,747,994,089,213,330,239,015,474,018,013,137,685,271,043,254,385,416,804,411,944,936,017,477,858,365,910,618,800,586,138,894,786,098,262,095,903,664,034,479,708,143,59

1,509,590,289,319,757,152,692,646,380,447,474,820,059,221,354,059,445,093,575,442,716,973,331,098,176,716,707,848,689,462,376,523,334,556,192,193,952,316,116,218,228,442,266,069,078,290,033,668,168,882,789,937,930,106,606,528,021,679,497,563,218,701,433,041,385,362,553,384,155,785,144,110,504,431,662,251,892,992,899,207,988,896,988,077,083,065,532,889,768,442,011,243,43

6,599,859,452,840,889,686,495,279,989,903,477,096,078,575,541,951,328,806,322,851,950,252,552,592,344,168,743,316,523,924,091,677,776,555,035,300,546,896,564,711,246,599,096,501,538,015,732,460,568,505,159,309,026,876,942,822,257,942,805,338,777,947,949,083,385,366,853,887,931,563,547,342,972,750,038,735,441,012,362,088,807,826,002,678,323,209,075,341,664,682,039,970,24

4,371,752,439,627,477,589,922,704,036,287,386,433,079,400,082,357,329,563,904,616,267,987,268,587,201,847,267,650,982,070,274,204,118,716,145,673,577,347,087,894,405,829,670,915,892,444,598,008,311,679,006,927,556,585,863,235,062,177,393,323,753,925,769,530,080,667,314,748,109,769,340,705,616,829,158,713,742,366,956,323,811,658,939,980,376,490,362,206,536,509,163,262,89

5,994,035,528,548,104,714,311,529,907,097,590,979,874,192,495,481,909,859,345,140,169,036,819,397,692,571,708,295,085,608,035,848,878,511,103,780,211,394,150,671,490,415,999,523,917,903,105,532,567,495,107,879,712,588,387,210,084,586,358,044,694,457,753,354,516,325,347,437,062,681,260,366,814,109,779,422,050,191,032,581,851,452,046,060,881,359,376,620,137,966,167,740,23

9,764,843,152,438,225,370,822,153,538,376,483,436,617,110,334,960,092,927,481,817,805,369,608,748,651,839,786,120,991,198,073,428,704,485,016,027,868,995,877,751,620,428,289,400,641,132,459,288,145,560,902,751,347,098,644,695,563,477,637,451,093,696,302,793,057,489,201,058,088,342,606,342,922,981,190,034,432,698,490,915,886,271,311,961,857,652,026,361,053,628,705,171,60

0,303,150,123,538,685,001,308,779,479,681,857,312,254,943,518,449,704,275,479,642,437,275,140,137,984,669,941,944,836,642,040,223,878,486,538,067,789,693,348,083,730,346,825,273,845,460,061,706,852,290,775,466,985,780,968,592,555,948,972,413,863,120,063,221,143,185,629,834,828,284,332,040,441,845,171,583,418,684,231,660,145,392,992,409,922,598,320,558,427,635,546,149,64

0,259,499,303,896,687,655,889,853,235,173,231,563,594,894,331,355,085,387,107,697,230,905,654,705,259,068,621,648,397,387,329,097,578,047,593,092,846,447,686,613,216,298,865,047,063,582,525,798,691,383,901,918,628,632,995,284,123,553,924,531,341,699,613,651,503,475,557,720,432,902,819,498,996,966,702,546,551,722,665,864,293,765,800,457,458,150,514,318,283,415,015,125,84

4,481,860,456,154,735,333,547,800,438,057,205,778,685,809,314,280,011,156,961,657,480,785,672,481,976,603,269,568,321,288,690,659,192,303,413,177,475,131,231,965,528,530,942,225,372,500,539,202,363,473,718,122,984,588,259,769,774,091,345,713,910,425,974,018,911,236,180,570,088,580,544,088,658,248,204,579,751,148,634,022,325,873,940,217,022,225,699,314,067,337,213,094,08

6,024,904,721,125,159,205,464,697,477,837,951,501,543,061,510,253,460,227,330,486,801,150,033,856,688,083,604,379,666,022,564,999,371,994,208,371,160,152,723,047,097,310,816,436,441,163,452,210,069,854,700,418,024,650,230,525,914,219,301,515,725,567,531,657,567,580,163,596,380,227,833,565,239,370,333,047,582,063,688,793,679,363,684,486,168,061,587,575,930,547,105,424,04

0,975,094,918,638,314,255,917,502,944,267,332,343,175,376,082,638,428,085,697,931,895,281,841,412,624,618,678,192,529,064,589,827,990,052,308,716,078,511,409,520,429,551,751,028,805,106,260,663,324,886,752,157,711,131,176,942,095,875,766,121,113,824,754,507,114,500,952,202,347,645,155,880,155,885,278,014,954,372,029,516,401,063,040,466,885,470,145,534,802,886,825,482,77

3,843,551,988,621,361,739,581,412,576,048,062,774,658,251,424,538,120,236,005,887,704,051,240,777,805,903,136,141,154,130,098,955,699,300,595,759,909,548,471,071,859,657,148,872,202,737,485,876,880,664,561,265,218,967,623,879,169,138,363,455,073,302,354,991,176,417,279,141,163,114,186,466,600,052,094,711,863,705,684,900,098,579,523,355,710,253,485,631,035,686,550,033,97

4,037,903,520,541,402,450,242,719,240,797,326,025,484,993,704,399,679,794,871,910,927,023,664,828,239,225,175,572,246,226,765,050,632,233,552,949,662,591,901,961,458,929,069,694,662,215,341,970,614,020,483,315,457,990,124,640,013,522,094,211,641,494,149,867,849,258,369,271,568,806,893,320,386,405,191,564,343,234,607,244,674,387,924,106,898,339,326,025,526,674,659,009,78

4,143,464,823,162,427,053,006,177,894,952,451,951,244,958,914,648,418,596,424,889,789,008,679,263,496,096,289,178,850,587,738,794,172,514,767,548,914,021,389,797,274,647,705,793,009,882,939,116,063,541,476,955,342,105,500,574,339,656,399,819,388,516,844,803,259,941,917,998,483,757,110,114,029,135,092,405,018,779,285,891,809,345,880,290,584,450,371,392,611,286,191,050,79

2,529,551,802,851,823,990,309,632,705,346,023,254,826,875,476,129,983,877,945,558,650,786,101,744,970,453,292,664,067,487,078,483,972,396,706,744,466,098,573,179,125,882,116,849,648,576,088,831,256,734,151,062,155,747,756,385,378,315,060,008,899,443,649,234,393,079,979,131,039,365,729,356,796,938,706,763,568,193,651,332,269,863,240,182,237,146,533,295,405,342,240,355,24

2,109,979,044,395,569,527,874,520,774,012,788,166,968,677,276,493,457,207,047,533,055,279,088,933,682,692,014,696,040,504,825,143,760,158,961,834,241,295,308,287,191,170,190,573,789,613,998,603,393,590,414,939,254,305,465,079,311,394,109,752,896,493,772,038,215,056,824,512,514,878,469,301,317,017,063,082,134,512,404,070,211,623,281,097,074,165,789,178,376,568,103,254,80

0,488,918,480,236,589,450,225,691,849,471,266,440,724,147,764,862,569,534,948,241,458,843,759,034,565,370,282,541,992,275,925,689,180,925,998,692,190,051,603,663,260,486,478,465,446,021,890,221,085,863,785,199,037,088,374,746,961,952,255,827,105,103,242,852,550,678,733,531,247,684,088,423,360,784,794,424,939,667,547,678,023,939,008,044,711,347,695,593,952,595,645,764,20

0,085,119,099,979,544,055,147,487,323,341,215,334,555,709,196,780,139,933,682,500,741,839,812,932,156,351,120,796,247,468,214,657,244,618,195,095,030,506,657,808,740,291,107,993,818,182,376,397,882,737,632,741,745,747,195,351,545,715,871,008,258,681,361,684,966,548,660,619,181,449,534,458,489,173,580,647,791,296,269,246,341,186,055,766,932,761,559,150,521,309,231,891,73

8,476,118,424,685,199,962,976,418,495,044,193,590,453,686,856,782,078,504,306,975,602,130,322,378,117,418,749,641,128,299,141,724,823,021,053,565,651,713,404,997,730,697,438,119,519,620,081,631,942,450,323,286,536,535,509,426,261,805,775,933,903,494,172,951,093,268,252,243,461,370,693,657,946,027,197,493,080,914,272,267,737,573,180,566,941,791,396,738,773,682,690,483,99

8,697,262,776,008,005,259,823,852,668,363,210,327,895,409,895,710,606,975,967,654,501,181,761,916,387,719,452,260,299,629,849,433,609,758,473,948,413,349,455,194,564,403,806,274,966,798,391,602,464,531,940,912,243,207,581,482,784,616,291,015,255,687,740,576,936,388,024,757,675,016,888,156,274,288,245,856,121,912,221,021,943,453,864,780,323,759,118,283,507,272,635,996,50

5,745,462,224,497,094,163,590,997,074,700,818,017,606,283,851,984,670,403,315,773,016,215,268,600,152,326,505,929,064,680,061,985,889,686,166,593,526,608,260,345,504,672,816,451,020,882,755,976,378,512,567,192,578,233,745,494,174,487,961,334,187,784,916,308,168,713,658,989,300,284,134,750,439,153,982,921,779,323,332,543,834,027,743,015,241,922,957,054,075,061,365,948,32

6,552,811,778,580,199,775,305,520,304,113,656,699,963,224,042,243,414,282,607,459,803,128,399,687,495,472,309,439,378,003,887,795,387,400,170,190,820,290,583,561,307,179,115,229,188,565,097,204,042,602,940,124,326,205,683,789,470,721,022,643,993,908,246,960,833,228,077,215,237,703,927,490,179,886,175,843,896,484,778,643,410,817,269,690,317,213,721,645,512,394,083,995,44

7,392,760,535,159,680,365,360,118,842,021,109,089,391,140,333,773,312,517,258,060,363,877,298,255,941,817,162,718,561,438,303,458,401,089,912,150,516,256,341,442,449,652,054,770,023,414,946,313,724,050,167,525,187,041,208,646,911,228,350,990,403,368,199,576,064,233,819,946,029,869,949,279,451,686,312,076,828,179,937,708,739,936,387,134,174,085,385,333,643,463,257,874,58

0,597,240,792,690,571,190,641,405,631,195,239,721,208,985,551,093,571,538,370,792,573,232,757,096,258,466,454,855,642,311,617,374,673,942,354,602,528,830,612,341,852,932,686,815,306,450,185,341,484,849,093,491,762,837,620,237,386,842,287,913,381,520,626,080,117,262,315,168,261,863,461,661,340,918,705,577,375,417,670,023,366,454,025,183,582,024,337,301,164,714,138,474,62

4,112,398,744,475,799,226,379,647,228,101,617,058,084,705,988,475,800,655,053,094,825,820,504,783,647,736,671,118,625,783,709,327,991,030,041,227,664,594,263,923,246,692,075,724,835,347,919,569,762,240,576,413,561,949,173,457,011,336,100,957,011,363,477,637,411,765,767,203,240,425,103,928,180,229,797,422,209,486,261,121,508,346,184,699,801,431,283,827,835,811,003,800,85

7,328,920,405,600,787,759,726,185,238,599,898,679,291,911,988,037,144,249,012,939,408,701,938,679,052,231,893,846,650,292,083,009,022,858,162,080,527,628,730,034,809,083,119,828,073,245,480,621,201,400,108,131,349,518,751,111,706,142,512,239,976,281,395,176,137,249,051,218,501,377,932,897,652,779,649,236,179,128,863,610,683,268,961,841,620,291,117,325,813,307,342,243,86

2,125,126,394,671,504,847,382,039,028,909,622,081,496,261,949,515,013,659,268,143,521,425,275,740,464,694,390,964,068,074,416,064,086,825,200,429,282,635,287,717,219,273,010,214,965,233,445,454,999,055,437,968,945,444,660,618,445,949,951,622,486,235,186,096,099,409,399,261,874,616,849,090,617,613,837,956,389,467,907,896,797,311,184,827,619,479,537,682,406,670,665,041,15

0,801,077,407,778,622,859,242,530,744,800,158,557,229,652,753,105,881,141,847,021,629,525,933,828,064,475,937,109,143,314,210,311,872,352,336,797,828,471,686,037,604,208,524,061,049,384,404,857,314,638,169,706,740,180,949,735,053,093,523,615,227,261,548,361,083,622,524,076,646,689,287,590,496,303,679,729,545,203,050,908,730,605,290,907,810,258,967,044,283,091,528,451,89

5,818,870,341,900,587,507,324,524,658,897,206,470,322,692,856,320,576,751,974,924,076,952,922,853,364,795,305,842,982,550,744,867,696,937,541,904,150,563,650,582,959,569,170,427,968,063,511,227,033,933,886,539,307,938,270,687,820,279,995,571,318,193,937,679,496,128,820,957,769,765,948,354,112,403,200,778,056,714,635,299,274,033,456,320,537,498,356,054,366,136,573,398,71

5,082,620,546,476,186,202,305,792,690,734,228,000,985,454,639,317,081,701,639,087,672,589,382,793,645,177,410,498,301,545,689,666,324,936,725,581,170,369,674,874,070,609,603,539,978,223,930,120,928,009,311,387,358,050,616,339,876,605,188,600,174,412,277,978,162,409,230,915,303,055,301,562,505,363,147,926,142,387,716,810,598,488,508,143,536,876,145,510,573,301,401,934,62

6,741,183,440,087,486,797,914,444,089,643,836,461,081,374,200,075,670,768,923,426,371,348,078,887,063,230,377,992,083,702,521,930,485,045,630,111,341,754,744,795,119,913,700,945,053,214,862,237,119,548,160,083,718,839,166,153,809,005,875,205,409,810,444,764,595,305,207,226,204,919,916,851,026,595,808,781,071,177,399,516,703,007,741,268,128,388,251,027,806,978,756,780,96

5,863,282,079,114,981,098,532,902,812,630,569,600,865,339,409,792,542,901,056,179,018,773,276,890,596,101,452,759,462,289,523,165,998,928,649,697,014,127,541,189,050,489,365,806,221,059,002,546,651,669,413,543,808,486,226,831,386,921,663,452,814,265,122,639,817,917,125,581,419,125,143,616,542,010,433,801,514,207,135,317,250,107,335,576,675,600,961,875,533,373,968,231,97

7,609,530,585,561,723,093,869,718,973,501,662,405,376,134,561,821,455,699,409,638,672,137,368,629,934,434,904,135,243,616,290,939,496,392,213,529,132,465,038,070,381,597,121,554,593,301,891,351,813,831,284,779,390,595,784,060,424,586,912,828,116,601,132,494,255,062,973,159,800,567,641,836,498,957,014,054,942,954,711,894,710,082,738,273,171,530,521,637,467,348,697,452,46

6,979,485,951,017,251,467,882,839,811,425,221,840,317,955,114,236,128,886,094,171,414,113,610,394,646,355,770,173,692,127,111,713,323,245,274,928,734,486,777,208,288,057,391,240,912,508,657,708,984,431,709,954,063,118,992,225,204,215,214,782,260,900,326,628,193,205,980,828,392,377,722,350,075,636,649,265,242,636,777,301,520,038,207,771,647,186,571,232,202,354,949,299,30

9,536,851,491,655,187,903,038,387,627,856,713,703,659,184,219,746,396,337,480,407,616,195,395,474,061,986,947,525,036,188,279,119,416,469,635,112,795,244,440,267,844,485,260,032,847,241,459,514,923,450,833,935,808,678,103,311,534,444,263,158,100,167,092,569,520,823,729,697,095,097,220,555,929,207,430,809,463,272,459,605,535,199,920,221,147,327,782,617,721,315,661,289,01

4,745,577,698,873,672,996,520,189,038,742,029,632,040,431,223,677,847,217,157,578,596,290,273,945,780,131,899,615,049,297,151,882,080,212,613,618,218,835,189,615,546,146,490,618,786,229,788,621,159,478,409,062,855,522,518,401,969,800,317,868,267,878,459,364,052,275,698,949,560,834,684,003,729,553,507,462,896,883,801,001,785,393,523,528,693,189,808,998,634,228,530,098,11

2,820,657,163,819,646,320,009,839,697,031,905,212,118,219,899,496,298,163,897,231,551,901,772,401,695,505,788,408,841,293,397,249,025,198,635,937,668,398,411,035,193,162,459,833,409,988,404,313,145,496,824,589,919,298,447,926,993,308,316,131,770,771,810,396,869,544,550,114,424,232,839,264,186,286,312,815,374,965,713,953,477,456,197,606,082,891,701,304,812,561,651,660,31

9,138,187,936,972,017,506,499,754,268,527,347,822,174,761,530,767,366,010,109,938,150,863,634,759,902,606,141,578,632,188,751,943,281,741,709,639,780,096,523,879,596,418,113,007,481,292,983,895,437,069,705,044,558,380,617,028,625,715,666,636,690,157,525,182,398,256,117,199,445,403,241,023,559,015,298,807,601,851,330,547,178,795,577,843,149,795,933,566,060,376,644,011,17

2,155,058,399,662,530,769,179,375,903,286,149,027,612,075,806,315,776,377,707,195,825,601,868,759,456,088,050,733,579,314,903,189,062,524,181,137,056,132,917,203,202,803,431,388,444,967,344,457,607,414,912,712,286,136,586,662,334,942,533,483,472,775,769,916,860,739,822,410,605,139,889,887,622,933,231,942,596,545,836,342,388,849,977,051,318,874,585,752,685,553,439,222,48

0,788,285,263,696,111,065,583,479,158,521,655,599,011,752,852,282,847,768,809,742,787,921,241,434,089,317,310,409,167,342,417,736,279,172,947,292,772,969,327,153,366,897,236,428,973,617,809,658,910,838,076,604,238,454,065,661,670,923,252,421,041,624,103,843,924,047,529,979,248,232,963,083,731,950,440,348,856,678,553,094,106,548,043,172,702,289,199,899,275,318,362,905,37

8,408,712,415,159,269,923,344,094,958,681,016,353,398,306,725,904,407,358,220,769,186,194,606,870,015,032,484,591,003,096,383,698,104,591,712,625,702,867,260,453,854,415,173,761,377,387,219,612,874,764,117,226,958,751,591,406,925,850,280,213,167,967,358,855,839,013,668,351,812,162,347,016,911,885,289,247,085,576,542,162,727,707,634,043,698,542,226,997,665,877,092,869,91

2,956,662,095,277,615,147,881,880,580,839,497,663,044,456,735,668,074,084,606,055,509,121,324,098,162,577,700,495,623,250,626,576,140,392,118,793,726,598,300,895,151,612,936,669,369,981,218,841,802,508,569,563,506,749,092,758,361,711,504,078,242,899,013,061,396,198,412,853,703,118,010,073,765,571,276,002,967,623,291,654,506,202,798,544,591,136,168,371,274,314,046,289,06

2,299,081,496,153,033,412,112,641,387,870,580,908,582,351,970,894,304,880,328,771,879,450,411,873,869,041,904,178,677,230,778,206,368,284,438,333,429,760,436,040,150,912,799,518,037,357,212,354,374,733,844,905,651,600,813,021,957,809,144,377,631,479,571,636,638,095,648,273,971,176,393,911,636,202,338,522,338,349,855,986,239,822,559,626,678,516,947,067,545,491,059,640,36

3,164,772,253,282,891,079,994,101,376,152,087,416,182,773,952,840,881,445,035,913,235,822,373,550,516,126,262,884,445,234,405,811,592,466,055,571,627,450,168,569,925,389,721,039,944,218,176,868,921,181,944,425,304,096,132,312,721,538,680,757,455,121,594,473,310,802,579,385,393,574,059,209,602,443,968,201,967,760,613,102,289,456,131,085,235,835,109,375

Good luck!

Of course most of them are not

frequent…

Subsets of Frequent Itemsets Are Also Frequent

• Assume and 𝒔𝒖𝒑𝒑𝒐𝒓𝒕() ≥ 𝒎𝒊𝒏_𝒔𝒖𝒑

• All subsets of are also frequent

• There are
𝟏𝟎𝟎
𝟏

= 𝟏𝟎𝟎 frequent itemsets having 1 item

• There are
𝟏𝟎𝟎
𝒌

frequent itemsets having 𝒌 items (“100 choose 𝑘“)

• There are
𝟏𝟎𝟎
𝟏

+
𝟏𝟎𝟎
𝟐

+⋯
𝟏𝟎𝟎
𝟗𝟗

= 𝟐𝟏𝟎𝟎 − 𝟐 = 𝟏. 𝟐𝟕 × 𝟏𝟎𝟑𝟎 smaller frequent itemsets

contained in

Properties of Frequent Itemsets

Summary

Properties of Frequent Itemsets

• We should avoid exhaustively testing all candidate itemsets

• We need to focus on the “interesting” ones

 Closed itemsets

Closed Itemsets

Properties of Frequent Itemsets

• An itemset is closed if there is no proper superset that has the same support

• If is closed, then 𝒔𝒖𝒑𝒑𝒐𝒓𝒕 > 𝒔𝒖𝒑𝒑𝒐𝒓𝒕 for any

adding any item to will always reduce support

Closed Frequent Itemsets

Properties of Frequent Itemsets

• An itemset is closed if there is no proper superset that has the same support

• If is closed, then 𝒔𝒖𝒑𝒑𝒐𝒓𝒕 > 𝒔𝒖𝒑𝒑𝒐𝒓𝒕 for any

• is frequent if its support is higher than threshold 𝒎𝒊𝒏_𝒔𝒖𝒑

closed frequent itemsets are closed and frequent

An itemset is a maximal frequent itemset if:

• is frequent

• there is no proper superset that is also frequent

M
a
x
im

a
l

Maximal Frequent Itemsets

Properties of Frequent Itemsets

more

frequent

𝒎𝒊𝒏_𝒔𝒖𝒑

smaller

itemsets

less

frequent

bigger

itemsets

Relationships

An itemset is a closed frequent itemset if:

• is frequent

• there is no proper superset that has the same support

An itemset is a maximal frequent itemset if:

• is frequent

• there is no proper superset that is also frequent

Hence, maximal frequent itemsets are closed by definition.

Properties of Frequent Itemsets

all frequent itemsets

closed

frequent

itemsets

maximal

frequent

itemsets

Example

• There are 𝟐𝟏𝟎𝟎 − 𝟏 = 𝟏. 𝟐𝟕 × 𝟏𝟎𝟑𝟎 itemsets; all are frequent.

• There are two closed frequent itemsets:

• 𝑤𝑖𝑡ℎ 𝒔𝒖𝒑𝒑𝒐𝒓𝒕 =
𝟐𝟎

𝟐𝟎

• 𝑤𝑖𝑡ℎ 𝒔𝒖𝒑𝒑𝒐𝒓𝒕 =
𝟏𝟎

𝟐𝟎

• There is only one maximal frequent itemset:

Properties of Frequent Itemsets

Example

• There are 𝟐5𝟎 − 𝟏 = 𝟑. 𝟏𝟕 × 𝟏𝟎15 itemsets that are frequent.

• There is one closed frequent itemsets:

• 𝑤𝑖𝑡ℎ 𝒔𝒖𝒑𝒑𝒐𝒓𝒕 =
𝟐𝟎

𝟐𝟎

• There is only one maximal frequent itemset:

Properties of Frequent Itemsets

Example

• There are 𝟐98 − 𝟏 = 𝟏. 𝟏𝟕 × 𝟏𝟎29 itemsets that are frequent.

• There is one closed frequent itemset:

• 𝑤𝑖𝑡ℎ 𝒔𝒖𝒑𝒑𝒐𝒓𝒕 =
𝟐𝟎

𝟐𝟎

• There is only one maximal frequent itemset:

Properties of Frequent Itemsets

Observations

• The supports of the closed frequent itemsets provide complete

information about the supports of all frequent item sets

• Formally, assume:

• ,

• is a closed frequent itemset, and

• there is no closed frequent itemset such that

Then

 It suffices to store closed frequent itemsets

(maximal frequent itemsets provide less information)

Properties of Frequent Itemsets

all frequent itemsets

closed

frequent

itemsets

maximal

frequent

itemsets

Summary

• Both maximal frequent itemsets and closed frequent itemsets

are subsets of frequent itemsets.

• Maximal frequent itemsets are closed by definition.

• Closed frequent itemsets provide a more comprehensive list of

frequent patterns

Properties of Frequent Itemsets

all frequent itemsets

closed

frequent

itemsets

maximal

frequent

itemsets

no proper superset

has the same support

no proper superset

that is also frequent

Frequent Itemsets

1. Introduction

2. Properties of Frequent Itemsets

3. Apriori Algorithm

4. FP-Growth Algorithm

Apriori Algorithm

• Introduced by Rakesh Agrawal and Ramakrishnan Srikant in “Fast Algorithms for Mining

Association Rules in Large Databases. VLDB 1994: 487-499”

• Computes frequent itemsets / association rules in a dataset

• Uses a “bottom up” approach (starts with candidate itemsets of size one)

• Extends frequent subsets one item at a time (candidate generation)

• Avoids unnecessary checks by re-using information from smaller subsets

and exploiting frequent itemsets’ properties

Apriori Algorithm

Apriori Algorithm – Basic Idea

1. Candidate generation: use the set of frequent itemsets of length k to

generate the candidate set of candidate itemsets with length k+1

Apriori Algorithm

frequent itemsets of length k

Apriori Algorithm – Basic Idea

1. Candidate generation: use the set of frequent itemsets of length k to

generate the candidate set of candidate itemsets with length k+1

Apriori Algorithm

frequent itemsets of length k

does not
need the

input data
(efficient)

Apriori Algorithm – Basic Idea

1. Candidate generation: use the set of frequent itemsets of length k to

generate the candidate set of candidate itemsets with length k+1

2. Pruning (antimonotonicity): all nonempty subsets of a frequent itemset must

also be frequent superset of an infrequent itemset cannot be frequent

Apriori Algorithm

frequent itemsets of length k

does not
need the

input data
(efficient)

Apriori Algorithm – Basic Idea

1. Candidate generation: use the set of frequent itemsets of length k to

generate the candidate set of candidate itemsets with length k+1

2. Pruning (antimonotonicity): all nonempty subsets of a frequent itemset must

also be frequent superset of an infrequent itemset cannot be frequent

3. Testing candidates: use the dataset to filter the infrequent itemsets from

and obtain

Apriori Algorithm

frequent itemsets of length k

does not
need the

input data
(efficient)

needs the
input data

(inefficient)

Apriori Algorithm – Basic Idea

1. Candidate generation: use the set of frequent itemsets of length k to

generate the candidate set of candidate itemsets with length k+1

2. Pruning (antimonotonicity): all nonempty subsets of a frequent itemset must

also be frequent superset of an infrequent itemset cannot be frequent

3. Testing candidates: use the dataset to filter the infrequent itemsets from

and obtain

Apriori Algorithm

frequent itemsets of length k

does not
need the

input data
(efficient)

needs the
input data

(inefficient)

Apriori Algorithm – Basic Idea

Apriori Algorithm

Itemset Support

Apriori Algorithm – Basic Idea

Apriori Algorithm

Itemset Support Itemset Support

Prune using

Apriori Algorithm – Basic Idea

Apriori Algorithm

Itemset Support Itemset Support Itemset Support

Prune using

Apriori Algorithm – Basic Idea

Apriori Algorithm

Itemset Support Itemset Support Itemset Support Itemset Support

Prune using
Prune using

Apriori Algorithm – Basic Idea

Apriori Algorithm

Itemset Support Itemset Support Itemset Support Itemset Support

Itemset Support Itemset Support

Prune using
Prune using

Prune using

Apriori Algorithm – Basic Idea

Apriori Algorithm

Itemset Support Itemset Support Itemset Support Itemset Support

Itemset Support Itemset SupportItemset Support

Algorithm terminates when we

obtain an empty set (or for

specific length of itemsets)

Prune using
Prune using

Prune using Prune using

Candidate Generation – Leveling

Apriori Algorithm

Candidate Generation – Leveling

Apriori Algorithm

Candidate Generation – Leveling

Apriori Algorithm

Candidate Generation

Thanks to leveling:

• Apriori creates the set of candidate itemsets of length k+1, ,

by joining two frequent itemsets of length k

• This can be done efficiently without creating duplicates

• Next, we prune the set based on infrequent subsets

Apriori Algorithm

Pruning – Antimonotonicity

Apriori Algorithm

Pruning – Antimonotonicity

Apriori Algorithm

1. If {Apple} or {Banana} is infrequent,

then {Apple, Banana} is infrequent

2. If {Grapes} or {Banana} is infrequent,

then {Grapes, Banana} is infrequent

3. If {Apples} or {Grapes} is infrequent,

then {Apples, Grapes} is infrequent

Pruning – Antimonotonicity

Apriori Algorithm

Bought
Fruits

Support

_count

{Banana} 4

{Grapes} 1

{Apple} 2

1. If {Apple} or {Banana} is infrequent,

then {Apple, Banana} is infrequent

2. If {Grapes} or {Banana} is infrequent,

then {Grapes, Banana} is infrequent

3. If {Apples} or {Grapes} is infrequent,

then {Apples, Grapes} is infrequent

Pruning – Antimonotonicity

Apriori Algorithm

ID Bought
Fruits

1 {Banana,
Apple}

2 {Grapes,
Banana}

3 {Apple,
Grapes}

ID Bought
Fruits

1 {Banana,
Apple}

2 {Grapes,
Banana}

3 {Apple,
Grapes}

Testing Candidates

• After candidate generation and pruning test the remaining candidate

itemsets

• We scan the dataset and remove all infrequent candidate itemsets

from to obtain

Apriori Algorithm

Testing Candidates

• After candidate generation and pruning test the remaining candidate

itemsets

• We scan the dataset and remove all infrequent candidate itemsets

from to obtain

• Consider all transactions

• For each candidate itemset increment the corresponding

counter if

• This returns the frequencies (support_count) of the candidate itemsets

and we can compute from

Apriori Algorithm

Algorithm

Apriori Algorithm

(Or until we find

frequent itemsets of

pre-defined length)

Example

Apriori Algorithm

TID Bought Fruits

1 {Grapes, Apple, Pineapple}

2 {Orange, Apple, Banana}

3 {Grapes, Orange, Apple, Banana}

4 {Orange, Banana}

5 {Grapes, Apple, Banana}

Itemset Count

{Grapes} 3

{Apple} 4

{Pineapple} 1

{Orange} 3

{Banana} 4

Example

Apriori Algorithm

TID Bought Fruits

1 {Grapes, Apple, Pineapple}

2 {Orange, Apple, Banana}

3 {Grapes, Orange, Apple, Banana}

4 {Orange, Banana}

5 {Grapes, Apple, Banana}

Itemset Count

{Grapes} 3

{Apple} 4

{Pineapple} 1

{Orange} 3

{Banana} 4

Itemset Count

{Grapes} 3

{Apple} 4

{Pineapple} 1

{Orange} 3

{Banana} 4

Example

Apriori Algorithm

Itemset Count

{Grapes, Apple} 3

{Grapes, Orange} 1

{Grapes, Banana} 2

{Apple, Orange} 2

{Apple, Banana} 3

{Orange, Banana} 3

Itemset

{Grapes, Apple}

{Grapes, Orange}

{Grapes, Banana}

{Apple, Orange}

{Apple, Banana}

{Orange, Banana}

TID Bought Fruits

1 {Grapes, Apple, Pineapple}

2 {Orange, Apple, Banana}

3 {Grapes, Orange, Apple, Banana}

4 {Orange, Banana}

5 {Grapes, Apple, Banana}

Itemset Count

{Grapes} 3

{Apple} 4

{Pineapple} 1

{Orange} 3

{Banana} 4

Itemset Count

{Grapes} 3

{Apple} 4

{Pineapple} 1

{Orange} 3

{Banana} 4

Example

Apriori Algorithm

Itemset Count

{Grapes, Apple} 3

{Grapes, Orange} 1

{Grapes, Banana} 2

{Apple, Orange} 2

{Apple, Banana} 3

{Orange, Banana} 3

Itemset

{Grapes, Apple}

{Grapes, Orange}

{Grapes, Banana}

{Apple, Orange}

{Apple, Banana}

{Orange, Banana}

TID Bought Fruits

1 {Grapes, Apple, Pineapple}

2 {Orange, Apple, Banana}

3 {Grapes, Orange, Apple, Banana}

4 {Orange, Banana}

5 {Grapes, Apple, Banana}

Itemset Count

{Grapes} 3

{Apple} 4

{Pineapple} 1

{Orange} 3

{Banana} 4

Itemset Count

{Grapes} 3

{Apple} 4

{Pineapple} 1

{Orange} 3

{Banana} 4

Itemset Count

{Grapes, Apple} 3

{Grapes, Orange} 1

{Grapes, Banana} 2

{Apple, Orange} 2

{Apple, Banana} 3

{Orange, Banana} 3

Example

Apriori Algorithm

TID Bought Fruits

1 {Grapes, Apple, Pineapple}

2 {Orange, Apple, Banana}

3 {Grapes, Orange, Apple, Banana}

4 {Orange, Banana}

5 {Grapes, Apple, Banana}

Itemset Count

{Grapes, Apple} 3

{Grapes, Banana} 2

{Apple, Orange} 2

{Apple, Banana} 3

{Orange, Banana} 3

Itemset Subsets of Length 2

{Grapes, Apple,
Banana}

{Grapes, Apple}, {Grapes,
Banana}, {Apple, Banana}

{Grapes, Apple,
Orange}

{Grapes, Apple}, {Grapes,
Orange}, {Apple, Orange}

{Grapes, Banana,
Orange}

{Grapes, Banana}, {Grapes,
Orange}, {Banana, Orange}

{Apple, Banana,
Orange}

{Apple, Banana}, {Apple,
Orange}, {Banana, Orange}

Example

Apriori Algorithm

TID Bought Fruits

1 {Grapes, Apple, Pineapple}

2 {Orange, Apple, Banana}

3 {Grapes, Orange, Apple, Banana}

4 {Orange, Banana}

5 {Grapes, Apple, Banana}

Itemset Count

{Grapes, Apple} 3

{Grapes, Banana} 2

{Apple, Orange} 2

{Apple, Banana} 3

{Orange, Banana} 3

Itemset

{Grapes, Apple,
Banana}

{Grapes, Apple,
Orange}

{Grapes,
Banana, Orange}

{Apple, Banana,
Orange}

Itemset Count

{Grapes,
Apple,
Banana}

2

{Apple,
Banana,
Orange}

2

Example

Apriori Algorithm

TID Bought Fruits

1 {Grapes, Apple, Pineapple}

2 {Orange, Apple, Banana}

3 {Grapes, Orange, Apple, Banana}

4 {Orange, Banana}

5 {Grapes, Apple, Banana}

Itemset Count

{Grapes,
Apple,
Banana}

2

{Apple,
Banana,
Orange}

2

Example

Apriori Algorithm

TID Bought Fruits

1 {Grapes, Apple, Pineapple}

2 {Orange, Apple, Banana}

3 {Grapes, Orange, Apple, Banana}

4 {Orange, Banana}

5 {Grapes, Apple, Banana}

Itemset Count

{Grapes,
Apple,
Banana}

2

{Apple,
Banana,
Orange}

2

Itemset

{Grapes, Apple,
Banana, Orange}

No more candidates of

length 4 – algorithm

terminates

Itemset Subsets of length 3

{Grapes, Apple,
Banana, Orange}

{Grapes, Apple, Banana},
{Grapes, Apple, Orange},
{Grapes, Banana, Orange},
{Apple, Banana, Orange}

Optimizations

Further optimizations

• Distributing the data (can be done in various ways)

• Gradually removing transactions not containing any frequent itemset of length 𝒌

• Sampling

Limitations

• It may remain challenging to generate the candidate sets (may be huge)

• Each candidate needs to be tested against the whole dataset

 FP-Growth is an approach that aims to overcome these limitations

Apriori Algorithm

Frequent Itemsets

1. Introduction

2. Properties of Frequent Itemsets

3. Apriori Algorithm

4. FP-Growth Algorithm

Frequent Pattern Growth Algorithm

FP-Growth Algorithm

• Introduced by Jiawei Han, Jian Pei, Yiwen Yin in “Mining Frequent Patterns without Candidate

Generation. SIGMOD Conference 2000: 1-12”

• Based on constructing the Frequent Pattern Tree (FP-Tree)

• Avoids generation of many candidates

• Depth-first rather than breadth-first

• Requires only two passes over the (potentially huge) dataset

Motivation

FP-Growth Algorithm

0

20

40

60

80

100

120

140

160

0 0.5 1 1.5 2 2.5 3 3.5

R
u

n
ti

m
e

 (
se

c.
)

Support threshold (%)

FP-Growth vs Apriori Runtime

D1 FP-Growth Runtime D1 Apriori Runtime

Graph is based on Jiawei Han, Jian Pei, Yiwen Yin in “Mining Frequent

Patterns without Candidate Generation. SIGMOD Conference 2000: 1-12”

FP-Growth Steps

FP-Growth Algorithm

1. Determine the frequency of each item (first pass through the dataset)

2. Sort based on their frequencies (is most frequent, is the least frequent)

3. Remove the non-frequent items

4. The remaining items in each transactions are ordered by frequency (same as above)

5. This can be used to build a so-called prefix tree (second pass trough the dataset)

FP-Growth Steps

FP-Growth Algorithm

1. Determine the frequency of each item (first pass through the dataset)

2. Sort based on their frequencies (is most frequent, is the least frequent)

3. Remove the non-frequent items

4. The remaining items in each transactions are ordered by frequency (same as above)

5. This can be used to build a so-called prefix tree (second pass trough the dataset)

6. The resulting FP-tree contains all information needed to find the frequent itemsets of any length

(no need to traverse the dataset again)

Constructing FP-Tree – Example

FP-Growth Algorithm

TID Bought Fruits

1 {Banana, Apple}

2 {Grapes, Banana, Pineapple}

3 {Apple, Banana}

4 {Apple, Grapes, Pineapple}

5 {Grapes, Banana}

6 {Apple, Banana, Grapes}

1. Determine the

frequencies of items

2. Order the items

based on frequency

Constructing FP-Tree – Example

FP-Growth Algorithm

TID Bought Fruits

1 {Banana, Apple}

2 {Grapes, Banana, Pineapple}

3 {Apple, Banana}

4 {Apple, Grapes, Pineapple}

5 {Grapes, Banana}

6 {Apple, Banana, Grapes}

TID Bought Fruits

1 {Banana, Apple}

2 {Banana, Grapes}

3 {Banana, Apple}

4 {Apple, Grapes}

5 {Banana, Grapes}

6 {Banana, Apple, Grapes}

3. Remove non-frequent items

4. Sort the items in the transactions
1. Determine the

frequencies of items

2. Order the items

based on frequency

Constructing FP-Tree – Example

FP-Growth Algorithm

TID Bought Fruits

1 {Banana, Apple}

2 {Banana, Grapes}

3 {Banana, Apple}

4 {Apple, Grapes}

5 {Banana, Grapes}

6 {Banana, Apple, Grapes}

5. Build the FP-tree going

through each transaction

0

Constructing FP-Tree – Example

FP-Growth Algorithm

TID Bought Fruits

1 {Banana, Apple}

2 {Banana, Grapes}

3 {Banana, Apple}

4 {Apple, Grapes}

5 {Banana, Grapes}

6 {Banana, Apple, Grapes}

5. Build the FP-tree going

through each transaction

1

1

1

Constructing FP-Tree – Example

FP-Growth Algorithm

TID Bought Fruits

1 {Banana, Apple}

2 {Banana, Grapes}

3 {Banana, Apple}

4 {Apple, Grapes}

5 {Banana, Grapes}

6 {Banana, Apple, Grapes}

5. Build the FP-tree going

through each transaction

1

2

2

1

Constructing FP-Tree – Example

TID Bought Fruits

1 {Banana, Apple}

2 {Banana, Grapes}

3 {Banana, Apple}

4 {Apple, Grapes}

5 {Banana, Grapes}

6 {Banana, Apple, Grapes}

5. Build the FP-tree going

through each transaction

3

2

3

1

FP-Growth Algorithm

Constructing FP-Tree – Example

TID Bought Fruits

1 {Banana, Apple}

2 {Banana, Grapes}

3 {Banana, Apple}

4 {Apple, Grapes}

5 {Banana, Grapes}

6 {Banana, Apple, Grapes}

5. Build the FP-tree going

through each transaction

4

2

3

1 1

1

FP-Growth Algorithm

Constructing FP-Tree – Example

TID Bought Fruits

1 {Banana, Apple}

2 {Banana, Grapes}

3 {Banana, Apple}

4 {Apple, Grapes}

5 {Banana, Grapes}

6 {Banana, Apple, Grapes}

5. Build the FP-tree going

through each transaction

2

5

2

4

1

1

FP-Growth Algorithm

Constructing FP-Tree – Example

TID Bought Fruits

1 {Banana, Apple}

2 {Banana, Grapes}

3 {Banana, Apple}

4 {Apple, Grapes}

5 {Banana, Grapes}

6 {Banana, Apple, Grapes}

5. Build the FP-tree going

through each transaction

2

6

3

5

1

1

FP-Growth Algorithm

Constructing FP-Tree – Example

TID Bought Fruits

1 {Banana, Apple}

2 {Banana, Grapes}

3 {Banana, Apple}

4 {Apple, Grapes}

5 {Banana, Grapes}

6 {Banana, Apple, Grapes}

5. Build the FP-tree going

through each transaction

2

6

3

5

1

1

The FP-Tree encodes the whole dataset.1

FP-Growth Algorithm

FP-Tree – Encodes The Dataset

We can read the transactions from the FP-tree

FP-Growth Algorithm

2

6

3

5

1

1

The FP-Tree encodes the whole dataset.1

FP-Tree – Cannot Cut Naïvely

We can read the transactions from the FP-tree

FP-Growth Algorithm

2

6

3

5

1

1

The FP-Tree encodes the whole dataset.1

Even though G exists only once in this

subtree, we can’t cut it naively, because its

support may be higher than the threshold (3)

FP-Tree – Frequent Itemsets

Next: 6. Mining the FP-tree to obtain frequent itemsets

FP-Growth Algorithm

Frequent
Itemsets

Support
Count

{B} 5

{A} 4

{G} 4

{B, A} 3

{B, G} 3

2

6

3

5

1

1

The FP-Tree encodes the whole dataset.1

FP-Tree Encodes Dataset – Another Example

FP-Growth Algorithm

We can read the transactions

from the FP-tree

Mining the FP-Tree – Overview

• For each frequent item, create a conditional

FP-tree (starting with the least frequent one)

• The conditional FP-tree considers all

transactions ending with this item

• Apply this recursively

• Due to recursion, we also consider postfixes

that contain multiple elements

• The ordering ensures that postfixes are

considered only once

FP-Tree Mining

6

Node Links

FP-Tree Mining

Determined

frequencies of items

6

Creating

linked lists

Node Links

Node links are like ‘altitude lines’ because of total order of items

FP-Tree Mining

Determined

frequencies of items

6

Consider Postfix G

FP-Tree Mining

6

Itemsets Support Count

{G} 4

Add G with support count 1+2+1 = 4

Consider Postfix G

FP-Tree Mining

Itemsets Support Count

{G} 4

Now only consider all the paths leading from the root to G

(representing transactions that include G)

6

Towards the Conditional FP-Tree for Postfix G

FP-Tree Mining

Itemsets Support Count

{G} 4

recomputed

using linked

lists

The conditional tree represents only the

transactions that contain postfix G

4

Towards the Conditional FP-Tree for Postfix G

FP-Tree Mining

Itemsets Support Count

{G} 4

recomputed

using linked

lists

Only two transactions with apples

contain G (less than min_sup_count),

so {A,G} cannot be frequent

4

Towards the Conditional FP-Tree for Postfix G

FP-Tree Mining

Itemsets Support Count

{G} 4

recomputed

using linked

lists

Remove G and all items that cannot

create frequent itemsets with G to

create the Conditional FP-Tree for G

3

Conditional FP-Tree for Postfix G

FP-Tree Mining

Itemsets Support Count

{G} 4

{ … , G } Mine the Conditional FP-Tree for G to

find frequent itemsets that contain G

(Recursion)
recurse

3

Conditional FP-Tree for Postfix G

FP-Tree Mining

Itemsets Support Count

{G} 4

{B, G} 3

Add {B,G} with

support count 3

3

Conditional FP-Tree for Postfix G

FP-Tree Mining

Itemsets Support Count

{G} 4

{B, G} 3

Recursion:

Tree is empty

after removing B

 end recursion

3

Consider Postfix A

FP-Tree Mining

Determined

frequencies of items

Itemsets Support Count

{G} 4

{B, G} 3 We already added all the frequent

itemsets with G

6

Consider Postfix A

FP-Tree Mining

Determined

frequencies of items

6

Itemsets Support Count

{G} 4

{B, G} 3 A is the next frequent item

Consider Postfix A

FP-Tree Mining

Determined

frequencies of items

6

Itemsets Support Count

{G}, {A} 4

{B, G} 3 Add A with support 3+1 = 4

Towards the Conditional FP-Tree for Postfix A

FP-Tree Mining

Determined

frequencies of items

Itemsets Support Count

{G}, {A} 4

{B, G} 3 Remove A and all items that cannot

create frequent itemsets with A

(keep only transactions that include A)

recomputed

using linked

lists

3

Towards Conditional FP-Tree for Postfix A

FP-Tree Mining

Determined

frequencies of items

Itemsets Support Count

{G}, {A} 4

{B, G} 3

3

Conditional FP-Tree for Postfix A

FP-Tree Mining

Determined

frequencies of items

Itemsets Support Count

{G}, {A} 4

{B, G}, {B, A} 3

Recursion:

Add {B, A} with

support 3 (then end

recursion)

3

Consider Postfix B

FP-Tree Mining

Determined

frequencies of items

we already added all the frequent

itemsets with G and A

Itemsets Support Count

{G}, {A} 4

{B, G}, {B, A} 3

6

Consider Postfix B

FP-Tree Mining

Determined

frequencies of items

Add itemset {B} with support count 5

Itemsets Support Count

{B} 5

{G}, {A} 4

{B, G}, {B, A} 3

6

Towards Conditional FP-Tree for Postfix B

FP-Tree Mining

Determined

frequencies of items

Itemsets Support Count

{B} 5

{G}, {A} 4

{B, G}, {B, A} 3

Now only consider all the paths leading to B

(transactions including B)

5

Conditional FP-Tree for Postfix B

FP-Tree Mining

Itemsets Support Count

{B} 5

{G}, {A} 4

{B, G}, {B, A} 3

Conditional FP-tree is empty, i.e., no

additional frequent itemsets with B

0

Conditional FP-Tree for Postfix B

FP-Tree Mining

Itemsets Support Count

{B} 5

{G}, {A} 4

{B, G}, {B, A} 3

No more frequent items to consider

algorithm terminates

0

All Frequent Itemsets Generated

FP-Tree Mining

Itemsets Support Count

{B} 5

{G}, {A} 4

{B, G}, {B, A} 3

6

FP-tree

Frequent itemsets mined

FP-Growth Algorithm – Summary

• Idea: frequent pattern growth based on FP-tree

• Method:

• Construct the FP-tree from the dataset (previous video)

• For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree

• Recursively repeat the process on each newly created conditional FP-tree until the tree is

empty

FP-Tree Mining

FP-Growth Algorithm – Summary

• Advantages:

 Only two passes through the dataset are needed (when constructing the tree)

 Avoiding testing many hopeless candidates

 Very fast when FP-tree fits in main memory

• However: approach has problems when FP-tree is too large to fit into memory

FP-Tree Mining

Frequent Itemsets – Summary

• Pattern mining is a form of unsupervised learning

• Frequent itemsets are the basis for finding patterns (ideas can be transferred to other patterns)

• Two well-known algorithms using generally applicable concepts:

• Apriori algorithm

• FP-growth algorithm

• Outlook

• There may be many frequent “patterns”

• How to determine which ones are surprising / interesting?

FP-Tree Mining

Association Rules – Preview

• {Cheese, Bread} {Milk}
People that buy Cheese and Bread also tend to buy Milk.

• {Track1, Track2} {Track3}
Students that take the Track 1 and Track 2 modules of BridgingAI also tend to take the Track 3 courses. (We hope you do!)

• {Bitburger} {Heineken, Palm}
People that buy Bitburger beer tend to buy both Heineken and Palm beer.

• {Carbonara, Margherita } {Espresso, Tiramisu}
People that buy Carbonara and Margherita also tend to buy Espresso and Tiramisu.

• {part-245, part-345, part-456} {part-372}
When Parts 245, 345, and 456 are replaced, then often also Part 372 is replaced.

(one of the topics of the next lecture)

