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Introduction

From Frequent Itemsets to Association Rules

* Frequent Itemsets — a combinatorial explosion

 How to determine the interesting ones?

« How to turn itemsets into rules?
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Introduction

A Larger Supermarket May Have Up To 50000 Distinct Items
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Introduction

Association Rules - Notation

« IT={IiIs...,Ip}isthe set of all possible items Same as
: : : before
Atransaction 7 € P(Z) \ {0} is a non-empty itemset

S—

A dataset X € M(P(Z)) (such that () ¢ X)) is a multiset of transactions
(Here, M is the multiset and P is the powerset operator)

—_—

A= Bwith ACZ,BCZand AN B =0 is an association rule :‘ B
For example, {Cheese, Bread} = {Milk} :



Introduction

Association Rules - Preview

* {Cheese, Bread} = {Milk}
People that buy Cheese and Bread also tend to buy Milk.

« {Trackl, Track2} = {Track3}

Students that take the Track 1 and Track 2 modules of BridgingAl also tend to take the Track 3 courses. (We hope you do!)

« {Bitburger} = {Heineken, Palm}
People that buy Bitburger beer tend to buy both Heineken and Palm beer.

« {Carbonara, Margherita } = {Espresso, Tiramisu}
People that buy Carbonara and Margherita also tend to buy Espresso and Tiramisu.

« {part-245, part-345, part-456} = {part-372}
When Parts 245, 345, and 456 are replaced, then often also Part 372 is replaced.



Introduction

Support and Confidence

« Support: fraction of instances containing all items in AU B

Support(A s B) _ Support(A U B) _ support_count(AUB) _ |[TeX|AUBCT]]

support_count(()) | X|



Introduction

Support and Confidence

« Support: fraction of instances containing all items in AU B

support_count(AUB) _ |[TeX|AUBCT]]

SU_ppOI’t(A — B) — SU_ppOI’t(A U B) — " support_count(@) | X

« Confidence: fraction of instances containing items in A which contain items in AU B

__support(AAUB) __ support_count(AUB) _ |[Te€X|AUBCT]]
COIlf(A = B) — support(A) ~ support_count(A) ~—  |[TEX|ACT]]



Introduction

Support and Confidence - Example

ID Bought Items

{Bread, Cheese, Milk, Pasta}

{Bread, Cheese, Chips}

{Bread, Cheese, Milk}

1
2
> 3 {Cheese, Pasta, Milk}
4
5

{Bread, Pasta}

All three items Bread, Cheese and Milk
need to be in the transaction to count

support({Bread} = {Cheese, Milk}) = support({Bread, Cheese, Milk}) = %



Introduction

Support and Confidence - Example

ID Bought Items
{Bread, Cheese, Milk, Pasta}
{Bread, Cheese, Chips}

{Cheese, Pasta, Milk}
{Bread, Cheese, Milk}

Y
(92} & w N =

{Bread, Pasta}

the item does not
change the value

Symmetric: moving
support({Bread} = {Cheese, Milk}) = support({Bread, Cheese, Milk}) = %

support({Bread} = {Cheese, Milk}) = support({Cheese, Milk} = {Bread})

support({Bread} = {Cheese, Milk}) = support({Bread, Cheese} = {Milk})
_ V



Introduction

Support and Confidence - Example

—"""(_'

ID Bought Items

{Bread, Cheese, Milk, Pasta}

{Bread, Cheese, Chips}
{Cheese, Pasta, Milk}
{Bread, Cheese, Milk}

v
(92} ~ w N =

{Bread, Pasta}

. support({Bread,Cheese,Milk
conf({Bread} = {Cheese, Milk}) = =FP Sééport({Bread}) Do :



Introduction

Support and Confidence - Example

ID Bought Items

{Bread, Cheese, Milk, Pasta}

{Bread, Cheese, Chips}
{Cheese, Pasta, Milk}
{Bread, Cheese, Milk}

v
(92} & w N =

{Bread, Pasta}

. support({Bread,Cheese,Milk
conf({Bread} = {Cheese, Milk}) = =FP Stlglgport({Bread}) H o

e | )

. support({Bread,Cheese,Milk
conf({Cheese, Milk} = {Bread}) = p;)up;(o{rt( Choose MiTkT) Do

Not symmetric
_(equality holds only
conf({Bread} = {Cheese, Milk}) # conf({Cheese, Milk} = {Bread}) In some rare cases)

V] ] )




Introduction

Support and Confidence - Example

ID Bought Items

.--—'('—_'

{Bread, Cheese, Milk, Pasta}
{Bread, Cheese, Chips}
{Cheese, Pasta, Milk}
{Bread, Cheese, Milk}

v
(92} & w N =

{Bread, Pasta}

: support({Bread,Cheese,Milk
conf({Bread} = {Cheese, Milk}) = *PRoiimet.cheen i) — 2

. support({Bread,Cheese,Milk
conf({Bread, Cheese} = {Milk}) = zﬁp;ﬁ;{t e ChassT) D 2

4

General rule;

conf({A, B} = {C}) > conf({A} = {B,C})

|




Introduction

Probabilistic Interpretation

« Support: probability that an instance contains AU B

support(A = B) = support(A U B) ~ P(AU B)

« Confidence: conditional probability that an instance contains items in B,
given that it contains items in A

conf(A = B) = SUprtAUL) o pp | 4)

support(.A)

Take ‘probability’ with a grain of salt - we are only considering a sample.



Association Rules

1. Introduction
2. Generating Association Rules

3. Applications

4. Evaluation

5. Simpson’s Paradox



Generating Association Rules

From Frequent Itemsets to Association Rules

Given: a dataset X € M(P(Z)), min_sup, min_conf

How to generate all association rules that have high support and high confidence?

support(A = B) = support(A U B) > min_sup

conf(A = B) = Suszi(;lzft“ﬁ?) > min_conf



Generating Association Rules

Ensuring support(A = B) > min_sup

v Easy!
* Use frequent itemsets as a basis

 Consider frequent itemsets C = A U Bsuch that |C| > 2 and C > min_sup
(apply Apriori or FP-growth to generate such frequent itemsets)



Generating Association Rules

Ensuring support(A = B) > min_sup

v Easy!
* Use frequent itemsets as a basis

 Consider frequent itemsets C = A U Bsuch that |C| > 2 and C > min_sup
(apply Apriori or FP-growth to generate such frequent itemsets)

* Generate candidate rules A = B by considering all splits of C into two non-empty disjoint
subsets
e However: the number of such candidate rules is 2/l — 21



Generating Association Rules

Ensuring support(A = B) > min_sup

v Easy!
* Use frequent itemsets as a basis

 Consider frequent itemsets C = A U Bsuch that |C| > 2 and C > min_sup
(apply Apriori or FP-growth to generate such frequent itemsets)

* Generate candidate rules A = B by considering all splits of C into two non-empty disjoint
subsets
e However: the number of such candidate rules is 2/l — 21

C = {{Bread}, {Cheese}, {Milk}, {Pasta}}

IC| =4 = 2% -2 =14 candidate rules}

‘ ... and the number of candidate frequent
itemsets was already exponential!



Generating Association Rules

Ensuring conf(A = B) > min_conf No additional

pass over the
data needed

« |temsets AU B and A are frequent
—> their supports have already been computed when using Apriori or FP-growth

« Therefore, we can simply test every candidate rule and only return the ones that satisfy the criterion:

conf(A = B) = Sl;ii;?fg?j?) > min_conf




Generating Association Rules

Ensuring conf(A = B) > min_conf

« |temsets AUB and A are frequent
—> their supports have already been computed when using Apriori or FP-growth

« Therefore, we can simply test every candidate rule and only return the ones that satisfy the criterion:

conf(A = B) = SpportlAUB) ~ iy conf

support(.A)

But...
« There could be way too many association rules.
* Most are not interesting!




Generating Association Rules

Confidence-Based Pruning

« Consider association rule A = B, and itemset C suchthat CN(AUB) =0

+Itholds that conf(A = BUC) = SREUAIRC) < supbonled) — conf(A = B)

[ recall that the support of a superset is lower or equal }




Generating Association Rules

Confidence-Based Pruning

« Consider association rule A = B, and itemset C suchthat CN(AUB) =0

+ It holds that conf(A = BUC) = SREUAIRC) < supborled) — conf(A = B)

« Hence, if conf(A = B) < min_conf then conf(A = BUC) < min_conf
« Adding C to the right part makes the rule stronger

 We can focus on the stronger rules meeting the confidence threshold

« This does not apply to conf(AUC = B) 7?7  conf(A = B)

« Additions to the left part of the rule may lead to an increase or decrease
* {Cheese} = {Wine} may have a confidence of 0.2
e {Cheese, Babyfood} = {Wine} may have a confidence of 0.1
e {Cheese, Chips} = {Wine} may have a confidence of 0.3



Generating Association Rules

Removing Redundant Rules

« Consider two different association rules A = B and A’ = B’ with identical support and confidence, i.e.:
o support(A = B) = support(A’ = B')
o conf(A = B)=conf(A" = B)

« A = BisredundantifA’ € Aand B’ C B

» Using only closed frequent itemsets will avoid generating redundant rules

(Recall: An itemset is closed if there is no proper superset that has the same support)



Generating Association Rules

Avoiding Generation of Redundant Rules

1. Assume A’ = B’ is redundant, i.e., there is another rule A = B such that
o support(A = B) = support(A’ = B')
o conf(A = B)=conf(A" = B)
« A/CA
. B CB
* It holds that A" U B’ ¢ AU B (because the rules are different)



Generating Association Rules

Avoiding Generation of Redundant Rules

1. Assume A’ = B’ is redundant, i.e., there is another rule A = B such that
o support(A = B) = support(A’ = B')
o conf(A = B)=conf(A" = B)
« A/CA
. B CB
* It holds that A" U B’ ¢ AU B (because the rules are different)

2. Also, assume AU B and A’ U B’ are closed, i.e., there are no proper supersets with the same support
* Hence, support(A’ = B’) > support(A = B) (cannot be equal, AU B is closed)

Therefore, we find a contradiction. Closed itemsets cannot produce redundant rules.



Generating Association Rules

Summary

How to generate association rules that are interesting?

« We can generate candidate rules with high support based on frequent itemsets

* We can filter those candidates with high confidence without going back to the data

« We can prune the rules based on confidence: min_conf < conf(A = BUC) < conffA= B)
« We can focus on closed frequent itemsets to avoid redundant rules

* Not enough, we need additional concepts such as “surprisingness” (lift)



Association Rules

1. Introduction

2. Generating Association Rules
3. Applications

4. Evaluation

5. Simpson’s Paradox




Applications

Spotify

{Flowers(Miley Cyrus), Unholy(Sam Smith)} = {Levitating(Dua Lipa)}
- {One(Metallica), Trasher(Evile)} = {Augen-Auf(Oomph),The Trooper(lron Maiden)}

{Birds(Anouk),Irgendwo(Nena)} = {Leiser(Lea),Klavier(Lea)}

* 456 million active listeners
« 195 million premium subscribers

« Over 80 million songs

(As of January 2023)



Applications

Amazon

> {Echo-Show-8,Fire-TV-Cube} = {Kindle-Paperwhite}

{Fire-TV-Stick-8} = {Fire-HD-8,Blink-Mini}

e 300 million active users
* Over 2 million third-party seller businesses

* Around 350 million items on the marketplace

(As of January 2023)



Applications

Supermarkets

support = 0.01
confidence = 0.85
lift = 1.67

+:>@+

---('—H

—

support = 0.001
confidence = 0.15
lift = 1.2

Next to confidence and support, we will see other measures like lift



Applications

Using Features Values As Items And Instances As Itemsets

Rain Wind Temp Play
Yes Yes 15 No
No No 34 Yes
Yes No 23 Yes
Yes Yes 20 Yes
No Yes 28 No

Examples consider items as products,
services, etc.

ltems can also be normal features
values and transactions normal
iInstances

This leads to itemsets of the form
{f1=v1, f2=v2, ... fn=vn} for each
instance



Applications

Using Features Values As Items And Instances As Itemsets

Rain Wind Temp Play
Yes Yes 15 No
No No 34 Yes
Yes No 23 Yes
Yes Yes 20 Yes
No Yes 28 No

[{Rain=Yes, Wind=Yes, Temp=15, Play=No},
{Rain=No, Wind=No, Temp=34, Play=Yes},
{Rain=Yes, Wind=No, Temp=23, Play=Yes},
{Rain=Yes, Wind=Yes, Temp=20, Play=Yes},
{Rain=No, Wind=Yes, Temp=28, Play=No},

.

Examples consider items as products,
services, etc.

ltems can also be normal features
values and transactions normal
iInstances

This leads to itemsets of the form
{f1=v1, f2=v2, ... fn=vn} for each
instance



Applications

Using Features Values As Items And Instances As Itemsets

Rain Wind Temp Play
Yes Yes 15 No
No No 34 Yes
Yes No 23 Yes
Yes Yes 20 Yes
No Yes 28 No

[{Rain=Yes, Wind=Yes, 10sTemp<20, Play=No},
{Rain=No, Wind=No, 30<Temp<40, Play=Yes},
{Rain=Yes, Wind=No, 20<Temp<30, Play=Yes},
{Rain=Yes, Wind=Yes, 20<sTemp<30, Play=Yes},
{Rain=No, Wind=Yes, 20<sTemp<30, Play=No},

.

ltems can also be ranges for continuous
feature values

* Temp=25

* Temp<25

* 20<Temp<30

* Etc.

Any dataset having instances and

features can be converted into a
multiset of transactions X € M(P(Z))



Applications

Using Features Values As Items And Instances As Itemsets

Rain Wind Temp Play
Yes Yes 15 No
No No 34 Yes
Yes No 23 Yes
Yes Yes 20 Yes
No Yes 28 No

{Rain=Yes, Wind=Yes} = {Play=No}
{Temp>30} = {Rain=No, Wind=No}
{Temp>20,Play=Yes} = {Wind=No}

Any dataset having instances and
features can be converted into a
multiset of transactions X € M(P(Z))

Hence, we can also have association
rules of the form

A=Bwith ACZ,BCZand ANB=10



Applications

Link To Classification and Decision Trees

. Night | Flight

Weather Traffic flight delagye d
Cloudy No Yes Yes
Cloudy Yes No Yes
Cloudy Yes No Yes
Clear Yes Yes No
Clear No No No
Clear No No No

{Night_flight=Yes, Weather=Cloudy} = {Flight _delayed=Yes}
{Night_flight=Yes, Weather=Clear} = {Flight_delayed=No}

Cloudy

Yes

N

No

l

Traffic

/— Night flight |
Yles
Weather
mar YTS/—
No Yes

{Night_flight=No, Traffic=Yes} = {Flight_delayed=Yes}

{Night_flight=No, Traffic=No} = {Flight_delayed=No}

No

l

No



Applications

Summary

» Association rules can be learned for “normal itemsets” and itemsets based on
feature values
» Classification rules can be expressed as association rules
« The challenge remains that there are exponentially many candidate rules
» Confidence and support are only part of the story
« What if many rules meet the two thresholds?
« How to select the most interesting ones?



Association Rules

1. Introduction
2. Generating Association Rules
3. Applications
4. Evaluation

5. Simpson’s Paradox




Evaluation

Association rules A = 5

{Cheese, Chips} = {Wine, Beer}

{One(Metallica), Trasher(Evile)} = {Augen-Auf(Oomph), The Trooper(lron Maiden)}
{Temp>20,Play=Yes} = {Wind=No}

{Night_flight=No, Traffic=Yes} = {Flight_delayed=Yes}

{Gender=Male, Sport=Football} = {Favorite _food=Currywurst, Age>40}

How to evaluate the quality of a rule?



Evaluation

Confusion matrix for association rules

Consider association rule A = B

A= B B is included B is not included
A is included # AB #AB #A
A is not included # AB #AB #A
#5 #B #ALL

support(A = B)

_ #AB
— ZALL

conf(A = B) = £27




Evaluation

Confusion matrix for association rules

Consider association rule A = B [The lower the better }
A= B B is included B is not includ§/
A is included # AB t #Agi #A
~—
A is not included #7{8 [The higher the better ] #E \ #71
#5 #B \ #ALL

Not captured in any of the metrics }

support(A = B) = fA—’ﬁ conf(A = B) = i—“f



Evaluation

High Support and High Confidence

Consider association rule A = B

A= DB B is included B is not included
A is included 100 0 100
A is not included 0 0 0
100 0 100

support(A = B) = % conf(A = B) = %



Evaluation

Low Support and High Confidence

Consider association rule A = B

A= DB B is included B is not included
A is included 10 0 10
A is not included 40 50 90
50 50 100

support(A = B) = 4 conf(A = B) = 1




Evaluation

Low Support and Low Confidence

Consider association rule A = B

A= DB B is included B is not included
A is included 10 40 50
A is not included 25 25 50
35 65 100

support(A = B) =

— 10
100

conf(A = B) = 2




Evaluation

Support and Confidence Don’t Tell The Full Story

Consider association rule A = B

A= DB B is included B is not included
A is included 80 10 90
A is not included 0 10 10
80 20 100

80 20 Seems to be a good rule
support(A = B) = 155 conf(A = B) = g5 because if A is not included,

B is also never included



Evaluation

Support and Confidence Don’t Tell The Full Story

Consider association rule A = B

A= DB B is included B is not included
A is included 80 10 90
A is not included 10 / 0 10
90 10 100

{Not captured in any of the metrics J

20 20 Same support and confidence,
support(A = B) = 155 conf(A = B) = g but seems to be a poor rule
because if A is not included,

B is always included
The distribution of counts in the second row does not

influence support and confidence



Evaluation

We need Lift: How surprising?

Consider association rule A = B

A= B B is included B is not included
A is included #AB #AB #A
A is not included #AB #AB #A
#5 #B H#ALL
AB
lift(A = B) = Suppsci"r’z?jggfp%izt(lg) = PI(DJ(Z()&{-LJJD%)S’) = #,;A—ﬂs = BT

H#ALL #ALL




Evaluation

We need Lift

Consider association rule A = B

A= B B is included B is not included
A is included #AB #AB #A
A is not included H#AB #AB # A
#B #B #ALL
#AB
. . support(AUB) __ P(AUB) #ALL
hft(‘A = B> — support(A)-support(B) — P(A)-P(B) — _#A4A_._#B

If lift(A = B) ~1 then A and B are independent

If 1ift(A = B) < 1 then A and B are negatively correlated P(AUB) < P(A)- P(B)
If lift(A = B) > 1 then A and B are positively correlated P(AUB) > P(A)- P(B)

#ALL #ALL

P(AUB) ~ P(A) - P(B)




Evaluation

Is the Rule Surprising?

Consider association rule A = B

A= B B is included B is not included
A is included 9 1 10
A is not included 81 9 90
90 10 100
lift(A = B) = Suppsii?jgﬁgfp%iz‘t(l?) - P](D,S(;l-LIJDI?l)S) = #EEA% 7B

#ALL #ALL

support(A = B) = % 0

conf(A = B) = 2 lift(A = B) = =% =1 No suprise!

100 100




Evaluation

Is the Rule Surprising?

Consider association rule A = B

A= DB B is included B is not included
A is included 9 1 10
A is not included 0 90 90
9 91 100
lift(A = B) = Suppsii?%ifp%iz‘t(l?) - Pigsl-%l?l)’:’) = #%&A% 7B

#ALL #ALL

support(A = B) = % 0

conf(A = B) = 2 lift(A = B) = > =10 Syrprise!

100 100




Evaluation

Is the Rule Surprising?

Consider association rule A = B

A= B B is included B is not included
A is included 9 1 10
A is not included 90 0 90
99 1 100
#AB
. . support(AUB) __ P(AUB) #ALL
hft(‘A = B> — support(A)-support(B) — P(A)-P(B) = _#A_._#B5

#ALL #ALL

support(A = B) = % 0

conf(A = B) = 2 lift(A = B) = %% =11 a little bit ...

100 100




Evaluation

Selecting Association rules

1. Set thresholds for minimal support and confidence
2. Evaluate lift and possibly other metrics for the rules remaining

3. Sort and prune based on any of the quality criteria (support, confidence, lift, etc.)

It is hard to predict the number of rules beforehand

There are many other measures of quality (conviction, leverage, collective strength, etc.)



Association Rules

1. Introduction

2. Generating Association Rules
3. Applications

4. Evaluation

5. Simpson’s Paradox




Simpson’s Paradox

Simpson’s Paradox

A trend appears in several different groups of
data but disappears or reverses when these
groups are combined.

« Edward Simpson in 1951 (earlier variants
by Udny Yule and Karl Pearson)

* Nice example of ‘How to lie with
statistics?’

« The paradox is often encountered in
social-science and medical-science

18
16
14
12
10

A~ O o

10

10

B Class1
® C(Class 2
¢ C(Class 3

Class 4
Group Trend



Simpson’s Paradox

Simpson’s Paradox When Using Regression

Switzerland
salary

Germany

Cambodia

hours of working



Simpson’s Paradox

Simpson’s Paradox in Association Rules

Consider the association rule A = B and any feature which splits the instances (location, age ... )

a+c+ +\ b+d+qg+s)—(a+c+p+7)

A=B B is included B is not included
A is included a —+ (b—a)+ b+
A is not included c+ \ (d—c)+ d +
b+d+ g+

Two classes — blue and
(e.g., old and )




Simpson’s Paradox

Simpson’s Paradox in Association Rules

Consider the association rule A = B and any feature which splits the instances (location, age ... )

A= B B is included B is not included
A is included a 4+ (b—a)+ b+
A is not included c+ (d—c)+ d +
a+c+p+ (b+d+qg+s)—(a+c+p+7) b+d+ g+
_atp
conf(A = B) = ‘gig lift(A = B) = — 4t

b+dtqts btdtq+s



Simpson’s Paradox

Simpson’s Paradox in Association Rules

Consider the association rule A = B and any feature which splits the instances (location, age ... )

A= B B is included B is not included
A is included a —+ (b—a)+ b+
A is not included c+ (d—c)+ d +
a+c+p+ (b+d+qg+s)—(a+c+p+7) b+d+ g+

conf(A = B) = 442

— b—I—q

lift(A = B)

__ (a+p)-(b+d+q+s)

— (b+q)-(atctp+r)




Simpson’s Paradox

Simpson’s Paradox - Example

Two classes: old and

smoke = cancer has cancer doesn’t have cancer
smokes 1+ 2+ 3+
doesn’t smoke 34 + 66 + 100 +
35 + 68 + 103 +
humans  conf(smoke = cancer) = % = 0.65 > conf(not smoke = cancer) = % =0.35
old conf(smoke = cancer) = % = 0.333 < conf(not smoke = cancer) = % =0.34

conf( ) = 2% = 0.66 < conf( ) = 2 = 0.666



Simpson’s Paradox

Simpson’s Paradox - Example

Two classes: old and

smoke = cancer has cancer doesn’t have cancer
smokes 1+ 2+ 3+
doesn’t smoke 34 + 66 + 100 +
35 + 68 + 103 +
humans  conf(smoke = cancer) = % = 0.65 > conf(not smoke = cancer) = % =0.35 -\
old conf(smoke = cancer) = % = 0.333 < conf(not smoke = cancer) = % =0.34
conf( ) = 2% = 0.66 < conf( ) = 2 = 0.666

Smoking is healthy for old and people, but not for all humans!

[1]



Simpson’s Paradox

Simpson’s Paradox - Example

Two classes: old and

smoke = cancer has cancer doesn’t have cancer
smokes 1+ 2+ 3+
doesn’t smoke 34 + 66 + 100 4+
30 + 68 + 103 +

« The presence of smoking has a strong positive effect on the occurrence of cancer in the overall set
(supports the rule)
« However, the effect cannot be seen in the subsets!



Simpson’s Paradox

Simpson’s Paradox - Example
Two classes: old and
smoke = cancer has cancer doesn’t have cancer
smokes 1+ 2+ 3+
doesn’t smoke 34 + 66 + 100 4+
30 + 68 + 103 +

humans  lift(smoke = cancer)

old lift (smoke = cancer)

lift( )

__ 3206 _ _ 67-206
— 103,103 = 7(3.103

103 103 335
1% 66-103
= 100,68 — 7100.68

= 1.301
i10335 = L1103 _ 0.9809

= 0.9997




Simpson’s Paradox

Simpson’s Paradox - Example

Two classes: old and

smoke = cancer has cancer doesn’t have cancer
smokes 1+ 2+ 3+
doesn’t smoke 34 + 66 + 100 4+
30 + 68 + 103 +
: e 67-206 . \
humans  lift(smoke = cancer) = w8 tor = 103103 — 1.301 = Positively correlated
1
old lift(smoke = cancer) = 1% = % = (0.9809 _ \
T03 103 /( Negatively correlated
56 .
lift ( ) = % =TG5 = 0-9997




Simpson’s Paradox

Simpson’s Paradox — Another Example

Computer Science Mathematics ALL
get degree drop out get degree drop out get degree drop out
female 80 20 400 600 480 620
(80%) (20%) (40%) (60%) (44%) (56%)
ale 700 300 30 70 730 370
(70%) (30%) (30%) (70%) (66%) (34%)

1100 females and 1100 males, 1100 CS students and 1100 math students




Simpson’s Paradox

Simpson’s Paradox — Other Examples

The hospital in the city of Stolberg has an overall better performance (e.g., lower mortality rate)
than the hospital in Aachen. However, for any specific disease, Aachen performs better. This
paradox is due to different distributions of diseases (patients with more serious diseases tend to
end up in Aachen and not Stolberg).

Males have higher wages on average, but in any given profession, females earn more on
average. This paradox is explained by males going for higher-paid professions.

Low birth-weight paradox: low birth-weight children born to smoking mothers have a lower infant
mortality rate than low-birth-weight children of non-smokers. Smoking is harmful and contributes
to low birth weight and higher mortality than normal birth weight. However, other causes of low
birth weight are generally more harmful than smoking.



Simpson’s Paradox

Confounding

« Simpsons paradox is related to confounding, i.e., another (possibly hidden) feature that

iInfluences two other features

* A confounding feature C (also called “lurking variable”) may influence both A and 55, and

therefore “blur’ A = B

C disease sunny
Cay \uses Cay \uses Cay \Uses
A 75> B hospital outcome ice-cream riots

does not cause does not cause does not cause



Simpson’s Paradox

Summary

« Association rules can be discovered starting from frequent items sets _A — B

« Any dataset with instances and feature values can be turned into a multiset of itemsets

and used for association rule mining (not just “pure itemsets”)
e Support, confidence, and lift can be used to prune and sort association rules

* Rules should be interpreted carefully (Simpson’s paradox and confounders)



Sequence Mining

1. Temporal Data
2. Measuring Support
3. Apriori-All Algorithm

4. Extensions and Conclusion




Temporal Data

Temporal Data — Discrete Timestamped Events

Every instance happened
at a specific time




Temporal Data

Temporal Data — Discrete Timestamped Events

Event data
Time- | Case . .

stamp D Activity | f; f, fo
t, 3 a
t, 1 a
t; 1 b
t, 2 a
te 3 b

/
Case ID is used to Activity identifies the
group events type of event




Temporal Data

Temporal Data — Discrete Timestamped Events

Event data
Time- | Case . .

stamp D Activity | f; f, fo
t, 3 a
t, 1 a
t; 1 b
t, 2 a
te 3 b

"~

Case ID is used to Activity identifies the
group events type of event

.

1

Event Data

Timestamp (typically not equal intervals)
Case ID (maps events to cases)
Activity (identifies the event type)

Other features are optional (resource,
location, cost, duration, ...)



Temporal Data

Temporal Data — Discrete Timestamped Events

Event data
Time- | Case . .

stamp D Activity | f; f, fo
t, 3 a
t, 1 a
t; 1 b
t, 2 a
te 3 b

"~

Case ID is used to Activity identifies the
group events type of event

.

1

Event Data

« Timestamp (typically not equal intervals)
« Case ID (maps events to cases)

« Activity (identifies the event type)

« Other features are optional (resource,
location, cost, duration, ...)

Case 1: {(a,b,...)
Case 2: (a,...)
Case 3: (a,b,...)



Temporal Data

Temporal Data — Discrete Timestamped Events

Event data
Time- | Case . .

stamp D Activity f, f, fo
t, 3 a
t, 1 a
t; 1 b
t, 2 a
te 3 b

/

[ Case ID is used to }

group events

Activity identifies the
type of event

1

Event Data

« Timestamp (typically not equal intervals)
« Case ID (maps events to cases)

« Activity (identifies the event type)

« Other features are optional (resource,
location, cost, duration, ...)

Case 1: (a,b ) /We can abstract from\
S timestamps and

Case 2: (a,...) optional features to

) obtain sequences of
Case 3: {a,b,.. ) actisities j




Temporal Data

Temporal Data — Discrete Timestamped Events

Event data
Time- | Case . .

stamp D Activity | f; f, fo
t, 3 a
t, 1 a
t; 1 b
t, 2 a
te 3 b

"~

Case ID is used to Activity identifies the
group events type of event

.

1

Event Data

« Timestamp (typically not equal intervals)
« Case ID (maps events to cases)

« Activity (identifies the event type)

« Other features are optional (resource,
location, cost, duration, ...)



Temporal Data

Event Data — Example 1

Case ID Activity name Timestamp Other features

Patient ID Activity Time Doctor Age
5611 Blood Test 12:25 Dr. Scott 45
3645 X-Ray 14:34 Dr. House 67
5611 Surgery 15:01 Dr. Scott 45
7891 Blood Test 15:03 Dr. House 24
3645 Radiation Therapy 17:25 Dr. Jenna 81

5611 : (Blood Test, Surgery, .. .)
3645 : (X-Ray, Radiation Therapy,...)

7891 : (Blood Test, ... )




Temporal Data

Event Data — Example 2

Case ID Activity name Timestamp Other features
Order Number Activity Time Username Product Quantity
11152 Register Order | 15.12.22 12:25 | Carriel92 Iphone 14 1
52690 Ship Order 15.12.22 12:45 | Johnnyl Earpods 2
11152 Check Stock 15.12.22 13:01 | Carriel92 Iphone 14 1
44891 Handle Payment | 30.12.22 18:01 | Obelisk USB-C Charger 3
61238 Cancel Order | 11.01.2317:25 | Apex_512  MacBook Air 1
"\~

52690 : (Ship Order,...)
44891 : (Handle Payment, . ..)

changing the meaning of data!

11152 : (Register Order, Check Stock, Cancel Order,...) [

Note: ‘Username’ could also be our Case ID, J




Temporal Data

Event Data — Example 2

Case ID Activity name Timestamp Other features
Order Number Activity Time Username Product Quantity
11152 Register Order | 15.12.22 12:25 | Carriel92 Iphone 14 1
52690 Ship Order 15.12.22 12:45 | Johnnyl Earpods 2
11152 Check Stock 15.12.22 13:01 | Carriel92 Iphone 14 1
44891 Handle Payment | 30.12.22 18:01 | Obelisk USB-C Charger 3
61238 Cancel Order | 11.01.2317:25 | Apex_512  MacBook Air 1

52690 : (Ship Order,...) multiple times for different cases

11152 : (Register Order, Check Stock, Cancel Order,...)
%{ Note: the same sequence can occur 1
88721 : (Register Order, Check Stock, Cancel Order, ... ) (multiset of sequences)




Temporal Data

Event data — Basis for Process Mining

Event data
Time- | Case Activity £, f, f Process Mining
stamp ID
* Processes generate event data
t, 3 a
« Every process execution is a case
t, 1 a
t, 1 b
Common Tasks
t, 2 a
« Discover the process
£, 3 b P
« Validate the process
]
/ « Improve the process

Case ID is used to Activity identifies the
group events type of event




Temporal Data

Temporal Data — Discrete Timestamped Events

Generalized sequential data

Time- Case ID Item
stamp
t, 3 a
t, 1 a
t; 1 b
t, 2 a
te 3 b

[ Iltem ldentifier

Sequential Data
« Timestamp (typically not equal intervals)
« Case ID (maps events to cases)

« Item (identifies the item type)

Relation to event data:
item could be an activity



Temporal Data

Temporal Data — Discrete Timestamped Events

Generalized sequential data

Timestamp | Customer ID | Purchased Item
22-07-12 1172 Razor
22-07-12 8121 Shampoo
22-07-12 1172 Shaving Cream
22-08-13 3434 Shampoo
22-09-01 1172 Shaving Cream

1172 :(Razor, Shaving Cream, Shaving Cream)
8121 :(Shampoo)
3434 :(Shampoo)

= [(Razor, Shaving Cream, Shaving Cream),
(Shampoo)?, . ..]



Temporal Data

Temporal Data — Discrete Timestamped Events

Generalized sequential data

Timestamp | Customer ID | Purchased Item
22-07-12 1172 Razor
22-07-12 8121 Shampoo
22-07-12 1172 Shaving Cream
22-08-13 3434 Shampoo
22-09-01 1172 Shaving Cream

Timestamp Customer ID Purchased Itemset
Razor,
22:07-12 1172 Shaving Cream
22-07-12 8121 Shampoo
22-08-13 3434 Shampoo
22-09-01 1172 Shaving Cream

1172 :(Razor, Shaving Cream, Shaving Cream)
8121 :(Shampoo)
3434 :(Shampoo)

= [(Razor, Shaving Cream, Shaving Cream),

(Shampoo)?, . ..]

1172 :({Razor, Shaving Cream}, {Shaving Cream})
8121 :({Shampoo})
3434 :({Shampoo})

({Shampoo})?,...]

= [({Razor, Shaving Cream}, {Shaving Cream}),



Temporal Data

Temporal Data — Discrete Timestamped Events

Generalized sequential data

Sequential Pattern Mining

* Input: a multiset of nonempty sequences
of itemsets

« Main analysis question: identify frequent
subsequences (recurring patterns)

« Relation to event data:
an itemset can be interpreted as activity,
an activity can be an itemset of size 1

Timestamp Customer ID Purchased Itemset
Razor,
22:07-12 1172 Shaving Cream
22-07-12 8121 Shampoo
22-08-13 3434 Soap
22-09-01 1172 Shaving Cream

1172 :({Razor, Shaving Cream}, {Shaving Cream})
8121 :({Shampoo})
3434 :({Shampoo})

= [({Razor, Shaving Cream}, {Shaving Cream}),
({Shampoo})?,...]



Temporal Data

Sequential Pattern Mining

« Uses a specific type of (event) data as input: multiset of sequences of itemsets

 Asequence is a honempty sequence of itemsets

« Two notations for sequence data: ltemset (Activity) ]
— Formal:
X = [({a}, {b}, {c,d}, {e}), ({a}, {b}, {c,d}, {e}), (\{a}, {b,c},{c,d, e}, {f})ﬂ
|

— Informal (short notation):
X = [ab(cd)e, ab(cd)e, a(cd)e, a(be)(cde) f]

A sequence of itemsets (activities):
« Formally X € M((P(Z))*) for a set of items Z e.g.,{¢: d, e} happened after {b, ¢}

(M is the multiset and P the powerset operator)




Temporal Data

Sequential Pattern Mining — Input Example

Purchased

Customer ID

Customer Sequence

({4}, {4, B})
{B})
{C},{4,C, D))
{B})

Customer ID Time
Items
15.12.22
A 12:25
15.12.22
A B 12:45
B 15.12.22
13:01
C 30.12.22
18:01
11.01.23
A G [0 17:25
31.12.22
B

17:32

Input is a multiset of
sequences of itemsets



Temporal Data

Sequential Pattern Mining — Input

Input X € M((P(Z))*)
Formal:

[({A}:{A, BY), ({B}), ({C}{A, C, DY), ({B})]
=[({A}, {4, B}), ({B})*, ({C}.{A.C, D})]

Informal:
|A(AB),B,C(ACD), B]
=[A(AB), B*,C(ACD)]

Customer ID

Customer Sequence

({4}, {4, B})
({B})
{C},{4,C, D))
({B})

Input is a multiset of
sequences of itemsets
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Temporal Data

Temporal Data — Analysis Techniques

« This lecture — Sequential Pattern Mining

* Next lectures — Time Series and Process Mining:

— Analyze and predict time series data

— Discover, validate and improve processes

Cancel Order

O—' Register order Check Stock

START

Handle
Payment

Ship Order

END



Sequence Mining

1. Temporal Data
2. Measuring Support
3. Apriori-All Algorithm

4. Extensions and Conclusion




Measuring Support

Goal — Find Frequent Sequential Patterns

Customer ID ggcslaoer:fé
N ({11}, {25})
2 {{31})
B ({12}, {11})

)

Sequential Patterns with
Support > Threshold (Min_Sup)

({31})
({12}, {11})

Given a dataset X € M((P(Z))*) find all frequent sequential patterns

Sequential pattern P is a sequence of itemsets, i.e., P € (P(Z))*

Support of a sequential pattern is the fraction of sequences in X that contain the pattern P




Measuring Support

Containment

 Let A= (A1, As,..., A,) € (P(Z))" and B = (B1,Bs,...,B,) € (P(Z))* be two itemset sequences

A is contained in B if there exist integers 1 < i1 <19 < -+ < 4, < m such that

A1 CB;,,, A CB,,,..., A, CB;

tn



Measuring Support

Containment

 Let A= (A1, As,..., A,) € (P(Z))" and B = (B1,Bs,...,B,) € (P(Z))* be two itemset sequences

A is contained in B if there exist integers 1 < i1 <19 < -+ < 4, < m such that

A1 CB;,,, A CB,,,..., A, CB;

tn

<~’417 '/4‘-27 A37 A4>

A C By Ay C By 1§1<4<7<8§9}

\
<Bla 827 BS: B4:B57569877 BS: BQ)




Measuring Support

Containment

« Notation: ALC B if A is contained in B

« If AC B, then A is a subsequence of B and B is a supersequence of A

A1 CB;,,,A2CB,,,...., A, CB;

—

[subsequenceL (Al,A‘g,Ag,le)

A‘:B A1 C By Ay C By
\

[SUpersequencel/’ (B1, B2, B3, Ba, Bs. Bg, Bz, Bs, Bo)




Measuring Support

Containment - Examples

Formal notation:

({a}, {a, b}, {b, ¢}, {c}) E ({a},{a}, {a, b, ¢}, {b, ¢}, {b, ¢}, {a, c})

aa(abc)(bc)(bc)(ac)

SO\

a(ab)(bc)c

multiple mappings possible

a(ab)(bc)c £ aa(abc)(bc)(bc)(ac)

(aq,a,, ...,a,) E (bq, by, ..., b,,,) if and only if there exist integers 1 <i; <i, < <i, <m

suchthata; € b; ,a; € b, ...,a, S b;



Measuring Support

Containment - Examples

Formal notation:

({a}, {a, b}, {b, c}, {c}) E ({a},{a}, {a,b, ¢}, {b, c}, {b,c}, {a,c})
({a}, {a, b}, {b, c}, {c}) Z {{a},{a,b,c},{b,d}, {b, e}, {a, c})
a(abc)(bd)(be)(ac)
?
Informal notation: v\”\\‘\ .'\ /
a(ab)(bc)c

a(ab)(bc)c = aa(abc)(bc)(bc)(ac)

a(ab)(bc)c £ a(abc)(bd)(be)(ac) %

(aq,a,, ...,a,) E (bq, by, ..., b,,,) if and only if there exist integers 1 <i; <i, < <i, <m

suchthatay € b; , a; € b;,, ...,a, S b;_



Measuring Support

Containment — Practice Questions

(ab)(bc) E (bc)(ab) ?

« abC a(ac)(bc)c ?

« aa(ab)(bc) = (ab)(ace)(bce)(ab) ?

« (abc)ef = (ab)(bc)(ef)f ? D

* (abc)ef £ (ab)(bc)(abcd)(ef)f ?

(aq,a,, ...,a,) E (bq, by, ..., b,,,) if and only if there exist integers 1 <i; <i, < <i, <m

suchthata; € b; ,a; € b, ...,a, S b;



Measuring Support

Containment — Practice Answers

« (ab)(bc) £ (bc)(ab) (incompatible order)

« abC a(ac)(bc)c

« aa(ab)(bc) Z (ab)(ace)(bce)(ab) ((ab) cannot be mapped without also handling aa or (bc), etc.)
« (abc)ef Z (ab)(bc)(ef)f  (no match for (abc))

« (abc)ef = (ab)(bc)(abcd)(ef)f

(aq,a,, ...,a,) E (bq, by, ..., b,,,) if and only if there exist integers 1 <i; <i, < <i, <m

suchthatay € b; , a; € b;,, ...,a, S b;_



Measuring Support

Support

« The support of a sequential pattern P is the fraction of sequences in X that contain P

*  support(P) = [SET)';TES”

*  Minimum support threshold min_sup defines which sequences are frequent



Measuring Support

Support

The support of a sequential pattern P is the fraction of sequences in X that contain P

*  support(P) = [SET)';TES”

Minimum support threshold min_sup defines which sequences are frequent

Support count is the number of sequences in X that contain P

support_count(P) =|[S € X | PC §]|



Measuring Support

Support — Practice Questions

* X = [abed?, (abed), (ab)(cd)?, (ab)(be)(cd)]

« What is the support_count(P) for

—P=a
—P=ab

— P=(ab)

— P=(ab)c

— P = (ab)(bd)
— P =ab(cd)

= [({a}, b} {eh {ap®, 0\
<{a? b’ C? d}>?
({a,bHe,dp)”
({a.b}, {b.c}. {e.d))]

= [({a}, {b},{c}, {d}),
{a,b,¢,d}),
{a,b}{c,d}),

{a}, {b};{c}, 1d}),

{a,bi{c, dy),

\_ {ab}{ed})

(
(
(
({a, b}, 10, ¢}, ¢, d}),
<
<
<




Measuring Support

Support — Practice Questions

X = [abcd?, (abed), (ab)(cd)?, (ab)(be)(cd)]

What is the support_count(P) for

—P=a
—P=ab

— P = (ab)

— P=(ab)c

— P = (ab)(bd)
— P = ab(cd)

2

o ~ O W

=

: [abcd?, (abed), (ab)(cd)?, (ab)(bc)(cd)]
: [abcd2, (abcd), (ab)(cd)?, (ab)(bc)(cd)]
: [abcd2, (abcd), (ab)(cd)?, (ab)(bc)(cd)]
: [abcd2, (abed), (ab)(cd)?, (ab)(bc)(cd)]
: [abcd2, (abcd), (ab)(cd)?, (ab)(bc)(cd)]
: [abcd2, (abcd), (ab)(cd)?, (ab)(bc)(cd)]



Sequence Mining

1. Temporal Data
2. Measuring Support
3. Apriori-All Algorithm

4. Extensions and Conclusion




Apriori-All Algorithm

Brute Force Approach

Goal: find all frequent sequential patterns

Let k be the length of the longest sequence in A and q the

size of the largest itemset

Generate all sequential patterns of length < k

with itemsets of size < q (this numer is finite)
Compute the support of each candidate pattern
Return all that have a support higher than min_sup

Obviously, this is very expensive!

/ all sequential patterns\

of length k




Apriori-All Algorithm

Smarter Approach Based on Apriori

» First described in Rakesh Agrawal, Ramakrishnan Srikant: Mining Sequential Patterns
« Similar to Apriori for frequent itemsets — avoid testing hopeless candidates

« If AC B (A iscontained in B), then B cannot be frequent if A is not frequent
— support (A) > support (B) if A C B

— if A C B and support (A) < min_sup then support (B) < min_sup



Apriori-All Algorithm

Step 1 — Determine All Litemsets

« L={ACT|support((A4)) > min_sup} are all itemsets that appear in a sufficient number of

sequences

« These itemsets are called litemsets (L is the set of all litemsets)



Apriori-All Algorithm

Step 1 — Determine All Litemsets

« L={ACT|support((A4)) > min_sup} are all itemsets that appear in a sufficient number of

sequences

« These itemsets are called litemsets (L is the set of all litemsets)

« Consider X = [abcd,(abcd),(ab)(cd),(ab)(bc)(cd)] and min_sup = 0.7.
The following itemsets are frequent:

a (support = 4/4), b (support = 4/4), ¢ (support = 4/4), d (support = 4/4), (ab) (support = 3/4), (cd) (support = 3/4)

« To determine all litemsets, we can use a variant of the original Apriori algorithm

(the only difference is that support is now counted per sequence of transactions and not per transaction)



Apriori-All Algorithm

Step 2 — Transform the Dataset

« We only need to consider the litemsets £
— There cannot be any frequent patterns that involve other itemsets

— Frequent sequence patterns must be of the form £*!

- ThesetL: ={(Z)| T e L} is the set of all frequent sequence patterns of length 1

« L € L%js the set of all frequent sequence patterns of length exactly k

(to be ‘grown’ from shorter sequence patterns)



Apriori-All Algorithm

Step 2 — Transform the Dataset

« Transform X € M((P(Z))*) into X € M((P(£))*)

—> itemsets are mapped onto all litemsets they contain

« Each sequence is now described by a sequence of sets of litemsets (extra level)



Apriori-All Algorithm

Step 2 — Transform the Dataset

« Transform X € M((P(Z))*) into X € M((P(£))*)

—> itemsets are mapped onto all litemsets they contain

« Each sequence is now described by a sequence of sets of litemsets (extra level)

Example 1: Consider £ = {{a},{b},{c},{a, b}}

« ({a,c},{a,b,c}) corresponds to ({{a},{c}},{{a}, {b},{c},{a, b}})
— because {a, c} has frequent subsets {a}, {c},

— and {a, b, c} has frequent subsets {a}, {b},{c}, and {a, b}

*  ({c},{a, c}) corresponds to ({{c}}, {{a}, {c}})



Apriori-All Algorithm

Step 2 — Transform the Dataset

Transform X € M((P(Z))*) into Xp € M((P(£))*)

—> itemsets are mapped onto all litemsets they contain

Each sequence is now described by a sequence of sets of litemsets (extra level)

Example 2: Consider £ = {{a},{b},{c},{a, b}} and X = [( {a,b,c}),{c},{a c}),..]

Then X7 = [( {{a}, (b}, {c}, {a, b}}), ({{c}}, {{a}, {c}}}, ..]



Apriori-All Algorithm

Step 2 — Transform the Dataset

_ This preprocessing is not essential but makes
« Transform X € M((P(Z))*) into X7 € M((IP(£))*) sense because the dataset is traversed many times

—> itemsets are mapped onto all litemsets they contain

« Each sequence is now described by a sequence of sets of litemsets (extra level)

Example 2: Consider £ = {{a},{b},{c},{a, b}} and X = [( {a,b,c}),{c},{a c}),..]

«  Then &= [( {{a}, (b}, {c}, {a, b}}), ({{c}}, {{a}, {c}}}, ..]

Testing whether a sequence pattern is supported by a sequence in the dataset is easy now!



Apriori-All Algorithm

Step 3 — Generate a Set of Candidate Sequences

Assume we have Lj_1, the set of all frequent
sequence patterns of length k — 1
(recall that £1 = {(Z) | Z € L})

Create the set of candidate sequences Ck by
combining two sequences from L;—1 where the
first k — 1 itemsets are the same

(just like in Apriori for frequent itemsets)

of length k

/all sequence patterns \

patterns Cy,
before pruning

/candidate sequence\

&

oY




Apriori-All Algorithm

Step 4 — Prune the Set of Candidate Sequences

» For all candidate sequences C € Ci / \
all sequence patterns
— Consider all subsequences of C of length k — 1 of length k
— If one of these subsequences is not in £j_1, then / , \
candidate sequence
remove C from C;, patterns C

before pruning

4 N

Ci. after pruning

N =7




Apriori-All Algorithm

Step 5 — Test All Candidate Sequences

« For each transformed sequence $ € X7 Increment the count / \
o _ _ all sequence patterns
of C € Cy if Cis contained in & of length k
/candidate sequence\
- Remove all candidates C € Cj, that do no meet the threshold to patterns Cy,

before pruning

4 )

Ci. after pruning

obtain Lx = { C € Ci, | support(C) > min_sup}

« Increment k and go to Step 3 (Candidate Generation) until £, = 0

. Ly is th fallf
LkJ k is the set of all frequent sequence patterns K\K ///




Apriori-All Algorithm

Step 6 (Optional) — Remove Non-Maximal Patterns

« Asequence $ is a maximal frequent sequence in X
— if § is frequent,

— and there is no real supersequence S’ that is also
frequent (S = §)




Apriori-All Algorithm

Step 6 (Optional) — Remove Non-Maximal Patterns

« Asequence § is a maximal frequent sequence in X
— if § is frequent,
— and there is no real supersequence S’ that is also
frequent (S C S')

« Itis possible to keep only the maximal sequences

« However, support information for the subsequences will

be lost (subsequences may have higher supports)




Apriori-All Algorithm

Other Sequential Pattern Mining Approaches

There are many other algorithms to find frequent sequential patterns:

Maximal Frequent Sequences (MFS)

Maximal Sequential Patterns using Sampling (MSPS)
« Indexed Bit Map (IBM)

« Sequential Pattern Mining with Length-decreasing Support
(SLPMiner)

WINEPI, MINEPI

« And many others...



Sequence Mining
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Extensions and Conclusion

Association Rules Based on Fregquent Sequences

* Frequent sequence patterns can be split in an ‘if’ and ‘then’ part

(just like ‘normal’ association rules)
 ({beer}, {red,white}) = ({beer}, {red,white}, {wodka})
 ({beer}, {beer}) = ({beer},{beer}, {beer}, {beer} {beer})

« Many variants possible



Extensions and Conclusion

How to lIdentify Interesting Frequent Sequences?

« For any technique that identifies patterns, it is important to filter out the less interesting ones

* One can look at things like correlations and base frequencies to decide how surprising sequences
or sequence-based rules are (lift metric)

» ltis also possible to add further constraints...



Extensions and Conclusion

How to lIdentify Interesting Frequent Sequences?

Examples for further constraints:
« Item constraints: only consider sequences that include or exclude a set of items
* Length constraints: only consider patterns of a given size

« Time constraints: only consider patters that occur in a short timeframe
(this includes gap and duration constraints)

* Reqgular expression constraints: only consider patterns that satisfy a regular expression or
temporal constraint



Extensions and Conclusion

Episode Mining

Extension: rather than looking for sequences we look for embedded partial orders (not subject of this

course)

Not a directly follows relation:
something may happen in between




Temporal Data

In future lectures — More Temporal Data!

Event data
Time- | Case . .

stamp D Activity f, f, fo
t, 3 a
t, 1 a
t; 1 b
t, 2 a
te 3 b

/

[ Case ID is used to }

group events

Activity identifies the
type of event

1

We will see how to analyze time series

Process mining: the analysis of event
data as interplay between events and
models



