[V

i > Chair of Process
b g O and Data Science

Elements of Machine Learning
& Data Science

Association Rules and Sequence Mining
Lecture 10

Prof. Wil van der Aalst

Marco Pegoraro, M.Sc.
Christopher Schwanen, M.Sc.
Tsunghao Huang, M.Sc.

Association Rules

1. Introduction

2. Generating Association Rules
3. Applications

4. Evaluation

5. Simpson’s Paradox

Introduction

From Frequent Itemsets to Association Rules

* Frequent Itemsets — a combinatorial explosion

 How to determine the interesting ones?

« How to turn itemsets into rules?

9
ThelafabolS oy :
{

~ i1 T~ ,' ', <. 2 ,l - pie g — ‘ ~ PLAUNDALEJ - RESomT

Introduction

A Larger Supermarket May Have Up To 50000 Distinct Items

31606994368563178961359246599456917889846763878349356668477431555649439379020095506510671449225294209742826903437980616228916502470600915335951301703658681080999701165310874670475837220937876396746497656620743664668833249279327439262222262563256466194795970708530654101263195566450954875842557316252299395137383358926490260058674359511
84963615454162198009836540553902746189836926616803054602986713771300764236103912584316984387046421891042940862409285760387607642178660447084278582343741975788782575397255679835385509255617699530378773285612149746612966192651253693114313273858994605409771445163688490715356137720041811636018280718733780759203810695576005864810237900789
63988255037023373276055115742318622177743796223511368505700487581262583774163907401463586925446787066967165881174994457295094712052295582841326213495012334345094489338108644570432751660847885329573521479427979542282886112747824139608141973875963985224763459669877428754798427027082922311021715851869262148199438429398716218635094311371
0209892772971716110929927731636487052992987749952582075199999823623336378201206536182409135673260858434397680324294431695532313988094705825127170281671342756132130834630626735161518877001479353099675421568669161387971545385350702911535042214 105270064 1840491953216934026455021310171858397942365283920261189168015347221398702227467413959
02492128586493084122499921428423167659386991199053145440232918025337294792121480817320557424817134341166560131328380547089162451960863019896841277608267473071032610361884348741832609100033764267372951754668207732140976344881559366912679236124697823644196584984332119466217601083183663311742410337555621104734292489903235192160821330898
02953591439512086147895115772596669501925625901791072487074730504874163168342215882959262699867593549596835570603479437724970482623738535342804147761497715920036616881948488236947357767382023430405932053636818178066385277015617604599702385418821093150576460349741811111683304559468346076181006034793866610737640737653816143379408220115
24527550386809152486675760378164481071149284549573589737699791017750812805638584256599855518530029451981368474078030987310164760021887211670447250166096204175172644613886237210997958275618422332110272657076528692275499713604211385238379353376108299305309402458187173977678774745568561156483817128509490574298346897869239002381996684624
20124975014460176937757543706037088013809808763009055350430278490509069412005546309455095193839024869890529164588776426256822355723140640821450894 16378945539504474235860224821111940255427436460781524297444079095447646223542134304206 1888 188431752632527921982019539829676482175124356602558024358281709710521718828251944407816772714544977
67346098355893516823781965468341837645790408053920253062766986988121539894795792254500573984276351981485270476556082846346603614979228118232694320688641992685013506316217924187127479602480274268622502490760563244747133264200840994010491398338587428300174678664787974799408921333023901547401801313768527104325438541680441194493601747785
83659106188005861388947860982620959036640344797081435915095902893197571526926463804474748200592213540594450935754427169733310981767167078486894623765233345561921939523161162182284422660690782900336681688827899379301066065280216794975632187014330413853625533841557851441105044316622518929928992079888969880770830655328897684420112434365
99859452840889686495279989903477096078575541951328806322851950252552592344168743316523924091677776555035300546896564711246599096501538015732460568505159309026876942822257942805338777947949083385366853887931563547342972750038735441012362088807826002678323209075341664682039970244371752439627477589922704036287386433079400082357329563904
61626798726858720184726765098207027420411871614567357734708789440582967091589244459800831167900692755658586323506217739332375392576953008066731474810976934070561682915871374236695632381165893998037649036220653650916326289599403552854810471431152990709759097987419249548190985934514016903681939769257170829508560803584887851110378021139
41506714904159995239179031055325674951078797125883872100845863580446944577533545163253474370626812603668141097794220501910325818514520460608813593766201379661677402397648431524382253708221535383764834366171103349600929274818178053696087486518397861209911980734287044850160278689958777516204282894006411324592881455609027513470986446955
63477637451093696302793057489201058088342606342922981190034432698490915886271311961857652026361053628705171600303150123538685001308779479681857312254943518449704275479642437275140137984669941944836642040223878486538067789693348083730346825273845460061706852290775466985780968592555948972413863120063221143185629834828284332040441845171
583418684231660145392992409922598320558427635546149640259499303896687655889853235173231563594894331355085387107697230905654705259068621648397387329097578047593092846447686613216298865047063582525798691383901918628632995284123556392453134169961365150347555772043290281949899696670254655172266586429376580045745815051431828341501512584448
18604561547353335478004380572057786858093142800111569616574807856724819766032695683212886906591923034131774751312319655285309422253725005392023634737181229845882597697740913457139104259740189112361805700885805440886582482045797511486340223258739402170222256993140673372130940860249047211251592054646974778379515015430615102534602273304
86801150033856688083604379666022564999371994208371160152723047097310816436441163452210069854700418024650230525914219301515725567531657567580163596380227833565239370333047582063688793679363684486168061587575930547105424040975094918638314255917502944267332343175376082638428085697931895281841412624618678192529064589827990052308716078511
4095204295517510288051062606633248867521577111311769420958757661211138247545071145009522023476451558801558852780149543720295164010630404668854701455348028868254827738435519886213617395814125760480627746582514245381202360058877040512407778059031361411541300989556993005957599095484 71071859657 14887220273748587688066456126521896762387916

91383634550733023549911764172791411631141864666000520947118637056849000985795233557 1028 58350 1 OR5GF6 550 3OW O 7 352054 1402450242719240797326025484993704399679794871910927023664828239225175572246226765050632233552949662591 14509790669%6 34 T4 06140204833154579901246400135220942116414941498678492583692715688068933203864051915
4 Q €E90086792634960962891 5877387941725147675489148213907972745447057 YF00ME293911606354 1476955 550§ 965 99 = 941917998483757110114029135092405018779285891809345880290584450371392611286191050792529
848397239670674 98 44, 96988 9365133228€663240718;
021 %
514

64343234607244674387924106898330326025526674659000784143464823162427053006 1778GA05N5
5518028518239903006327053460232548268754761299838779455586507861017449704532926 64987 48 7784838723 00857317912588211684964857608 0312567345108 ab#4775638537315060008 3930799 393657293 273 P T4653329540534224036524210097904439556952787452077401 2788166968677 27649345720704753
30552790839336826920146960405048251437601589618342412953082871911701905737896 139863303500414939254305465079311394109752896493772038215048245125 1 #ETEMQa0B 17017@308]) 3451240 007074 8678178376568 132544004809184802365894502256918494 7126644072414 77648625695349482414588437590345653702825419922759256891809259986921900516
03663260486478465446021890221085863785199037088374746961952255827 105103242852 335312476840884233607847944249306675476780239300080437 11347695503952595645764200085119099979 3233412153345557001967801309336875007418398129321563511207962474682146572446181950950305066578087402911079938 18182376 307882737632741745747195351545
71587100825868136168496654866061918144953445848917358064779129626924634118605576693276155015052130923189173847611842468519996.29764 18495044 1935904536 8685678207850430697560213032237811741874964112829914172482302105356565171340499773069743811951962008163194245032328653653550942626180577593300349417295109326825224346 137069365794602719749
30800142722677375731805669417913967387736826904839986972627 76008005250823852668363210327895409895710606975967654501181761916387719452260299629849433609758473948413340455 194564403806 274966798301602464531940012243207581482784616291015255687740576 9363880247576 75016888 1562742882458561219122210219434538647803237591 182835072726 350965057454
6222449700416359099707470081801760628385198467040331577301621526860015232650592906468006 1985889686 1665935266082603455046728164510208827559763785125671925782337454941744879613341877849163081667136589893002841 3475043015308292177932333254383402774301524192295705407506 13659483265528117785801997753055203041 1365669996 3224042243414282607459
803128309667495472300439378003887795387400170190820290583561307 179115229188565097204042602940124326205683789470721022643993908246960833228077215237703927 490179886 17584389648477864341081726969031721372164551 2394083995447302760535 1596803653601 1884202110908939114033377331251725806036367729825594181716271856143830345840108991215051625634
1442449652054770023414946313724050167525187041208646911228350990403368199576064233819946020869949279451686312076828179937708739936387 13417408538533364346325787458059724079269057119064140563119523972120898555100357 15383707925 73232757006.2584664548556423116173746730423546025288306123418529326868153064501853414848490934917628376202373868
42287913381520626080117262315168261863461661340918705577375417670023366454025183582024337301164714138474624112398744475799226379647228101617058084705988475800655053004825820504783647736671118625783709327991030041227664594263023246692075724835347919569762240576413561949173457011336 10095701 1363477637411765767203240425103928180229797422
200486261121508346184699801431283827835811003800857328920405600787 759726 1852385098986 792919119880371442490129304087019386790522318938466502920830090228581620805276287300348000831198280732454806212014001081 31 34951875111170614251223997628139517613724905121850137793289765277964923617912886361068326896184162029111732581330734224386212512
6394671504847382039028909622081496261949515013659268143521425.2757404646943909640680744160640868252004292826352877172192730102149652334454549990554 379689454446606184459499516224862351860960994093992618746168490906176138379563894679078967973111848276194795376824066706650411508010774077786228592425307448001585572296527531058811418470216
20525933828064475937109143314210311872069 336707 pack 71 524 3 q 180p4a7 05300852361 {29861 5403610 257600 72 0508087346082097 7pAaegofpas 284 887704 9PORGTER3 bagrfogargszo 7 3364795305842982550744867696937541904150563650
5829595691704279680635112270339338865&@szmm@wmmmm@ﬁuﬁnﬁmﬁ‘Is@7$45$§?5@@6@@3§26£m@ozsmu3mbs@¥ommfme@>|5@966fm$@5t$353a97g22393012092800931138735805061633937660
51886001744122779781624092309153030553015625053631479261423877 16810508488508 143536876 14551057330140193462674118344008748679791444408964383646108137420007567076892342637 1348078887063230377992083702521930485045630111341754744¥95119913700045053214862237 1195481600837 18839166 1538090058752054098104447645953052072262049199168510265958087810
T11773995167030077412681283882510278069787567809658632820791149810985329028 12630569600865339409792542901056179018773276890596101452759462289523165998928649697014127541189050489365806221050002546651669413543808486226831386921663452814265122639817917 1265814191251436165420104338015142071 35317250107 3355767560096 1875533373968231977609530
5855617230038697189735016624053761345618214556994096386721373686299344349041362436 1629093949639221352913246503807038159712155459330189135181383128477939059578406042458691282811660113249425506297315980056764183649895701405494295471 18947100827 3827317 153052163746 7348697 452466979485951017251467882839811425221840317955114236 1288609417141
41136103946463557701736921271117133232452749287344867772082880573912409125086577089844317099540631189922252042152147822609003266.2819320598082839237772235007563664926524263677730152003820777 164718657 12322023549492993095368514916551879030383676.27856713703659184219746 3963374804076 1619539547406 198694 75250361 882791 194164696351127952444402
6784448526003284724145951492345083393580867810331153444426315810016700256052082372969709509722055592920743080946327245960553519992022114732778261772131566128901474557769887367299652018903874202963204043122367784721715757859629027 394578013 18996 15049207 1518820802126 136 18218835 18961554614649061878622978862115947840906 28555225 18401969800
317868267878459364052275698949560834684003729553507462896883801001785393523528693189808998634228530098112820657163819646320009839697031905212118219899496 298 16389723155 1901772401695505788408841293397249025198635937668398411035193162459833400988404313145496824580910208447926093308316131770771810396869544550114424232839264186.28631281537
496571395347745619760608289170130481256165166031913818793697201750649975426852734782217476 153076 7366010109938 150863634750902606141578632186751 943281 7417006397800965238795964181130074812929838954370697050445583806170286257156666366901575251823982561171994454032410235590152988076018513305471787955778431497959335660603766440111721550583
99662530769179375903286149027612075806315776377707195825601868759456088050733679314903189062524181137056132917203202803431 383444967 3444576074149127 12286 1365866623340425334834727757699168607398224 106051 398898676.2293323194250654583634238884997 70513 188745857 52685553439222480788285263696111065583479158521655599011752852282847768809742787
921241434080317310400167342417736279172947292772969327 153366897 2364289736 178096589108380766042384540656616709232524210416241038439240475299792482329630837319504403488566 78553004 106548043172702289199899275318362905378408712415159269923344094958681016353308306725904407358220769186194606870015032484591003096 38 369810459171262570286 726045
385441517376137738721961287476411722695875159140692585028021316796735885583001366835181216234701691188528924708557654216272770763404369854222699766587700286991295666 20052776 1514788 1880580839497663044456735668074084606055500121324008162577700495623250626576 14039211879372659830089515161293666936998121884 180250856956 350674900275836 17115
04078242899013061396198412853703118010073765571276002967623291654506202798544501136 16837127431404628906229908149615303341211264138787058000858235197089430488032877187945041187386904190417867723077820636828443833342976043604015001279951803735721235437473384490565 16008 1302195780914437763147957163663809564827397 1176393911636202338522338
349855086239822550626678516947067545491059640363164772253282891079994101376 152087416 1827739528408 144503591 323582237 355051612626288444523440581 159246605557 16274501685699253897210399442181768669211819444253040961323127215386807574551215944733108025793853935674059209602443968201967760613102289456131085235835109375

Introduction

Association Rules - Notation

« IT={IiIs...,Ip}isthe set of all possible items Same as
: : : before
Atransaction 7 € P(Z) \ {0} is a non-empty itemset

S—

A dataset X € M(P(Z)) (such that () ¢ X)) is a multiset of transactions
(Here, M is the multiset and P is the powerset operator)

—_—

A= Bwith ACZ,BCZand AN B =0 is an association rule :‘ B
For example, {Cheese, Bread} = {Milk} :

Introduction

Association Rules - Preview

* {Cheese, Bread} = {Milk}
People that buy Cheese and Bread also tend to buy Milk.

« {Trackl, Track2} = {Track3}

Students that take the Track 1 and Track 2 modules of BridgingAl also tend to take the Track 3 courses. (We hope you do!)

« {Bitburger} = {Heineken, Palm}
People that buy Bitburger beer tend to buy both Heineken and Palm beer.

« {Carbonara, Margherita } = {Espresso, Tiramisu}
People that buy Carbonara and Margherita also tend to buy Espresso and Tiramisu.

« {part-245, part-345, part-456} = {part-372}
When Parts 245, 345, and 456 are replaced, then often also Part 372 is replaced.

Introduction

Support and Confidence

« Support: fraction of instances containing all items in AU B

Support(A s B) _ Support(A U B) _ support_count(AUB) _ |[TeX|AUBCT]]

support_count(()) | X|

Introduction

Support and Confidence

« Support: fraction of instances containing all items in AU B

support_count(AUB) _ |[TeX|AUBCT]]

SU_ppOI’t(A — B) — SU_ppOI’t(A U B) — " support_count(@) | X

« Confidence: fraction of instances containing items in A which contain items in AU B

__support(AAUB) __ support_count(AUB) _ |[Te€X|AUBCT]]
COIlf(A = B) — support(A) ~ support_count(A) ~— |[TEX|ACT]]

Introduction

Support and Confidence - Example

ID Bought Items

{Bread, Cheese, Milk, Pasta}

{Bread, Cheese, Chips}

{Bread, Cheese, Milk}

1
2
> 3 {Cheese, Pasta, Milk}
4
5

{Bread, Pasta}

All three items Bread, Cheese and Milk
need to be in the transaction to count

support({Bread} = {Cheese, Milk}) = support({Bread, Cheese, Milk}) = %

Introduction

Support and Confidence - Example

ID Bought Items
{Bread, Cheese, Milk, Pasta}
{Bread, Cheese, Chips}

{Cheese, Pasta, Milk}
{Bread, Cheese, Milk}

Y
(92} & w N =

{Bread, Pasta}

the item does not
change the value

Symmetric: moving
support({Bread} = {Cheese, Milk}) = support({Bread, Cheese, Milk}) = %

support({Bread} = {Cheese, Milk}) = support({Cheese, Milk} = {Bread})

support({Bread} = {Cheese, Milk}) = support({Bread, Cheese} = {Milk})
_ V

Introduction

Support and Confidence - Example

—"""(_'

ID Bought Items

{Bread, Cheese, Milk, Pasta}

{Bread, Cheese, Chips}
{Cheese, Pasta, Milk}
{Bread, Cheese, Milk}

v
(92} ~ w N =

{Bread, Pasta}

. support({Bread,Cheese,Milk
conf({Bread} = {Cheese, Milk}) = =FP Sééport({Bread}) Do :

Introduction

Support and Confidence - Example

ID Bought Items

{Bread, Cheese, Milk, Pasta}

{Bread, Cheese, Chips}
{Cheese, Pasta, Milk}
{Bread, Cheese, Milk}

v
(92} & w N =

{Bread, Pasta}

. support({Bread,Cheese,Milk
conf({Bread} = {Cheese, Milk}) = =FP Stlglgport({Bread}) H o

e |)

. support({Bread,Cheese,Milk
conf({Cheese, Milk} = {Bread}) = p;)up;(o{rt(Choose MiTkT) Do

Not symmetric
_(equality holds only
conf({Bread} = {Cheese, Milk}) # conf({Cheese, Milk} = {Bread}) In some rare cases)

V]])

Introduction

Support and Confidence - Example

ID Bought Items

.--—'('—_'

{Bread, Cheese, Milk, Pasta}
{Bread, Cheese, Chips}
{Cheese, Pasta, Milk}
{Bread, Cheese, Milk}

v
(92} & w N =

{Bread, Pasta}

: support({Bread,Cheese,Milk
conf({Bread} = {Cheese, Milk}) = *PRoiimet.cheen i) — 2

. support({Bread,Cheese,Milk
conf({Bread, Cheese} = {Milk}) = zﬁp;ﬁ;{t e ChassT) D 2

4

General rule;

conf({A, B} = {C}) > conf({A} = {B,C})

|

Introduction

Probabilistic Interpretation

« Support: probability that an instance contains AU B

support(A = B) = support(A U B) ~ P(AU B)

« Confidence: conditional probability that an instance contains items in B,
given that it contains items in A

conf(A = B) = SUprtAUL) o pp | 4)

support(.A)

Take ‘probability’ with a grain of salt - we are only considering a sample.

Association Rules

1. Introduction
2. Generating Association Rules

3. Applications

4. Evaluation

5. Simpson’s Paradox

Generating Association Rules

From Frequent Itemsets to Association Rules

Given: a dataset X € M(P(Z)), min_sup, min_conf

How to generate all association rules that have high support and high confidence?

support(A = B) = support(A U B) > min_sup

conf(A = B) = Suszi(;lzft“ﬁ?) > min_conf

Generating Association Rules

Ensuring support(A = B) > min_sup

v Easy!
* Use frequent itemsets as a basis

 Consider frequent itemsets C = A U Bsuch that |C| > 2 and C > min_sup
(apply Apriori or FP-growth to generate such frequent itemsets)

Generating Association Rules

Ensuring support(A = B) > min_sup

v Easy!
* Use frequent itemsets as a basis

 Consider frequent itemsets C = A U Bsuch that |C| > 2 and C > min_sup
(apply Apriori or FP-growth to generate such frequent itemsets)

* Generate candidate rules A = B by considering all splits of C into two non-empty disjoint
subsets
e However: the number of such candidate rules is 2/l — 21

Generating Association Rules

Ensuring support(A = B) > min_sup

v Easy!
* Use frequent itemsets as a basis

 Consider frequent itemsets C = A U Bsuch that |C| > 2 and C > min_sup
(apply Apriori or FP-growth to generate such frequent itemsets)

* Generate candidate rules A = B by considering all splits of C into two non-empty disjoint
subsets
e However: the number of such candidate rules is 2/l — 21

C = {{Bread}, {Cheese}, {Milk}, {Pasta}}

IC| =4 = 2% -2 =14 candidate rules}

‘ ... and the number of candidate frequent
itemsets was already exponential!

Generating Association Rules

Ensuring conf(A = B) > min_conf No additional

pass over the
data needed

« |temsets AU B and A are frequent
—> their supports have already been computed when using Apriori or FP-growth

« Therefore, we can simply test every candidate rule and only return the ones that satisfy the criterion:

conf(A = B) = Sl;ii;?fg?j?) > min_conf

Generating Association Rules

Ensuring conf(A = B) > min_conf

« |temsets AUB and A are frequent
—> their supports have already been computed when using Apriori or FP-growth

« Therefore, we can simply test every candidate rule and only return the ones that satisfy the criterion:

conf(A = B) = SpportlAUB) ~ iy conf

support(.A)

But...
« There could be way too many association rules.
* Most are not interesting!

Generating Association Rules

Confidence-Based Pruning

« Consider association rule A = B, and itemset C suchthat CN(AUB) =0

+Itholds that conf(A = BUC) = SREUAIRC) < supbonled) — conf(A = B)

[recall that the support of a superset is lower or equal }

Generating Association Rules

Confidence-Based Pruning

« Consider association rule A = B, and itemset C suchthat CN(AUB) =0

+ It holds that conf(A = BUC) = SREUAIRC) < supborled) — conf(A = B)

« Hence, if conf(A = B) < min_conf then conf(A = BUC) < min_conf
« Adding C to the right part makes the rule stronger

 We can focus on the stronger rules meeting the confidence threshold

« This does not apply to conf(AUC = B) 7?7 conf(A = B)

« Additions to the left part of the rule may lead to an increase or decrease
* {Cheese} = {Wine} may have a confidence of 0.2
e {Cheese, Babyfood} = {Wine} may have a confidence of 0.1
e {Cheese, Chips} = {Wine} may have a confidence of 0.3

Generating Association Rules

Removing Redundant Rules

« Consider two different association rules A = B and A’ = B’ with identical support and confidence, i.e.:
o support(A = B) = support(A’ = B')
o conf(A = B)=conf(A" = B)

« A = BisredundantifA’ € Aand B’ C B

» Using only closed frequent itemsets will avoid generating redundant rules

(Recall: An itemset is closed if there is no proper superset that has the same support)

Generating Association Rules

Avoiding Generation of Redundant Rules

1. Assume A’ = B’ is redundant, i.e., there is another rule A = B such that
o support(A = B) = support(A’ = B')
o conf(A = B)=conf(A" = B)
« A/CA
. B CB
* It holds that A" U B’ ¢ AU B (because the rules are different)

Generating Association Rules

Avoiding Generation of Redundant Rules

1. Assume A’ = B’ is redundant, i.e., there is another rule A = B such that
o support(A = B) = support(A’ = B')
o conf(A = B)=conf(A" = B)
« A/CA
. B CB
* It holds that A" U B’ ¢ AU B (because the rules are different)

2. Also, assume AU B and A’ U B’ are closed, i.e., there are no proper supersets with the same support
* Hence, support(A’ = B’) > support(A = B) (cannot be equal, AU B is closed)

Therefore, we find a contradiction. Closed itemsets cannot produce redundant rules.

Generating Association Rules

Summary

How to generate association rules that are interesting?

« We can generate candidate rules with high support based on frequent itemsets

* We can filter those candidates with high confidence without going back to the data

« We can prune the rules based on confidence: min_conf < conf(A = BUC) < conffA= B)
« We can focus on closed frequent itemsets to avoid redundant rules

* Not enough, we need additional concepts such as “surprisingness” (lift)

Association Rules

1. Introduction

2. Generating Association Rules
3. Applications

4. Evaluation

5. Simpson’s Paradox

Applications

Spotify

{Flowers(Miley Cyrus), Unholy(Sam Smith)} = {Levitating(Dua Lipa)}
- {One(Metallica), Trasher(Evile)} = {Augen-Auf(Oomph),The Trooper(lron Maiden)}

{Birds(Anouk),Irgendwo(Nena)} = {Leiser(Lea),Klavier(Lea)}

* 456 million active listeners
« 195 million premium subscribers

« Over 80 million songs

(As of January 2023)

Applications

Amazon

> {Echo-Show-8,Fire-TV-Cube} = {Kindle-Paperwhite}

{Fire-TV-Stick-8} = {Fire-HD-8,Blink-Mini}

e 300 million active users
* Over 2 million third-party seller businesses

* Around 350 million items on the marketplace

(As of January 2023)

Applications

Supermarkets

support = 0.01
confidence = 0.85
lift = 1.67

+:>@+

---('—H

—

support = 0.001
confidence = 0.15
lift = 1.2

Next to confidence and support, we will see other measures like lift

Applications

Using Features Values As Items And Instances As Itemsets

Rain Wind Temp Play
Yes Yes 15 No
No No 34 Yes
Yes No 23 Yes
Yes Yes 20 Yes
No Yes 28 No

Examples consider items as products,
services, etc.

ltems can also be normal features
values and transactions normal
iInstances

This leads to itemsets of the form
{f1=v1, f2=v2, ... fn=vn} for each
instance

Applications

Using Features Values As Items And Instances As Itemsets

Rain Wind Temp Play
Yes Yes 15 No
No No 34 Yes
Yes No 23 Yes
Yes Yes 20 Yes
No Yes 28 No

[{Rain=Yes, Wind=Yes, Temp=15, Play=No},
{Rain=No, Wind=No, Temp=34, Play=Yes},
{Rain=Yes, Wind=No, Temp=23, Play=Yes},
{Rain=Yes, Wind=Yes, Temp=20, Play=Yes},
{Rain=No, Wind=Yes, Temp=28, Play=No},

.

Examples consider items as products,
services, etc.

ltems can also be normal features
values and transactions normal
iInstances

This leads to itemsets of the form
{f1=v1, f2=v2, ... fn=vn} for each
instance

Applications

Using Features Values As Items And Instances As Itemsets

Rain Wind Temp Play
Yes Yes 15 No
No No 34 Yes
Yes No 23 Yes
Yes Yes 20 Yes
No Yes 28 No

[{Rain=Yes, Wind=Yes, 10sTemp<20, Play=No},
{Rain=No, Wind=No, 30<Temp<40, Play=Yes},
{Rain=Yes, Wind=No, 20<Temp<30, Play=Yes},
{Rain=Yes, Wind=Yes, 20<sTemp<30, Play=Yes},
{Rain=No, Wind=Yes, 20<sTemp<30, Play=No},

.

ltems can also be ranges for continuous
feature values

* Temp=25

* Temp<25

* 20<Temp<30

* Etc.

Any dataset having instances and

features can be converted into a
multiset of transactions X € M(P(Z))

Applications

Using Features Values As Items And Instances As Itemsets

Rain Wind Temp Play
Yes Yes 15 No
No No 34 Yes
Yes No 23 Yes
Yes Yes 20 Yes
No Yes 28 No

{Rain=Yes, Wind=Yes} = {Play=No}
{Temp>30} = {Rain=No, Wind=No}
{Temp>20,Play=Yes} = {Wind=No}

Any dataset having instances and
features can be converted into a
multiset of transactions X € M(P(Z))

Hence, we can also have association
rules of the form

A=Bwith ACZ,BCZand ANB=10

Applications

Link To Classification and Decision Trees

. Night | Flight

Weather Traffic flight delagye d
Cloudy No Yes Yes
Cloudy Yes No Yes
Cloudy Yes No Yes
Clear Yes Yes No
Clear No No No
Clear No No No

{Night_flight=Yes, Weather=Cloudy} = {Flight _delayed=Yes}
{Night_flight=Yes, Weather=Clear} = {Flight_delayed=No}

Cloudy

Yes

N

No

l

Traffic

/— Night flight |
Yles
Weather
mar YTS/—
No Yes

{Night_flight=No, Traffic=Yes} = {Flight_delayed=Yes}

{Night_flight=No, Traffic=No} = {Flight_delayed=No}

No

l

No

Applications

Summary

» Association rules can be learned for “normal itemsets” and itemsets based on
feature values
» Classification rules can be expressed as association rules
« The challenge remains that there are exponentially many candidate rules
» Confidence and support are only part of the story
« What if many rules meet the two thresholds?
« How to select the most interesting ones?

Association Rules

1. Introduction
2. Generating Association Rules
3. Applications
4. Evaluation

5. Simpson’s Paradox

Evaluation

Association rules A = 5

{Cheese, Chips} = {Wine, Beer}

{One(Metallica), Trasher(Evile)} = {Augen-Auf(Oomph), The Trooper(lron Maiden)}
{Temp>20,Play=Yes} = {Wind=No}

{Night_flight=No, Traffic=Yes} = {Flight_delayed=Yes}

{Gender=Male, Sport=Football} = {Favorite _food=Currywurst, Age>40}

How to evaluate the quality of a rule?

Evaluation

Confusion matrix for association rules

Consider association rule A = B

A= B B is included B is not included
A is included # AB #AB #A
A is not included # AB #AB #A
#5 #B #ALL

support(A = B)

_ #AB
— ZALL

conf(A = B) = £27

Evaluation

Confusion matrix for association rules

Consider association rule A = B [The lower the better }
A= B B is included B is not includ§/
A is included # AB t #Agi #A
~—
A is not included #7{8 [The higher the better] #E \ #71
#5 #B \ #ALL

Not captured in any of the metrics }

support(A = B) = fA—’ﬁ conf(A = B) = i—“f

Evaluation

High Support and High Confidence

Consider association rule A = B

A= DB B is included B is not included
A is included 100 0 100
A is not included 0 0 0
100 0 100

support(A = B) = % conf(A = B) = %

Evaluation

Low Support and High Confidence

Consider association rule A = B

A= DB B is included B is not included
A is included 10 0 10
A is not included 40 50 90
50 50 100

support(A = B) = 4 conf(A = B) = 1

Evaluation

Low Support and Low Confidence

Consider association rule A = B

A= DB B is included B is not included
A is included 10 40 50
A is not included 25 25 50
35 65 100

support(A = B) =

— 10
100

conf(A = B) = 2

Evaluation

Support and Confidence Don’t Tell The Full Story

Consider association rule A = B

A= DB B is included B is not included
A is included 80 10 90
A is not included 0 10 10
80 20 100

80 20 Seems to be a good rule
support(A = B) = 155 conf(A = B) = g5 because if A is not included,

B is also never included

Evaluation

Support and Confidence Don’t Tell The Full Story

Consider association rule A = B

A= DB B is included B is not included
A is included 80 10 90
A is not included 10 / 0 10
90 10 100

{Not captured in any of the metrics J

20 20 Same support and confidence,
support(A = B) = 155 conf(A = B) = g but seems to be a poor rule
because if A is not included,

B is always included
The distribution of counts in the second row does not

influence support and confidence

Evaluation

We need Lift: How surprising?

Consider association rule A = B

A= B B is included B is not included
A is included #AB #AB #A
A is not included #AB #AB #A
#5 #B H#ALL
AB
lift(A = B) = Suppsci"r’z?jggfp%izt(lg) = PI(DJ(Z()&{-LJJD%)S’) = #,;A—ﬂs = BT

H#ALL #ALL

Evaluation

We need Lift

Consider association rule A = B

A= B B is included B is not included
A is included #AB #AB #A
A is not included H#AB #AB # A
#B #B #ALL
#AB
. . support(AUB) __ P(AUB) #ALL
hft(‘A = B> — support(A)-support(B) — P(A)-P(B) — _#A4A_._#B

If lift(A = B) ~1 then A and B are independent

If 1ift(A = B) < 1 then A and B are negatively correlated P(AUB) < P(A)- P(B)
If lift(A = B) > 1 then A and B are positively correlated P(AUB) > P(A)- P(B)

#ALL #ALL

P(AUB) ~ P(A) - P(B)

Evaluation

Is the Rule Surprising?

Consider association rule A = B

A= B B is included B is not included
A is included 9 1 10
A is not included 81 9 90
90 10 100
lift(A = B) = Suppsii?jgﬁgfp%iz‘t(l?) - P](D,S(;l-LIJDI?l)S) = #EEA% 7B

#ALL #ALL

support(A = B) = % 0

conf(A = B) = 2 lift(A = B) = =% =1 No suprise!

100 100

Evaluation

Is the Rule Surprising?

Consider association rule A = B

A= DB B is included B is not included
A is included 9 1 10
A is not included 0 90 90
9 91 100
lift(A = B) = Suppsii?%ifp%iz‘t(l?) - Pigsl-%l?l)’:’) = #%&A% 7B

#ALL #ALL

support(A = B) = % 0

conf(A = B) = 2 lift(A = B) = > =10 Syrprise!

100 100

Evaluation

Is the Rule Surprising?

Consider association rule A = B

A= B B is included B is not included
A is included 9 1 10
A is not included 90 0 90
99 1 100
#AB
. . support(AUB) __ P(AUB) #ALL
hft(‘A = B> — support(A)-support(B) — P(A)-P(B) = _#A_._#B5

#ALL #ALL

support(A = B) = % 0

conf(A = B) = 2 lift(A = B) = %% =11 a little bit ...

100 100

Evaluation

Selecting Association rules

1. Set thresholds for minimal support and confidence
2. Evaluate lift and possibly other metrics for the rules remaining

3. Sort and prune based on any of the quality criteria (support, confidence, lift, etc.)

It is hard to predict the number of rules beforehand

There are many other measures of quality (conviction, leverage, collective strength, etc.)

Association Rules

1. Introduction

2. Generating Association Rules
3. Applications

4. Evaluation

5. Simpson’s Paradox

Simpson’s Paradox

Simpson’s Paradox

A trend appears in several different groups of
data but disappears or reverses when these
groups are combined.

« Edward Simpson in 1951 (earlier variants
by Udny Yule and Karl Pearson)

* Nice example of ‘How to lie with
statistics?’

« The paradox is often encountered in
social-science and medical-science

18
16
14
12
10

A~ O o

10

10

B Class1
® C(Class 2
¢ C(Class 3

Class 4
Group Trend

Simpson’s Paradox

Simpson’s Paradox When Using Regression

Switzerland
salary

Germany

Cambodia

hours of working

Simpson’s Paradox

Simpson’s Paradox in Association Rules

Consider the association rule A = B and any feature which splits the instances (location, age ...)

a+c+ +\ b+d+qg+s)—(a+c+p+7)

A=B B is included B is not included
A is included a —+ (b—a)+ b+
A is not included c+ \ (d—c)+ d +
b+d+ g+

Two classes — blue and
(e.g., old and)

Simpson’s Paradox

Simpson’s Paradox in Association Rules

Consider the association rule A = B and any feature which splits the instances (location, age ...)

A= B B is included B is not included
A is included a 4+ (b—a)+ b+
A is not included c+ (d—c)+ d +
a+c+p+ (b+d+qg+s)—(a+c+p+7) b+d+ g+
_atp
conf(A = B) = ‘gig lift(A = B) = — 4t

b+dtqts btdtq+s

Simpson’s Paradox

Simpson’s Paradox in Association Rules

Consider the association rule A = B and any feature which splits the instances (location, age ...)

A= B B is included B is not included
A is included a —+ (b—a)+ b+
A is not included c+ (d—c)+ d +
a+c+p+ (b+d+qg+s)—(a+c+p+7) b+d+ g+

conf(A = B) = 442

— b—I—q

lift(A = B)

__ (a+p)-(b+d+q+s)

— (b+q)-(atctp+r)

Simpson’s Paradox

Simpson’s Paradox - Example

Two classes: old and

smoke = cancer has cancer doesn’t have cancer
smokes 1+ 2+ 3+
doesn’t smoke 34 + 66 + 100 +
35 + 68 + 103 +
humans conf(smoke = cancer) = % = 0.65 > conf(not smoke = cancer) = % =0.35
old conf(smoke = cancer) = % = 0.333 < conf(not smoke = cancer) = % =0.34

conf() = 2% = 0.66 < conf() = 2 = 0.666

Simpson’s Paradox

Simpson’s Paradox - Example

Two classes: old and

smoke = cancer has cancer doesn’t have cancer
smokes 1+ 2+ 3+
doesn’t smoke 34 + 66 + 100 +
35 + 68 + 103 +
humans conf(smoke = cancer) = % = 0.65 > conf(not smoke = cancer) = % =0.35 -\
old conf(smoke = cancer) = % = 0.333 < conf(not smoke = cancer) = % =0.34
conf() = 2% = 0.66 < conf() = 2 = 0.666

Smoking is healthy for old and people, but not for all humans!

[1]

Simpson’s Paradox

Simpson’s Paradox - Example

Two classes: old and

smoke = cancer has cancer doesn’t have cancer
smokes 1+ 2+ 3+
doesn’t smoke 34 + 66 + 100 4+
30 + 68 + 103 +

« The presence of smoking has a strong positive effect on the occurrence of cancer in the overall set
(supports the rule)
« However, the effect cannot be seen in the subsets!

Simpson’s Paradox

Simpson’s Paradox - Example
Two classes: old and
smoke = cancer has cancer doesn’t have cancer
smokes 1+ 2+ 3+
doesn’t smoke 34 + 66 + 100 4+
30 + 68 + 103 +

humans lift(smoke = cancer)

old lift (smoke = cancer)

lift()

__ 3206 _ _ 67-206
— 103,103 = 7(3.103

103 103 335
1% 66-103
= 100,68 — 7100.68

= 1.301
i10335 = L1103 _ 0.9809

= 0.9997

Simpson’s Paradox

Simpson’s Paradox - Example

Two classes: old and

smoke = cancer has cancer doesn’t have cancer
smokes 1+ 2+ 3+
doesn’t smoke 34 + 66 + 100 4+
30 + 68 + 103 +
: e 67-206 . \
humans lift(smoke = cancer) = w8 tor = 103103 — 1.301 = Positively correlated
1
old lift(smoke = cancer) = 1% = % = (0.9809 _ \
T03 103 /(Negatively correlated
56 .
lift () = % =TG5 = 0-9997

Simpson’s Paradox

Simpson’s Paradox — Another Example

Computer Science Mathematics ALL
get degree drop out get degree drop out get degree drop out
female 80 20 400 600 480 620
(80%) (20%) (40%) (60%) (44%) (56%)
ale 700 300 30 70 730 370
(70%) (30%) (30%) (70%) (66%) (34%)

1100 females and 1100 males, 1100 CS students and 1100 math students

Simpson’s Paradox

Simpson’s Paradox — Other Examples

The hospital in the city of Stolberg has an overall better performance (e.g., lower mortality rate)
than the hospital in Aachen. However, for any specific disease, Aachen performs better. This
paradox is due to different distributions of diseases (patients with more serious diseases tend to
end up in Aachen and not Stolberg).

Males have higher wages on average, but in any given profession, females earn more on
average. This paradox is explained by males going for higher-paid professions.

Low birth-weight paradox: low birth-weight children born to smoking mothers have a lower infant
mortality rate than low-birth-weight children of non-smokers. Smoking is harmful and contributes
to low birth weight and higher mortality than normal birth weight. However, other causes of low
birth weight are generally more harmful than smoking.

Simpson’s Paradox

Confounding

« Simpsons paradox is related to confounding, i.e., another (possibly hidden) feature that

iInfluences two other features

* A confounding feature C (also called “lurking variable”) may influence both A and 55, and

therefore “blur’ A = B

C disease sunny
Cay \uses Cay \uses Cay \Uses
A 75> B hospital outcome ice-cream riots

does not cause does not cause does not cause

Simpson’s Paradox

Summary

« Association rules can be discovered starting from frequent items sets _A — B

« Any dataset with instances and feature values can be turned into a multiset of itemsets

and used for association rule mining (not just “pure itemsets”)
e Support, confidence, and lift can be used to prune and sort association rules

* Rules should be interpreted carefully (Simpson’s paradox and confounders)

Sequence Mining

1. Temporal Data
2. Measuring Support
3. Apriori-All Algorithm

4. Extensions and Conclusion

Temporal Data

Temporal Data — Discrete Timestamped Events

Every instance happened
at a specific time

Temporal Data

Temporal Data — Discrete Timestamped Events

Event data
Time- | Case . .

stamp D Activity | f; f, fo
t, 3 a
t, 1 a
t; 1 b
t, 2 a
te 3 b

/
Case ID is used to Activity identifies the
group events type of event

Temporal Data

Temporal Data — Discrete Timestamped Events

Event data
Time- | Case . .

stamp D Activity | f; f, fo
t, 3 a
t, 1 a
t; 1 b
t, 2 a
te 3 b

"~

Case ID is used to Activity identifies the
group events type of event

.

1

Event Data

Timestamp (typically not equal intervals)
Case ID (maps events to cases)
Activity (identifies the event type)

Other features are optional (resource,
location, cost, duration, ...)

Temporal Data

Temporal Data — Discrete Timestamped Events

Event data
Time- | Case . .

stamp D Activity | f; f, fo
t, 3 a
t, 1 a
t; 1 b
t, 2 a
te 3 b

"~

Case ID is used to Activity identifies the
group events type of event

.

1

Event Data

« Timestamp (typically not equal intervals)
« Case ID (maps events to cases)

« Activity (identifies the event type)

« Other features are optional (resource,
location, cost, duration, ...)

Case 1: {(a,b,...)
Case 2: (a,...)
Case 3: (a,b,...)

Temporal Data

Temporal Data — Discrete Timestamped Events

Event data
Time- | Case . .

stamp D Activity f, f, fo
t, 3 a
t, 1 a
t; 1 b
t, 2 a
te 3 b

/

[Case ID is used to }

group events

Activity identifies the
type of event

1

Event Data

« Timestamp (typically not equal intervals)
« Case ID (maps events to cases)

« Activity (identifies the event type)

« Other features are optional (resource,
location, cost, duration, ...)

Case 1: (a,b) /We can abstract from\
S timestamps and

Case 2: (a,...) optional features to

) obtain sequences of
Case 3: {a,b,..) actisities j

Temporal Data

Temporal Data — Discrete Timestamped Events

Event data
Time- | Case . .

stamp D Activity | f; f, fo
t, 3 a
t, 1 a
t; 1 b
t, 2 a
te 3 b

"~

Case ID is used to Activity identifies the
group events type of event

.

1

Event Data

« Timestamp (typically not equal intervals)
« Case ID (maps events to cases)

« Activity (identifies the event type)

« Other features are optional (resource,
location, cost, duration, ...)

Temporal Data

Event Data — Example 1

Case ID Activity name Timestamp Other features

Patient ID Activity Time Doctor Age
5611 Blood Test 12:25 Dr. Scott 45
3645 X-Ray 14:34 Dr. House 67
5611 Surgery 15:01 Dr. Scott 45
7891 Blood Test 15:03 Dr. House 24
3645 Radiation Therapy 17:25 Dr. Jenna 81

5611 : (Blood Test, Surgery, .. .)
3645 : (X-Ray, Radiation Therapy,...)

7891 : (Blood Test, ...)

Temporal Data

Event Data — Example 2

Case ID Activity name Timestamp Other features
Order Number Activity Time Username Product Quantity
11152 Register Order | 15.12.22 12:25 | Carriel92 Iphone 14 1
52690 Ship Order 15.12.22 12:45 | Johnnyl Earpods 2
11152 Check Stock 15.12.22 13:01 | Carriel92 Iphone 14 1
44891 Handle Payment | 30.12.22 18:01 | Obelisk USB-C Charger 3
61238 Cancel Order | 11.01.2317:25 | Apex_512 MacBook Air 1
"\~

52690 : (Ship Order,...)
44891 : (Handle Payment, . ..)

changing the meaning of data!

11152 : (Register Order, Check Stock, Cancel Order,...) [

Note: ‘Username’ could also be our Case ID, J

Temporal Data

Event Data — Example 2

Case ID Activity name Timestamp Other features
Order Number Activity Time Username Product Quantity
11152 Register Order | 15.12.22 12:25 | Carriel92 Iphone 14 1
52690 Ship Order 15.12.22 12:45 | Johnnyl Earpods 2
11152 Check Stock 15.12.22 13:01 | Carriel92 Iphone 14 1
44891 Handle Payment | 30.12.22 18:01 | Obelisk USB-C Charger 3
61238 Cancel Order | 11.01.2317:25 | Apex_512 MacBook Air 1

52690 : (Ship Order,...) multiple times for different cases

11152 : (Register Order, Check Stock, Cancel Order,...)
%{ Note: the same sequence can occur 1
88721 : (Register Order, Check Stock, Cancel Order, ...) (multiset of sequences)

Temporal Data

Event data — Basis for Process Mining

Event data
Time- | Case Activity £, f, f Process Mining
stamp ID
* Processes generate event data
t, 3 a
« Every process execution is a case
t, 1 a
t, 1 b
Common Tasks
t, 2 a
« Discover the process
£, 3 b P
« Validate the process
]
/ « Improve the process

Case ID is used to Activity identifies the
group events type of event

Temporal Data

Temporal Data — Discrete Timestamped Events

Generalized sequential data

Time- Case ID Item
stamp
t, 3 a
t, 1 a
t; 1 b
t, 2 a
te 3 b

[Iltem ldentifier

Sequential Data
« Timestamp (typically not equal intervals)
« Case ID (maps events to cases)

« Item (identifies the item type)

Relation to event data:
item could be an activity

Temporal Data

Temporal Data — Discrete Timestamped Events

Generalized sequential data

Timestamp | Customer ID | Purchased Item
22-07-12 1172 Razor
22-07-12 8121 Shampoo
22-07-12 1172 Shaving Cream
22-08-13 3434 Shampoo
22-09-01 1172 Shaving Cream

1172 :(Razor, Shaving Cream, Shaving Cream)
8121 :(Shampoo)
3434 :(Shampoo)

= [(Razor, Shaving Cream, Shaving Cream),
(Shampoo)?, . ..]

Temporal Data

Temporal Data — Discrete Timestamped Events

Generalized sequential data

Timestamp | Customer ID | Purchased Item
22-07-12 1172 Razor
22-07-12 8121 Shampoo
22-07-12 1172 Shaving Cream
22-08-13 3434 Shampoo
22-09-01 1172 Shaving Cream

Timestamp Customer ID Purchased Itemset
Razor,
22:07-12 1172 Shaving Cream
22-07-12 8121 Shampoo
22-08-13 3434 Shampoo
22-09-01 1172 Shaving Cream

1172 :(Razor, Shaving Cream, Shaving Cream)
8121 :(Shampoo)
3434 :(Shampoo)

= [(Razor, Shaving Cream, Shaving Cream),

(Shampoo)?, . ..]

1172 :({Razor, Shaving Cream}, {Shaving Cream})
8121 :({Shampoo})
3434 :({Shampoo})

({Shampoo})?,...]

= [({Razor, Shaving Cream}, {Shaving Cream}),

Temporal Data

Temporal Data — Discrete Timestamped Events

Generalized sequential data

Sequential Pattern Mining

* Input: a multiset of nonempty sequences
of itemsets

« Main analysis question: identify frequent
subsequences (recurring patterns)

« Relation to event data:
an itemset can be interpreted as activity,
an activity can be an itemset of size 1

Timestamp Customer ID Purchased Itemset
Razor,
22:07-12 1172 Shaving Cream
22-07-12 8121 Shampoo
22-08-13 3434 Soap
22-09-01 1172 Shaving Cream

1172 :({Razor, Shaving Cream}, {Shaving Cream})
8121 :({Shampoo})
3434 :({Shampoo})

= [({Razor, Shaving Cream}, {Shaving Cream}),
({Shampoo})?,...]

Temporal Data

Sequential Pattern Mining

« Uses a specific type of (event) data as input: multiset of sequences of itemsets

 Asequence is a honempty sequence of itemsets

« Two notations for sequence data: ltemset (Activity)]
— Formal:
X = [({a}, {b}, {c,d}, {e}), ({a}, {b}, {c,d}, {e}), (\{a}, {b,c},{c,d, e}, {f})ﬂ
|

— Informal (short notation):
X = [ab(cd)e, ab(cd)e, a(cd)e, a(be)(cde) f]

A sequence of itemsets (activities):
« Formally X € M((P(Z))*) for a set of items Z e.g.,{¢: d, e} happened after {b, ¢}

(M is the multiset and P the powerset operator)

Temporal Data

Sequential Pattern Mining — Input Example

Purchased

Customer ID

Customer Sequence

({4}, {4, B})
{B})
{C},{4,C, D))
{B})

Customer ID Time
Items
15.12.22
A 12:25
15.12.22
A B 12:45
B 15.12.22
13:01
C 30.12.22
18:01
11.01.23
A G [0 17:25
31.12.22
B

17:32

Input is a multiset of
sequences of itemsets

Temporal Data

Sequential Pattern Mining — Input

Input X € M((P(Z))*)
Formal:

[({A}:{A, BY), ({B}), ({C}{A, C, DY), ({B})]
=[({A}, {4, B}), ({B})*, ({C}.{A.C, D})]

Informal:
|A(AB),B,C(ACD), B]
=[A(AB), B*,C(ACD)]

Customer ID

Customer Sequence

({4}, {4, B})
({B})
{C},{4,C, D))
({B})

Input is a multiset of
sequences of itemsets

\ll\ESPRESSO_ &8 Willkommen Wil van der Aalst ‘ ‘ Bl 'HR WARENKORB (0)

a - B w i ¥ s ? s P A

Kaffee Nesp\fesso& Maschinen Accessories Geschenke Our Choices Machhaltigkeit Storefinder Service | FAQ Professional
‘ou

MEIN KONTO

Meine Bestellungen

Willkommen Wil van der Aalst
Mitglied seit 21-09-2018

Kundennummer: 3868857

0171172018 Gel rt Internet

21/09/2018 Gelisfert Internet

Wieder bestellen

(250
Kapseln (250) Stiuckpreis Menge Gesamt

Ristretto

rangen

L Vivalto Lungo

Linizio Lungo

Ristretto Decaffeinato

Temporal Data

Temporal Data — Analysis Techniques

« This lecture — Sequential Pattern Mining

* Next lectures — Time Series and Process Mining:

— Analyze and predict time series data

— Discover, validate and improve processes

Cancel Order

O—' Register order Check Stock

START

Handle
Payment

Ship Order

END

Sequence Mining

1. Temporal Data
2. Measuring Support
3. Apriori-All Algorithm

4. Extensions and Conclusion

Measuring Support

Goal — Find Frequent Sequential Patterns

Customer ID ggcslaoer:fé
N ({11}, {25})
2 {{31})
B ({12}, {11})

)

Sequential Patterns with
Support > Threshold (Min_Sup)

({31})
({12}, {11})

Given a dataset X € M((P(Z))*) find all frequent sequential patterns

Sequential pattern P is a sequence of itemsets, i.e., P € (P(Z))*

Support of a sequential pattern is the fraction of sequences in X that contain the pattern P

Measuring Support

Containment

 Let A= (A1, As,..., A,) € (P(Z))" and B = (B1,Bs,...,B,) € (P(Z))* be two itemset sequences

A is contained in B if there exist integers 1 < i1 <19 < -+ < 4, < m such that

A1 CB;,,, A CB,,,..., A, CB;

tn

Measuring Support

Containment

 Let A= (A1, As,..., A,) € (P(Z))" and B = (B1,Bs,...,B,) € (P(Z))* be two itemset sequences

A is contained in B if there exist integers 1 < i1 <19 < -+ < 4, < m such that

A1 CB;,,, A CB,,,..., A, CB;

tn

<~’417 '/4‘-27 A37 A4>

A C By Ay C By 1§1<4<7<8§9}

\
<Bla 827 BS: B4:B57569877 BS: BQ)

Measuring Support

Containment

« Notation: ALC B if A is contained in B

« If AC B, then A is a subsequence of B and B is a supersequence of A

A1 CB;,,,A2CB,,,...., A, CB;

—

[subsequenceL (Al,A‘g,Ag,le)

A‘:B A1 C By Ay C By
\

[SUpersequencel/’ (B1, B2, B3, Ba, Bs. Bg, Bz, Bs, Bo)

Measuring Support

Containment - Examples

Formal notation:

({a}, {a, b}, {b, ¢}, {c}) E ({a},{a}, {a, b, ¢}, {b, ¢}, {b, ¢}, {a, c})

aa(abc)(bc)(bc)(ac)

SO\

a(ab)(bc)c

multiple mappings possible

a(ab)(bc)c £ aa(abc)(bc)(bc)(ac)

(aq,a,, ...,a,) E (bq, by, ..., b,,,) if and only if there exist integers 1 <i; <i, < <i, <m

suchthata; € b; ,a; € b, ...,a, S b;

Measuring Support

Containment - Examples

Formal notation:

({a}, {a, b}, {b, c}, {c}) E ({a},{a}, {a,b, ¢}, {b, c}, {b,c}, {a,c})
({a}, {a, b}, {b, c}, {c}) Z {{a},{a,b,c},{b,d}, {b, e}, {a, c})
a(abc)(bd)(be)(ac)
?
Informal notation: v\”\\‘\ .'\ /
a(ab)(bc)c

a(ab)(bc)c = aa(abc)(bc)(bc)(ac)

a(ab)(bc)c £ a(abc)(bd)(be)(ac) %

(aq,a,, ...,a,) E (bq, by, ..., b,,,) if and only if there exist integers 1 <i; <i, < <i, <m

suchthatay € b; , a; € b;,, ...,a, S b;_

Measuring Support

Containment — Practice Questions

(ab)(bc) E (bc)(ab) ?

« abC a(ac)(bc)c ?

« aa(ab)(bc) = (ab)(ace)(bce)(ab) ?

« (abc)ef = (ab)(bc)(ef)f ? D

* (abc)ef £ (ab)(bc)(abcd)(ef)f ?

(aq,a,, ...,a,) E (bq, by, ..., b,,,) if and only if there exist integers 1 <i; <i, < <i, <m

suchthata; € b; ,a; € b, ...,a, S b;

Measuring Support

Containment — Practice Answers

« (ab)(bc) £ (bc)(ab) (incompatible order)

« abC a(ac)(bc)c

« aa(ab)(bc) Z (ab)(ace)(bce)(ab) ((ab) cannot be mapped without also handling aa or (bc), etc.)
« (abc)ef Z (ab)(bc)(ef)f (no match for (abc))

« (abc)ef = (ab)(bc)(abcd)(ef)f

(aq,a,, ...,a,) E (bq, by, ..., b,,,) if and only if there exist integers 1 <i; <i, < <i, <m

suchthatay € b; , a; € b;,, ...,a, S b;_

Measuring Support

Support

« The support of a sequential pattern P is the fraction of sequences in X that contain P

* support(P) = [SET)';TES”

* Minimum support threshold min_sup defines which sequences are frequent

Measuring Support

Support

The support of a sequential pattern P is the fraction of sequences in X that contain P

* support(P) = [SET)';TES”

Minimum support threshold min_sup defines which sequences are frequent

Support count is the number of sequences in X that contain P

support_count(P) =|[S € X | PC §]|

Measuring Support

Support — Practice Questions

* X = [abed?, (abed), (ab)(cd)?, (ab)(be)(cd)]

« What is the support_count(P) for

—P=a
—P=ab

— P=(ab)

— P=(ab)c

— P = (ab)(bd)
— P =ab(cd)

= [({a}, b} {eh {ap®, 0\
<{a? b’ C? d}>?
({a,bHe,dp)”
({a.b}, {b.c}. {e.d))]

= [({a}, {b},{c}, {d}),
{a,b,¢,d}),
{a,b}{c,d}),

{a}, {b};{c}, 1d}),

{a,bi{c, dy),

_ {ab}{ed})

(
(
(
({a, b}, 10, ¢}, ¢, d}),
<
<
<

Measuring Support

Support — Practice Questions

X = [abcd?, (abed), (ab)(cd)?, (ab)(be)(cd)]

What is the support_count(P) for

—P=a
—P=ab

— P = (ab)

— P=(ab)c

— P = (ab)(bd)
— P = ab(cd)

2

o ~ O W

=

: [abcd?, (abed), (ab)(cd)?, (ab)(bc)(cd)]
: [abcd2, (abcd), (ab)(cd)?, (ab)(bc)(cd)]
: [abcd2, (abcd), (ab)(cd)?, (ab)(bc)(cd)]
: [abcd2, (abed), (ab)(cd)?, (ab)(bc)(cd)]
: [abcd2, (abcd), (ab)(cd)?, (ab)(bc)(cd)]
: [abcd2, (abcd), (ab)(cd)?, (ab)(bc)(cd)]

Sequence Mining

1. Temporal Data
2. Measuring Support
3. Apriori-All Algorithm

4. Extensions and Conclusion

Apriori-All Algorithm

Brute Force Approach

Goal: find all frequent sequential patterns

Let k be the length of the longest sequence in A and q the

size of the largest itemset

Generate all sequential patterns of length < k

with itemsets of size < q (this numer is finite)
Compute the support of each candidate pattern
Return all that have a support higher than min_sup

Obviously, this is very expensive!

/ all sequential patterns\

of length k

Apriori-All Algorithm

Smarter Approach Based on Apriori

» First described in Rakesh Agrawal, Ramakrishnan Srikant: Mining Sequential Patterns
« Similar to Apriori for frequent itemsets — avoid testing hopeless candidates

« If AC B (A iscontained in B), then B cannot be frequent if A is not frequent
— support (A) > support (B) if A C B

— if A C B and support (A) < min_sup then support (B) < min_sup

Apriori-All Algorithm

Step 1 — Determine All Litemsets

« L={ACT|support((A4)) > min_sup} are all itemsets that appear in a sufficient number of

sequences

« These itemsets are called litemsets (L is the set of all litemsets)

Apriori-All Algorithm

Step 1 — Determine All Litemsets

« L={ACT|support((A4)) > min_sup} are all itemsets that appear in a sufficient number of

sequences

« These itemsets are called litemsets (L is the set of all litemsets)

« Consider X = [abcd,(abcd),(ab)(cd),(ab)(bc)(cd)] and min_sup = 0.7.
The following itemsets are frequent:

a (support = 4/4), b (support = 4/4), ¢ (support = 4/4), d (support = 4/4), (ab) (support = 3/4), (cd) (support = 3/4)

« To determine all litemsets, we can use a variant of the original Apriori algorithm

(the only difference is that support is now counted per sequence of transactions and not per transaction)

Apriori-All Algorithm

Step 2 — Transform the Dataset

« We only need to consider the litemsets £
— There cannot be any frequent patterns that involve other itemsets

— Frequent sequence patterns must be of the form £*!

- ThesetL: ={(Z)| T e L} is the set of all frequent sequence patterns of length 1

« L € L%js the set of all frequent sequence patterns of length exactly k

(to be ‘grown’ from shorter sequence patterns)

Apriori-All Algorithm

Step 2 — Transform the Dataset

« Transform X € M((P(Z))*) into X € M((P(£))*)

—> itemsets are mapped onto all litemsets they contain

« Each sequence is now described by a sequence of sets of litemsets (extra level)

Apriori-All Algorithm

Step 2 — Transform the Dataset

« Transform X € M((P(Z))*) into X € M((P(£))*)

—> itemsets are mapped onto all litemsets they contain

« Each sequence is now described by a sequence of sets of litemsets (extra level)

Example 1: Consider £ = {{a},{b},{c},{a, b}}

« ({a,c},{a,b,c}) corresponds to ({{a},{c}},{{a}, {b},{c},{a, b}})
— because {a, c} has frequent subsets {a}, {c},

— and {a, b, c} has frequent subsets {a}, {b},{c}, and {a, b}

* ({c},{a, c}) corresponds to ({{c}}, {{a}, {c}})

Apriori-All Algorithm

Step 2 — Transform the Dataset

Transform X € M((P(Z))*) into Xp € M((P(£))*)

—> itemsets are mapped onto all litemsets they contain

Each sequence is now described by a sequence of sets of litemsets (extra level)

Example 2: Consider £ = {{a},{b},{c},{a, b}} and X = [({a,b,c}),{c},{a c}),..]

Then X7 = [({{a}, (b}, {c}, {a, b}}), ({{c}}, {{a}, {c}}}, ..]

Apriori-All Algorithm

Step 2 — Transform the Dataset

_ This preprocessing is not essential but makes
« Transform X € M((P(Z))*) into X7 € M((IP(£))*) sense because the dataset is traversed many times

—> itemsets are mapped onto all litemsets they contain

« Each sequence is now described by a sequence of sets of litemsets (extra level)

Example 2: Consider £ = {{a},{b},{c},{a, b}} and X = [({a,b,c}),{c},{a c}),..]

« Then &= [({{a}, (b}, {c}, {a, b}}), ({{c}}, {{a}, {c}}}, ..]

Testing whether a sequence pattern is supported by a sequence in the dataset is easy now!

Apriori-All Algorithm

Step 3 — Generate a Set of Candidate Sequences

Assume we have Lj_1, the set of all frequent
sequence patterns of length k — 1
(recall that £1 = {(Z) | Z € L})

Create the set of candidate sequences Ck by
combining two sequences from L;—1 where the
first k — 1 itemsets are the same

(just like in Apriori for frequent itemsets)

of length k

/all sequence patterns \

patterns Cy,
before pruning

/candidate sequence\

&

oY

Apriori-All Algorithm

Step 4 — Prune the Set of Candidate Sequences

» For all candidate sequences C € Ci / \
all sequence patterns
— Consider all subsequences of C of length k — 1 of length k
— If one of these subsequences is not in £j_1, then / , \
candidate sequence
remove C from C;, patterns C

before pruning

4 N

Ci. after pruning

N =7

Apriori-All Algorithm

Step 5 — Test All Candidate Sequences

« For each transformed sequence $ € X7 Increment the count / \
o _ _ all sequence patterns
of C € Cy if Cis contained in & of length k
/candidate sequence\
- Remove all candidates C € Cj, that do no meet the threshold to patterns Cy,

before pruning

4)

Ci. after pruning

obtain Lx = { C € Ci, | support(C) > min_sup}

« Increment k and go to Step 3 (Candidate Generation) until £, = 0

. Ly is th fallf
LkJ k is the set of all frequent sequence patterns K\K ///

Apriori-All Algorithm

Step 6 (Optional) — Remove Non-Maximal Patterns

« Asequence $ is a maximal frequent sequence in X
— if § is frequent,

— and there is no real supersequence S’ that is also
frequent (S = §)

Apriori-All Algorithm

Step 6 (Optional) — Remove Non-Maximal Patterns

« Asequence § is a maximal frequent sequence in X
— if § is frequent,
— and there is no real supersequence S’ that is also
frequent (S C S')

« Itis possible to keep only the maximal sequences

« However, support information for the subsequences will

be lost (subsequences may have higher supports)

Apriori-All Algorithm

Other Sequential Pattern Mining Approaches

There are many other algorithms to find frequent sequential patterns:

Maximal Frequent Sequences (MFS)

Maximal Sequential Patterns using Sampling (MSPS)
« Indexed Bit Map (IBM)

« Sequential Pattern Mining with Length-decreasing Support
(SLPMiner)

WINEPI, MINEPI

« And many others...

Sequence Mining

1. Temporal Data
2. Measuring Support
3. Apriori-All Algorithm

4. Extensions and Conclusion

Extensions and Conclusion

Association Rules Based on Fregquent Sequences

* Frequent sequence patterns can be split in an ‘if’ and ‘then’ part

(just like ‘normal’ association rules)
 ({beer}, {red,white}) = ({beer}, {red,white}, {wodka})
 ({beer}, {beer}) = ({beer},{beer}, {beer}, {beer} {beer})

« Many variants possible

Extensions and Conclusion

How to lIdentify Interesting Frequent Sequences?

« For any technique that identifies patterns, it is important to filter out the less interesting ones

* One can look at things like correlations and base frequencies to decide how surprising sequences
or sequence-based rules are (lift metric)

» ltis also possible to add further constraints...

Extensions and Conclusion

How to lIdentify Interesting Frequent Sequences?

Examples for further constraints:
« Item constraints: only consider sequences that include or exclude a set of items
* Length constraints: only consider patterns of a given size

« Time constraints: only consider patters that occur in a short timeframe
(this includes gap and duration constraints)

* Reqgular expression constraints: only consider patterns that satisfy a regular expression or
temporal constraint

Extensions and Conclusion

Episode Mining

Extension: rather than looking for sequences we look for embedded partial orders (not subject of this

course)

Not a directly follows relation:
something may happen in between

Temporal Data

In future lectures — More Temporal Data!

Event data
Time- | Case . .

stamp D Activity f, f, fo
t, 3 a
t, 1 a
t; 1 b
t, 2 a
te 3 b

/

[Case ID is used to }

group events

Activity identifies the
type of event

1

We will see how to analyze time series

Process mining: the analysis of event
data as interplay between events and
models

