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This lecture: Two Main Topics

Time series analysis Data Quality, and Preprocessing
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Time Series

COVID-19 infections per day (blue) & weekly mean (red)

1. Introduction —— Number of cases
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2. Analysis

10000 -

3. Forecasting
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Taken from Time Series Forecasting on COVID-19 Data 10.5772/intechopen.104920



Introduction

Temporal Data — Discrete Timestamped Events

sTti:::; £, f  f f £ o
> ¢ Sequence mining
y (seen before)
3 * Process mining
: (later lecture)
. * Time series
(this lecture)

Every instance happened
at a specific time




Introduction

Temporal Data — Discrete Timestamped Events

Time series data

rme 4 & & & . 1,  Timesseries analysis

t, « Equidistant timestamps (determined by
t, sampling rate)

ts  Features are numerical
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BT Sampling rate
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Introduction

Time Series Analysis Has Numerous Applications

COVID-19 infections per day (blue) & weekly mean (red)

* Health (e.g., Covid) im
 Finance (e.g., stock market) -
* Inventory management x w0
- Marketing =

* Energy systems

« Climate change

= Electricity_Price
Mat_Gas_Price

* Political polls

 Etc.
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Introduction

Let’s Start With Univariate Time Series
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Introduction

Time Series — Some More Examples

e Number of RWTH students
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Introduction

Time Series - Some More Examples

* Finance: stock price

Tesla, Inc.

216,85 € r1owsi% 974850,

17. Nov, 20:31:30 UTC+1 - EUR - ETR - Haftungsausschluss

1T. 5T. 1M. & M. YTD 1J. 3. MAX €@ Wichtige Ereignisse
21685 EUR £
400 17.11.2023

Handelsvolurmen: 388.658
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source: https://www.google.com/finance



Introduction

Time Series - Some More Examples

« Climate: CO,

Annual CO2 emissions Our World

in Data

Carbon dioxide (CO:) emissions from the burning of fossil fuels for energy and cement production. Land use
change is not included.

1 billiont
800 million t
Germany
600 million t
400 million t
200 milliont
0t1 T
1792 1850 1900 1950 2020

Source: Global Carbon Project OurWorldInData.org/co2-and-other-greenhouse-gas-emissions/ « CCBY



Time Series

1. Introduction
2. Analysis

3. Forecasting




Analysis

Time Series Patterns

Trend: a time series exhibits a long-term increase or decrease in the data.

Seasonal: a times series is affected by a fixed and known frequency (e.g., month, weekday).

Cyclic: a time series exhibits rise and falls that are not of a fixed frequency (e.g., economic fluctuations).
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Analysis

Seasonal Plot

« Similar to a time plot, but the observations are plotted against a season.

« Easier to observe the underlying seasonal patterns.

Antidiabetic drug sales
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Analysis

Autocorrelation

« The linear relationship between lagged values of a time series.

Average of }

. . observation
[ The length of the% y

T —_ —
[ The cofficient FT" _ Zi=k+10t = Y) Ve — )

between y, and y,_,, ’11,:=1(Yt — 37)2

Observation at
time t

Lag



Analysis

Understanding Autocorrelation (1/2)

Sample correlation coefficient
- =1 =i —¥)
Xy — — —
\/Z?:l(xi _ x)z \/Z?:l(:)’i T 3’)2

1 0.8 0.4 0
1 1 1
e — »
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Recall: the value of a correlation
coefficient ranges between -1 and +1.
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Analysis

Understanding Autocorrelation (2/2)

Sample correlation coefficient

o 71'1:1(951' —X)yi —Y)
VI Gy - 02 I (5 — 7)?

Autocorrelation

T — 7 — There is just one sample mean y
r, = t=k+1(7:1yt y) (Yt—k y) (x = ¥) and typically T > k.
— A2
t:l(yt Y)




Analysis

. Z:=k+1(Yt —VVt-k —Y)

Correlogram Tk = T =2
g =1Vt = ¥)
« A plot showing the autocorrelation coefficients between lagged values.
" autocorrelation
. function (ACF)
Monthly Australian electricity demand Note that there is an
upward trend and a
Series: aelec
seasonal pattern!
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Analysis

Correlogram
« Bounds: +2/+/T, where T is the number observations in the time series.

Series: aelec

_bounds: £2/VT
2
{000
o P N s s
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function (ACF)



Analysis

7
Correlated or Not* T = PGk — )

| - e (e — ¥)?
« Assume independence of subsequent observations. t=1\Jt

« Under this assumption, the autocorrelation coefficient r;, follows (approximately!) a normal
distribution with a mean of 0 and a variance of 1/T, i.e., u = 0 and o = 1/VT.

« This means that approximately 68% of the autocorrelation coefficients fall within [—o, o], 95%
of the autocorrelation coefficients fall within [—20, 2], and 99.5% of the autocorrelation
coefficients fall within [—-20, 20],

68-95-99.7 Rule

i A 95% of the autocorrelation
VAUTUN coefficients fall within [—2/VT, 2/VT]
0 0.251 ’ \
£0.20 l / 95.45% \ , _ _
go1s | / \ Therefore, values outside of this
£ 0101 y/ 73% ] : :
| ——g 99.73% . — interval are unlikely (less than 5%_)
0.00 1 under the independence assumption.




Analysis

White Noise

« Time series consisting of independent observations are called white noise.

» Under this assumption there is just a 5% chance that the autocorrelation coefficient will fall
outside of the bounds [—2/+/T, 2/VT| by chance.

« Spikes outside these bounds, suggest that there may be a correlation.

White noise ettt
. Bound: +2/vT !
2- [
Series:y
1 s - - T
02-
- 5 00 | |
. | ' i | |
| T
-02-
T = - — T _ _
2 5 10 15
Lag
,3- ,
0 10 20 30 40 500 ! _ _ _ A
Ti : . !
. Bound: —2/VT |

white noise randomly generated



Analysis

Time Series Decomposition

« Various patterns coexist
« May be helpful to split a time series into several components

« Additive decomposition
" trend-cycle
. component .

_______ T===—====
1

________________

« Alternative: multiplicative decomposition

yt:StXTtXRt



Analysis

Time Series Decomposition

Estimating the trend-cycle component T;. moving average
« The estimate of the T; is obtained by averaging values of the time series within k periods of t.

A moving average of order m = 2k + 1 is called m-MA.
Annual electricity sales

Year Sales (GWh) 5-MA
1989 235434~
k 1990 237970 - __ T~
1 1991 231852 - - - - - - - - - = == Z=12381.53
11"'\ —_ z ) 1992 2468.99———:::::*’/ 2424.56
t — yt+] 1993 2386.09 -~ 24,63.76
m : 1994 2569.47 2552.60
/ =—k 1995 2575.72 2627.70
/ 1996 2762.72 2750.62
IR 4" __________ 1997 284,450 2858.35
' m = Zk 4+ 1 ! 1998 3000.70 3014.70
—————————————————— ! 1999 3108.10 3077.30
2000 3357.50 3144.52
2001 3075.70 3188.70
2002 3180.60 3202.32
2003 3221.60 3216.94
2004 3176.20 3307.30
2005 3430.60 3398.75
2006 3527.48 3485.43
2007 3637.89

2008 3655.00



Analysis

Time Series Decomposition

Estimating the trend-cycle component T;. moving average
« The estimate of the T; is obtained by averaging values of the time series within k periods of t.

« A moving average of order m is called m-MA
Annual electricity sales

3400 -
z Vt+j

]——k

series

g 3000 - — Data

— 5-MA

2600 -

1990 1995 2000 2005
Year



Analysis

Time Series Decomposition

To detrend time series data means to remove an underlying trend in the data.
« This way one can see subtrends in the data that are seasonal or cyclical.
« Calculate the detrend series: y, — T.

« Similarly, one can detrend for seasonal effects.

Sales by Period Detrended Data

Sales
25
Sales

20
|

15

10

T T T T T T T
5 10 15 20 5 10 15

Period Period



Analysis

Time Series Decomposition

Classical additive decomposition of total US retail employment
Emploved = trend + seasonal + random
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Analysis

Time Series Decomposition: Example

Monthly totals of international airline passengers, 1949 to 1960
— data —trend

]
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100

Jan 184% Jan 1850 Jan 1851 Jan 1852 Jan 1853 Jan 1854 Jan 1855 Jan 1956 Jan 1957 Jan 1958 Jan 1939 Jan 1960

yt:St+Tt+Rt

Example taken from https://www.encora.com/insights/a-visual-guide-to-time-series-decomposition-analysis



Analysis

Time Series Decomposition: Example

Monthly totals of international airline passengers, 1949 to 1960

&0 — data —trend
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Analysis

110

Seasonality Plot

— 1949 — 1950 — 1951 — 1952 —
1953 — 1954 — 1955 — 1956 — 1957
— 1958 — 1959 — 1960

Jan Feb

Time Series Decomposition: Example

Seasonality Plot with Seasonal Component

140 Jul, 1949: 1949: 21.21 1950 29.08
1951: 27.76 1952: 31.96 1953: 38.67
120 ° 1954: 61.5 1955: 78.25 1956: 83.46
° 1957: 95.54 1958: 109.17 1959: 117.29
100 Seasonal Component: 63.08
°
© L
€@
40 °
L]
70 L
0
-20
-40
-£0
&0
-100
Jan feb M Ao May Jun Jul an Sep Oct Nov

Example taken from https://www.encora.com/insights/a-visual-guide-to-time-series-decomposition-analysis



Analysis

Time Series Decomposition: Example

DeTrended Time Series
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Analysis

Time Series Decomposition: Example

Trend
8 -
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Time Series

1. Introduction
2. Analysis

3. Forecasting




Forecasting

Autoregressive (AR) Models

* An Autoregressive (AR) model is a regression of the variable against itself.

« The variable of interest is forecasted using a linear combination of past values of the variable.

______________________

—_———
1

———————————

____________

______________________

' past value of y at ! term
. timet—1

______________________

« ltisreferred to as a AR(p) model, an Autoregressive (AR) model of order p.

¢ iS “phi”



Forecasting

Moving Average (MA) Models

A Moving Average (MA) model is a regression of the past errors.

« The variable of interest is forecasted using a linear combination of past forecast errors.

______
.___,___l

* Note that given c, 64, 8,, ..., 8, it is possible to compute €;, €5, ..., €7.

« ltisreferred to as a MA(q) model, a Moving Average (MA) model of order q.

0 is “theta”



Forecasting

Moving Average (MA) Models: Compute Errors

An example of an MA(1) Model

10 . 0.5+ assumed to be given, e.g., through EM
Time Forecasted Values (y;) Error at time t (&;) Actual Values (y;)
1 10 9
2 9.5=10+0.5(-1) 11.5
3 11 =10+ 0.5(2) 10
4 9.5 =10 + 0.5(-1) 10.5
5 11 =10+ 0.5(2) 10
6 9=10+0.5(-1) 9

can be derived



Forecasting

Moving Average (MA) Models: Compute Errors

An example of an MA(1) Model

10 . 0.5+ assumed to be given, e.g., through EM
Time Forecasted Values (y;) Error at time t (&;) Actual Values (y;)
1 10 -1 9
2 9.5=10+0.5(-1) 2 11.5
3 11 =10+ 0.5(2) 1 10
4 9.5 =10 + 0.5(-1) 2 10.5
5 11 =10+ 0.5(2) -1 10
6 9=10+0.5(-1) 0 9

can be derived



Forecasting

Moving Average (MA) Models: Interpret in Reverse

An example of an MA(1) Model

Ve = Cit+ & +101&4

——— - —— —— e ———

12

11.5

11

10.5

10

9.5




Forecasting

ARMA: Combine Autoregressive (AR) and Moving Average (MA) Models

Ve =CH+ P1Vi—1 T+ P2yt F PpYep + 0161 + 026 5+ -+ 0564 + &

Autoregressive (AR) Moving Average (MA)

* Note that given ¢, ¢4, @5, ..., Pp, 01,05, ..., 04, it is possible to compute €5, €5, ..., €7.

« Use for example Expectation-Maximization (EM) algorithms

¢ is “phi”
6 is “theta”



Forecasting

Stationarity & Differencing

The observation y; of a stationary time series does not depend on the time t.
* Obviously, time series with trends or seasonality are not stationary.

« Therefore, one may use differencing to focus on differences rather than absolute values (first-order
differencing)

« The new series represents the change between consecutive observations: y{ = V¢ — Vi—1-The
result is a new time series and then it is “business as usual”

« Sometimes, it may be necessary to difference the series a second time (second-order differencing)
to make it stationary ' = y; — Vi1 = (V¢ — Vi—1) — (V-1 — Yi=2) = ¥Ve —2¥t-1 + Yi—2-



Forecasting

Stationarity & Differencing

_speed

Yt

Scaled_wind_s
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Forecasting

Stationarity & Differencing

Original Series

Autocorrelation
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Forecasting

ARIMA Models

« Combination of the elements present before
* AR: Autoregressive (lagged values)
* |. Integrated (differencing to make series stationary)
* MA: Moving Average (lagged errors)

 Hence ARIMA is ARMA with differencing

« Parameters: ARIMA(p,d, q)
* p = order of the autoregressive part
* d = number of times for differencing

* g = order of the moving average part



Forecasting

Machine Learning Models

 Feed-forward Neural Networks

* Recurrent Neural Networks, e.g, long short-term memory

Ve—2
time Vi3

Vt-4

Yt-5




Forecasting

Evaluation

* A model that fits the training data well will not necessarily forecast well.

« We should split the data into training and test set.

Training data

—0—0—0 0000 0 0 00— O0—C0—0-

 Forecast errors: the difference between an observed value and its forecast
« Examples:

- Mean Absolute Error (MAE): 2=t [€il/,

n 2
e Mean Squared Error (MSE): 2i=1% /,



Multivariate Time Series

From Univariate To Multivariate Time Series

10007 pollution|
0 - « Next to time as a feature,

23 - multiple numerical features.
=237 « One feature may depend on
25 - itself and other features.
0 -
« Assumption: future values do
1025 7 not cause current values.
1000 A
500 -
0 .
25 -

0 10000 20000 30000 40000

https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/



Multivariate Time Series

Granger Causality

The Granger causality test is a
statistical hypothesis test for
determining whether one time
series is useful in forecasting
another.

Are predictions of the value of Y
based on its own past values
and on the past values of X
better than predictions of Y
based only on Y's own past
values?

Not really causality ...



Let’s Take A Step Back: How to Get the Data?
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It is not uncommon that
80% of the effort/time in
a data science project
Is devoted to finding,
extracting, cleaning,
and transforming the
data. Only 20% is
concerned with
analysis.




The Two Biggest Hurdles in Practice:
Getting the Data and Implementing Changes

L ————]

.'-ll' = —

‘-—-...u....un\lmulis i




Example: Process Mining

Analysis iterations

Initialization Analysgs iterations f a ! \
Analysis iterations

Enhancement Budiness Process

‘ m experts  analysts

Conformance

1. Planning

Discovery Analytics

E@ ? i ' & Analysis L

6. Process
Improvement
& Support

-

Qutput / Stage Information
Input Systern

~, ! s )
-
e
e Improve-
ment ideas

EKPO — Purchasing Document Item

#1 MANDT - Client

#2 EBELN — Purchasing Document Number
#5 STATU — RFQ status

#299 POL_ID - Order List Item Number

#300 CONS_ORDER - Purchase Order for Consignment

CIO of a US bank: “We reduced
the number of applications from
12.000 to 8.000” : -)

An SAP installation has
hundreds of thousands of
tables.

Tables may have hundreds of
columns (e.g. EKPO has > 300
fields).

Organizations such as Siemens
have 70 SAP installations.

#3 EBELP — Item Number of Purchasing Document
#4 LOEKZ - Deletion indicator in purchasing document

SAPd

‘ Allgemeine Tabellenanzeige

‘ (3 Hintergrund  Anzahl Eintrige = [ [ [ B2 E:Ale Eingaben | & | &»
Tabelle [ppo2L | SAP-Tabellen
Tedss - . Ohne Text

| (= Anzahl gefundener Eintrage

Gefundene Eintrage ‘l_554.7s4 |



Data Quality & Preprocessing

1. Introduction
2. Missing Values
3. Outliers

4. Semantic Problems

5. Transformation & Normalization

6. Data Reduction

7. Conclusion I I I S R



Introduction

Data Science Pipeline

« (Garbage in, garbage out

« Possible problems (big data, security), errors (data quality), biases (e.g., survivorship bias)
everywhere

 Problems, errors and biases propagate

Goal: increase data quality and modify the data to suit the analysis question and applied techniques




Introduction

Data Quality Aspects

Accuracy

« Completeness
« Consistency

« Timeliness

« Believability

* Interpretability

- Consider when setting up databases etc.

- Use to gain overview of quality of provided data

Name Age Siblings A:r:ti(:sci):)n
Sara Johnson 55 0 30.09.2022
NAME 17 23-11-22
Smith 28 2 8/24/22
Emma Miller 2 56 May 10th, 22
Jones 87 3 220701

Example Data




Introduction

Data Quality Aspects

 Accuracy - Date of
Name Age Siblings Admission
« Completeness
Sara Johnson 55 0 30.09.2022
* Consistency NAME 17 23-11-22
* Timeliness Smith 28 2 8/24/22
. Believability Emma Miller 2 56 May 10th, 22
. Jones 87 3 220701
* Interpretability
Are the values correct? Is it possible to identify
errors in the data? Emma seems to have an improbable number of

siblings. Was the value entered incorrectly?




Introduction

Data Quality Aspects

 Accuracy

« Completeness
« Consistency

« Timeliness

« Believability

* Interpretability

Are values missing?
Is there ‘disguised’ missing data?
(e.g., default or pre-selected values)

Name Age Siblings A:riti(:sci);n
Sara Johnson 55 0 30.09.2022
NAME 17 23-11-22
Smith 28 2 8/24/22
Emma Miller 2 56 May 10th, 22
Jones 87 3 220701

NAME is the default placeholder where the
name should have been entered.




Introduction

Data Quality Aspects

 Accuracy

« Completeness
« Consistency
« Timeliness

« Believability

* Interpretability

Does the data adhere to common naming
conventions and formats?

Are these conventions and formats used
consistently throughout the data?

Name Age Siblings A:ritiisci);n
Sara Johnson 55 0 30.09.2022
NAME 17 23-11-22
Smith 28 2 8/24/22
Emma Miller 2 56 May 10th, 22
Jones 87 3 220701

The first name is not always included. The
admission date format varies.




Introduction

Data Quality Aspects

 Accuracy

« Completeness
« Consistency

« Timeliness

« Believability

* Interpretability

Data may be missing for some time periods
(aging, lost updates, etc.).

Some values may be up-to-date while others are
outdated.

Name Age Siblings A:riti(:sci);n
Sara Johnson 55 0 30.09.2022
NAME 17 23-11-22
Smith 28 2 8/24/22
Emma Miller 2 56 May 10th, 22
Jones 87 3 220701

People gain years (i.e., celebrate birthdays) all
year, but age is updated only occasionally.




Introduction

Data Quality Aspects

* Accuracy - Date of
Name Age Siblings Admission
« Completeness
Sara Johnson 55 0 30.09.2022
* Consistency NAME 17 23-11-22
 Timeliness Smith 28 2 8/24/22
. - H h
. Believability Emma Miller 2 56 May 10t, 22
Jones 87 3 220701

* Interpretability

Does the user trust the data, i.e., does the user

believe the data to be true, real, credible?

Depends on the data source and processing

Previous errors and inconsistencies have
decreased the trust in the system.

history.



Introduction

Data Quality Aspects

* Accuracy - Date of
Name Age Siblings Admission
« Completeness
Sara Johnson 55 0 30.09.2022
* Consistency NAME 17 23-11-22
 Timeliness Smith 28 2 8/24/22
. - H h
. Believability Emma Miller 2 56 May 10t, 22
Jones 87 3 220701

* Interpretability

Are the data understandable without much

explanation? Is the age given in years or in months? Does the
number of siblings include half-siblings?

Does it leave room for ambiguity?
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Missing Values

Detecting Missing Values

Missing values may be obvious...
 Empty value

« NaN/NA

... or may be disguised!
« Default value

 |nvalid value




Missing Values

Handling Missing Values

1) Fill in manually
2) Ignore

3) Fill in a derived value



Missing Values

Handling Missing Values: Ignore

Discard the feature
« The whole feature is removed from the data

« Usually done if the number of missing values is too large to allow meaningful analysis
(as a rule of thumb, if more than 60 % of the feature values are missing)

AN e

\\ //
X
/ / \\




Missing Values

Handling Missing Values : Ignhore

Discard the instance

« The entire instance is simply discarded

« Usually done when the whole instance becomes unusable (e.g., labeling attribute for classification
IS missing)

« If the data set misses a lot of values, this technique may make the whole data set unusable or
introduce a bias




Missing Values

Handling Missing Values: Ignore

Ignore the instance only for features where the value is missing
 The instance is ignored when analyzing features where it misses a value

 |Information for other features remains usable

! ! !

\ /
\\><//
- [ —
\\ <// \\ //




Missing Values

Handling Missing Values: Create

Mean/median/mode of the whole feature
« Compute mean/median/mode and fill the gaps accordingly

* May introduce values far away from the real value

« Example: compute yearly income

[3]



Missing Values

Handling Missing Values: Create

Mean/median/mode of all instance belonging to the same class
« Compute mean/median/mode only based on instances with the same class label
« Higher chances to be accurate compared to the overall mean/median/mode

* Only valuable if we have meaningful groups in the data

« Example: compute income for a 20-year-old Student living in Aachen, Germany

[4]



Missing Values

Handling Missing Values: Create

Income

7
<3750 \
v

Complex derived value (use a predictor model) e urance —
. . . . . . V4 N
« Fill in the value given by a suitable prediction model /Y N
« E.g., decision trees, regression, NNs, SVMs... Income Basic
<2500 22500
v \

Premium Basic
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Outliers

Introduction

What is noise?
Correctly Incorrectly

recorded recorded « We assume that noise causes outliers

e Thus, outliers indicate noise

Assumption:
Noise = Outliers

Frequent / Infrequent /
many similar few similar
instances instances




Outliers

Outlier Detection

How to detect outliers?

Correctly Incorrectly

recorded recorded « Boxplots
« Decision trees
* Regression

Assumption: * SVMs
Noise = Outliers - Clustering
Frequent / Infrequent / > Predictor models can be used to define outliers
many similar few similar

instances instances




Outliers

Outlier Handling

Correctly
recorded

Incorrectly
recorded

Assumption:

Noise = Outliers

Frequent /
many similar
instances

Infrequent /
few similar
instances

How to handle outliers?

Outliers can be handled as missing values:
« Fill in a correct value manually

» Ignore the feature/instance

» Replace with a derived value

—> Predictor models can be used to replace outliers



Outliers

Outlier Detection - Decision Trees

How to detect outliers?
« Every leaf node is assigned a class label

* Instances in that leaf node with a non-matching class label
can be considered outliers




Outliers

Outlier Detection - Regression

100

How to detect outliers?

B .@ » Instances which are far away from the predicted value are

%0 considered outliers

b @ | « The definition of ‘far away’ depends on an error function and
° i threshold

o e
.". .
e

40

30

Y

20

10

0 100 200 300 400 500 600



Outliers

Outlier Detection — SVM

200

150

100

50

100

200

300

@DELAYED

400

500

ON TIME

How to detect outliers?

Instances which are (too far) on the wrong side of the
hyperplane are considered outliers

Soft margin may be used to define how far



Outliers

Outlier Detection - Clustering

How to detect outliers?

» Instances outside of any cluster can be considered outliers

® Cluster1
Cluster 2

® Cluster 3

® Outliers



Outliers

Outlier Detection - Boxplots

250 How to detect outliers?

o @ « Instances above the upper fence
200

* |nstances below the lower fence

150
0!
BB - Outlier handling option:
50 » Clamp values to the nearest fence
. L

-50



Outliers

Outlier Handling

How to handle outliers?

Outliers can be handled as missing values:
1) Fill in a correct value manually

2) Ignore the feature/instance

3) Replace with a derived value

Again: the appropriate method depends on
the data and purpose
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Semantic Problems

Semantic Problems - Examples Region  Common

Format

dd-mm-yyyy

Data integration mm-dd-yyyy

dd-mm-yyyy

« Merging systems
yyyy-mm-dd

« Merging data sources

mm-dd-yyyy
yyyy-mm-dd
dd-mm-yyyy

yyyy-mm-dd

mm-dd-yyyy
yyyy-mm-dd

dd-mm-yyyy

06/07/2023 vs 07/06/2023




Semantic Problems

Data Integration

Data is collected by different systems and stored separately - merging can introduce problems

Redundancies:
« multiple entries referring to the same instance (often caused by maintenance inconsistencies)
* e.g. two entries for the same purchase but with different addresses (duplication instead of update)

‘Wil van der Aalst’, ‘van der Aalst, Wil’, ‘W. Aalst’, ‘Willibrordus Van’, ‘' W.M.P.’...

Name Age Date of Admission
Sara Johnson 55 30.09.2022 Different instances
Sara Johnson 56 30.09.2022 or duplication

Bob Smith 28 8/24/22 instead of update?




Semantic Problems

Data Integration

Data is collected by different systems and stored separately - merging can introduce problems

Inconsistencies & Semantic problems:
« data sources using different scales, scopes, encoding, representation, abstraction levels ...
* e.g., prices use different currencies, and may be represented with or without VAT

* e.g., total sales’ might refer to company wide sales, or to one specific region/country

Iltem  Price Total Sales Iltem  Price Total Sales One database
collects sales for
Vacuum 240 554 | Vacuum 240 33 _
Cleaner ——/ \r—— Cleaner a region, the

other worldwide
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Transformation & Normalization

Preprocessing — Preparing the Data for Analysis

« Transformation: change the data to the right data type
« Normalization: adjust the influence of features

« Reduction: make the data smaller for analysis




Transformation & Normalization

Preprocessing — Transformation

* One-hot encoding: categorical to numerical

« Binning: numerical to categorical

f4 fo | class
high 88 A
high 76 B
medium | | 32 B
low 89 C
high 21 C
medium | | 45 A

f4 - high | f4 - medium | f; -low || f, |class
1 0 0 88 A
1 0 0 76 B
0 1 0 32 B
0 0 1 89 C
1 0 0 21 C
0 1 0 45 A




Transformation & Normalization

Preprocessing — Transformation

* One-hot encoding: categorical to numerical

« Binning: numerical to categorical

f4 fa | class
high 88 A
high 76 B
medium | 32 B
low 89 C
high 21 C
medium | 45 A

21
32
45
/6
88
89

f4 fo class
high high A
high || medium | B
medium low B
low high C
high low C
medium|| medium [ A




Transformation & Normalization

0 a

Preprocessing — Normalization

20 70

60

- May introduce an unwanted bias 0] water freezes |32
. . . O — 0°C--32°F —30

= May hinder interpretability 0 20
10

20
10

30 20

water boils |220f

100[— 100°C -- 212°F —210{|=

200|| =

0 190||=-

L . 80 180)/1=-
Adjusting the influence of features ll=
70 =

: . 150(| =

» Feature weight and range often depends on the chosen unit 60 140||=
. 130(| =

(km, mm, miles, ...) 50 120|[=

110(| =

. . . . 40 100||=

« Algorithms tend to give more weight to features with a large range i o0 ||=
80 ||=-

« Scales may be non-linear

(e.g. logarithmic) Sum]\?f squared errors:
% Zz‘:1(ti - M(Xi))2 U \_/

Celsius Fahrenheit




Transformation & Normalization

Preprocessing — Normalization

Min-max normalization
« Maps the values onto a predefined range [low, high]

 Preserves relative differences, i.e., relations between the data values

We normalize feature d by replacing its value for each instance i as follows:

value of feature d
in the ith instance
R d|—d
norm(xi[d]) _ Xi[d] —dmin

dmax_dmin

(high — low) + low

maximal value minimal value
of feature d of feature d




Transformation & Normalization

Preprocessing — Normalization

Min-max normalization

d

dmin =11
1 Amas = 82
82
33 Consider

high = 100
12 low =5
76

i d _dmin :
norm(x;|d]) = ;(m[a}]{_ 2« (high — low) + low



Transformation & Normalization

Preprocessing — Normalization

Min-max normalization

d
11
82
33
12
76

norm(x;[d]) =

dmin =11
Amaz = 82

Consider

high = 100
low =5

x1 [d] —dmin

norm(d)

(11 —11)/(82 — 11) -
(82 — 11)/(82 — 11) -
(33 —11)/(82 —11) -
(12 —11)/(82 — 11) -
(76 — 11)/(82 — 11) -

/
/
/

max dmln

- (high —

low) + low

Q

norm(d)

100
34.44
6.34
91.97




Transformation & Normalization

Preprocessing — Normalization

Standard score (Z-score) normalization

« Uses the standard deviation to quantify the significance of the difference between a value and the
overall mean

« Range is|[—0o0, o0, but 0 has a clear meaning
 Useful when actual minimum and maximum of the attribute are unknown

» Useful when outliers may impact min-max normalization

d is the mean of all values of feature d: )
For each i:
X3 [d]

N
% Zz‘:l X [d] )

sd(d) is the standard deviation of feature d: |

Z@ 1(Xl
V/( o) )

norm(x;|d|) = ;»dT;)




Transformation & Normalization

Preprocessing — Normalization

Standard score (Z-score) normalization

d
11

82 d=428
33 sd(d)= 34.259

12
76

x;[d]—d
norm(x;|d|) = %



Transformation & Normalization

Preprocessing — Normalization

Standard score (Z-score) normalization

d
11
82
33
12
76

norm(x;|d]) =

d=42.8
sd(d)= 34.259

xi[d]—d
sd(d)

norm(d)

(11 — 42.8)/34.259
(82 — 42.8)/34.259
(33 — 42.8)/34.259
(12 — 42.8)/34.259
(76 — 42.8)/34.259

R S

Q

norm(d)

-0.93
1.14
-0.29
-0.90
0.97




Transformation & Normalization

Preprocessing — Normalization

Decimal scaling
» Moves the decimal point of the values based on the maximum value

« Scales all values to the interval [-1,1]

For each i: jis chosen such that
. __ X4[d] the |d,,| is of the
norm(xl [d]) - 10 form 0.X (where X
does not start with 0)




Transformation & Normalization

Preprocessing — Normalization

Decimal scaling
» Moves the decimal point of the values based on the maximum value

« Scales all values to the interval [-1,1]

Examples:
For each i jis chosen such that N « Values in [-877.0, 4.0] are normalized
Td]) = Xild] the |d,,,,| is of the to the range [-0.877, 0.004]
norm(xl[ ]) - 10 form 0.X (where X

* Values in [0.0003, 0.08] are

does not start with 0
with 0) normalized to the range [0.003, 0.8]
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Data Reduction

Preprocessing — Data Reduction

Instance reduction

Analysis may become unfeasible due to size of data

Goal: reduce the data size but maintain same (or similar) analysis results

Feature reduction: remove or replace some features

Instance reduction: remove, replace or aggregate some instances

Feature reduction

ID f, f, f,




Data Reduction

Preprocessing — Feature Reduction

Projecting data on fewer dimensions

« Autoencoders (compare text mining): a special type of NN which transforms the input data into a
representation with less dimensions (encoding)

* Principal Component Analysis (PCA): represent original features by a few orthogonal
(uncorrelated) variables that capture most of the variability




Data Reduction

Preprocessing — Feature Reduction

Projecting data on fewer dimensions

« Autoencoders (compare text mining): a special type of NN which transforms the input data into a
representation with less dimensions (encoding)

* Principal Component Analysis (PCA): represent original features by a few orthogonal
(uncorrelated) variables that capture most of the variability

Feature subset selection: detect and remove irrelevant/redundant features
« Use domain knowledge (e.g., remove identifiers)
« Exploit dependencies (e.g., delete features that can be estimated from others using regression)

* Model-driven (e.g. delete features that are not used in a constructed decision tree or, more
general, features that can be left out without reducing the quality of the model much)



Data Reduction

Preprocessing — Feature Subset Selection

Example
1. Initial features: f,, f,, f3, f,, fs, fs, f7, fg, fq
2. Construct a tree

3. f,, f;, f,, fg are relevant (according to the tree)

|dea: features correlated with the chosen subset
would not improve the classification (significantly) and
are therefore not part of the tree.




Data Reduction

Preprocessing — Feature Subset Selection

Data

2D _ 1 different |:> error measurements
—) “ (AUC, R2, MSE, ...)

sets of features
/predictive model\




Data Reduction

Preprocessing — Feature Subset Selection

Data
2D _ 1 different — :D error measurements
sets of features :E (AUC, R2, MSE, ...)
: /prEdiCtive mOdEI\ Features not chosen:
L J
. ®
S e .. * Irrelevant (no useful information)
@ 1 e O
4 @
% o, .  Redundant (correlated with the
® % selected subset, do not improve

the prediction (significantly)

number of features



Data Reduction

Preprocessing — Sampling

Goals: make the data smaller, remove or introduce biases




Data Reduction

Preprocessing — Sampling

Wl

original: 20T 10
Sample: 2% 4@

[ =

Top sampling:
take the first N instances




Data Reduction

Preprocessing — Sampling

original: 20T 10
Sample: 46 Zﬁ

Random sampling:
take N arbitrary instances (based on random generator)




Data Reduction

Preprocessing — Sampling
‘0 |
Original: 20 € 10@
2 - _
Sample: 4 Zﬁ

Stratified sampling: ensure that relative frequencies

are maintained (e.g., take the same percentage from every group)




Data Reduction

Preprocessing — Sampling

Original:

Sample:
Over-sampling: ensure a certain distribution

(e.g. equal frequency for each group) by duplicating under-represented instances



Data Reduction

Preprocessing — Sampling

W

original: 20T 10
Sample: 10 10@
Under-sampling: ensure a certain distribution

(e.g. equal frequency for each group) by leaving out over-represented instances




Conclusion

To Conclude

Goal: increase data quality and modify the data to suit the analysis question and applied techniques

Best strategy/solution: depends on the data, context and goal of the analysis

Data quality aspects Data preprocessing
* Missing data « Transformation
* Noise/outliers * Normalization

« Semantic problems . Data reduction

Garbage in, Garbage out (GIGO)




