

Elements of Machine Learning & Data Science

Winter semester 2023/24

Evaluation of Supervised Learning (2)

Prof. Holger Hoos (partially based on material from Wil van der Aalst)

Key questions:

- How good is an ML model?
- How good could an ML model be?

You have used supervised ML to train a predictive model.

Question: How do you assess the quality of the model?

NB: So far, focus on binary classification problems.

Key concepts covered last class:

- confusion matrix
- performance measures for binary classification
- training, testing and validation sets
- k-fold cross validation
- leave-one-out cross validation (jackknife)
- bootstrap sampling validation
- imbalanced data, average class accuracy
- profit (utility) matrix

Preparation for today:

Investigate the following questions:

- How to assess predictive models for multi-class classification? (> 2 target classes, *e.g.*, on time, mildly delayed, severely delayed)

- How to assess predictive models for regression tasks? (predictions = numbers, *e.g.*, minutes of delay)

(We will use this for TPS exercises with the T part done before class.)

TPS Exercise (T part = done as homework)

Question: How to assess predictive models for <u>multi-class classification</u>? (> 2 target classes, e.g., on time, mildly delayed, severely delayed)

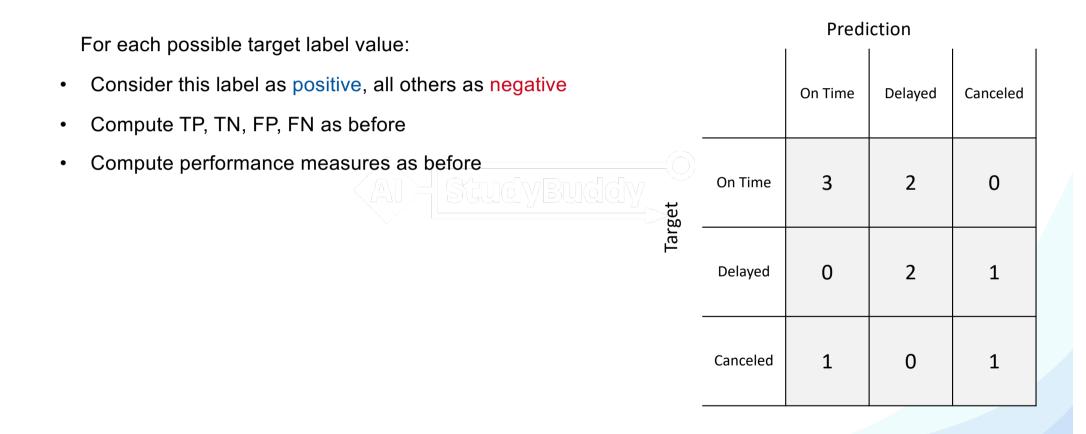
٠

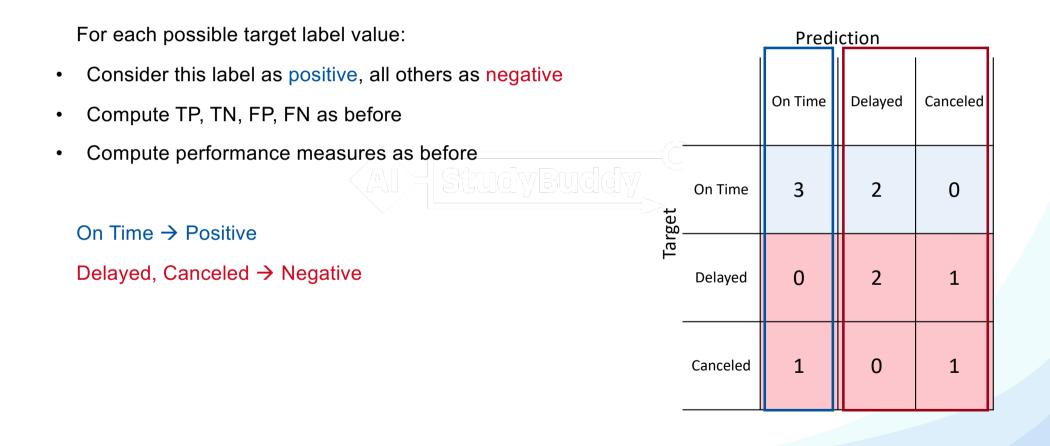
٠

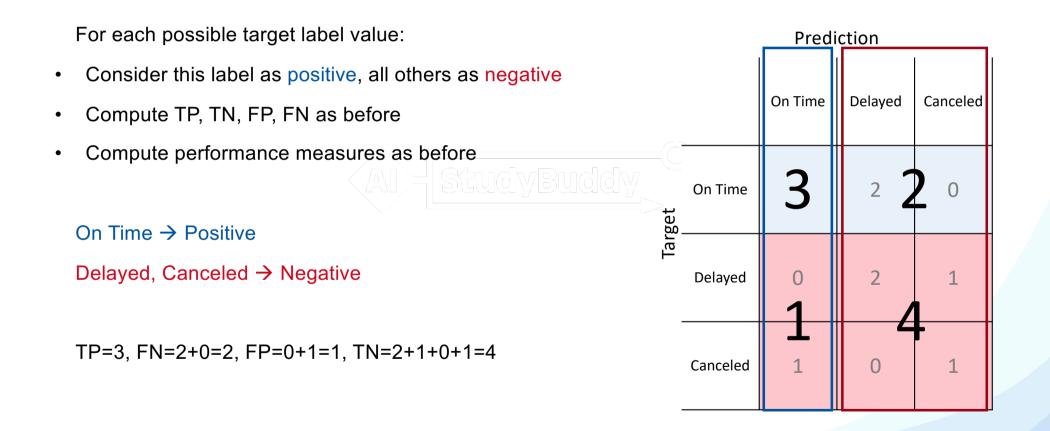
ID	Target Label	Prediction		
1	On Time	Delayed		
2	On Time	Delayed		
3	Delayed	Canceled		
4	Canceled	On Time		
5	Delayed	Delayed		
6	On Time	On Time		
7	Delayed	Delayed		
8	Canceled	Canceled		
9	On Time	On Time		
10	On Time	On Time		

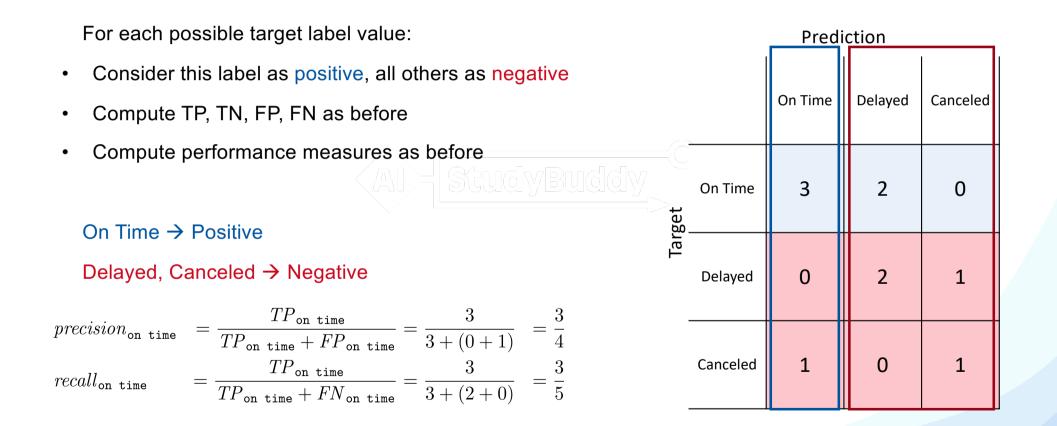
- More than two possible values for the target feature
- How to compute confusion matrix-based performance measures?

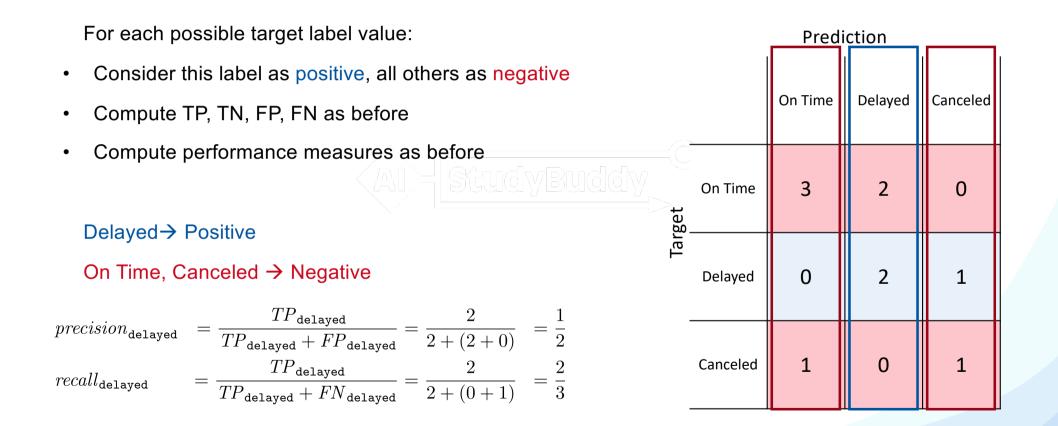
	Target				Predi	ction	
ID	Label	Prediction					
1	On Time	Delayed			On Time	Delayed	Canceled
2	On Time	Delayed					
3	Delayed	Canceled					
4	Canceled	On Time	(AI) - StudyBuddy, -	On Time	3	2	0
5	Delayed	Delayed	How to define TP, FP, TN, FN?				
6	On Time	On Time	F	Delayed	0	2	1
7	Delayed	Delayed					
8	Canceled	Canceled					
9	On Time	On Time		Canceled	1	0	1
10	On Time	On Time					

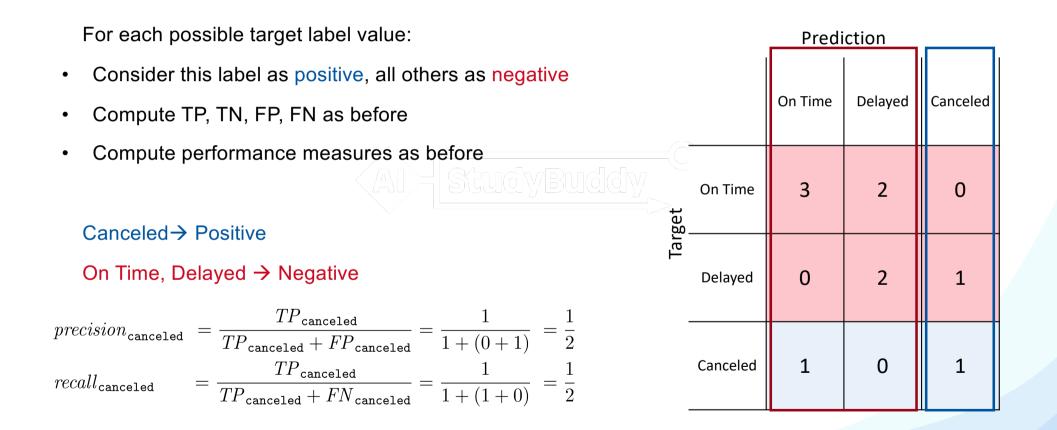


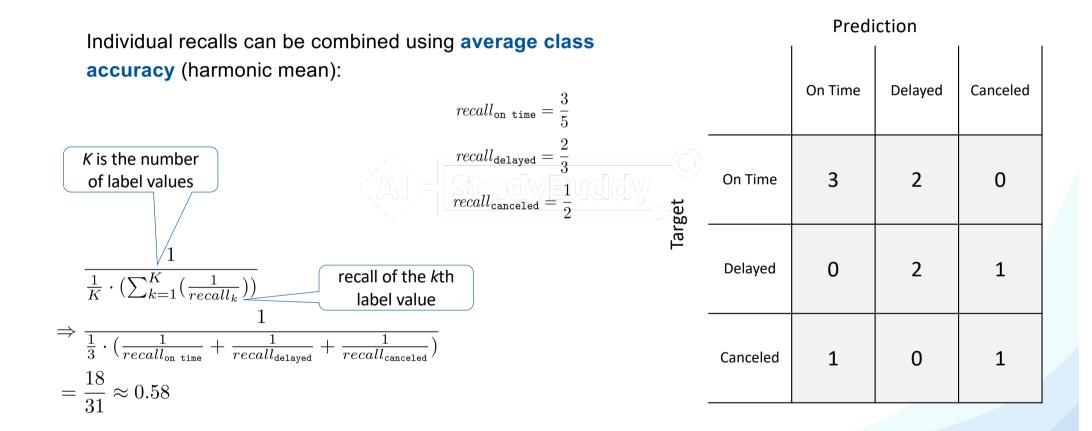












TPS Exercise (T part = done as homework)

Question: How to assess predictive models for <u>regression tasks</u>? (predictions = numbers, *e.g.*, minutes of delay)

Reminder: Error Functions

Sum of squared errors $\frac{1}{2} \sum_{i=1}^{N} ((t_i - \mathbb{M}(\mathbf{x_i}))^2)$ Mean squared error $\frac{1}{N} \sum_{i=1}^{N} ((t_i - \mathbb{M}(\mathbf{x_i}))^2)$ Root mean squared error $\sqrt{\frac{1}{N} \sum_{i=1}^{N} ((t_i - \mathbb{M}(\mathbf{x_i}))^2)}$ Mean absolute error $\frac{1}{N} \sum_{i=1}^{N} |t_i - \mathbb{M}(\mathbf{x_i})|$

For the *i*th instance, t_i is the true target value and $\mathbb{M}(\mathbf{x_i})$ is the predicted value.

Coefficient of Determination (R²)

- Compare model performance with the model that always guesses the average (baseline)
- Close to 0 → no better than guessing the average
- Close to 1 → all predictions are perfect
- Cross validation as before

 $R^2 = 1 - \frac{\text{sum of squared errors}}{\text{total sum of squares}}$

sum of squared errors = $\sum_{i=1}^{N} ((t_i - \mathbb{M}(\mathbf{x}_i))^2)$ total sum of squares = $\sum_{i=1}^{N} (t_i - \bar{t})^2$

 \overline{t} is the mean of all target values: $\frac{1}{N} \sum_{j=1}^{N} t_j$

 $R^{2} = 1 - \frac{\text{sum of squared errors}}{\text{total sum of squares}}$ sum of squared errors = $\sum_{i=1}^{N} ((t_{i} - \mathbb{M}(\mathbf{x_{i}}))^{2})$ total sum of squares = $\sum_{i=1}^{N} (t_{i} - \bar{t})^{2}$

ID	Delay [min]	Predicted Delay [min]	$t_i - \mathbb{M}(\mathbf{x_i})$	$(t_i - \mathbb{M}(\mathbf{x_i}))^2$	$t_i - \bar{t}$	$(t_i - \bar{t})^2$
1	34	15				
2	-6	-9				
3	3	2				
4	9	8				

 $R^2 = 1 - \frac{\text{sum of squared errors}}{\text{total sum of squares}}$

sum of squared errors = $\sum_{i=1}^{N} ((t_i - \mathbb{M}(\mathbf{x_i}))^2)$ total sum of squares = $\sum_{i=1}^{N} (t_i - \bar{t})^2$ (Buddy)

ID	Delay [min]	Predicted Delay [min]	$t_i - \mathbb{M}(\mathbf{x_i})$	$(t_i - \mathbb{M}(\mathbf{x_i}))^2$	$t_i - \overline{t}$	$(t_i - \bar{t})^2$
1	34	15	19	361	24	576
2	-6	-9	3	9	-16	256
3	3	2	1	1	-7	49
4	9	8	1	1	-1	1
Mean:	10		Sum:	372	Sum:	882

 $R^{2} = 1 - \frac{\text{sum of squared errors}}{\text{total sum of squares}}$ sum of squared errors = $\sum_{i=1}^{N} ((t_{i} - \mathbb{M}(\mathbf{x_{i}}))^{2}) = \frac{1}{2} \cdot 372 = 186$ total sum of squares = $\sum_{i=1}^{N} (t_{i} - \bar{t})^{2} = \frac{1}{2} \cdot 882 = 441$

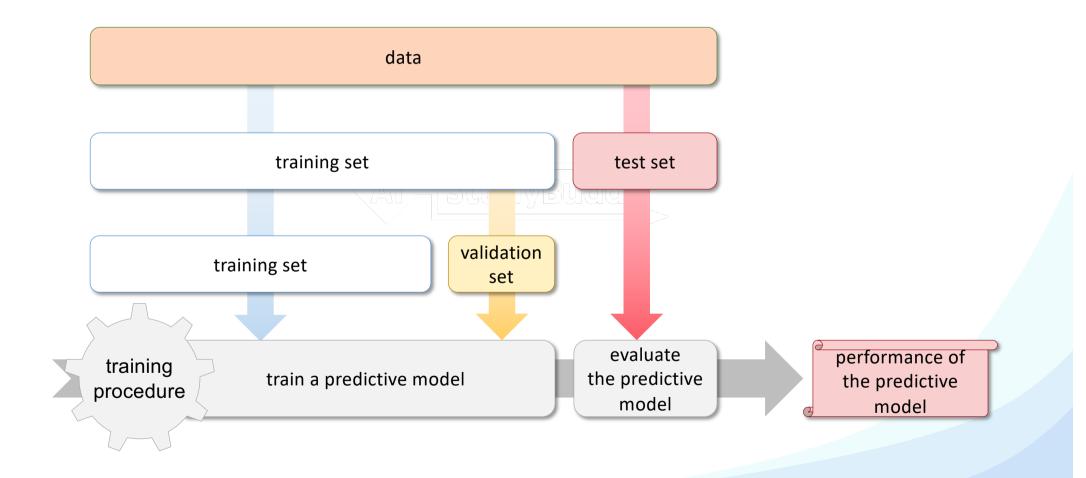
ID	Delay [min]	Predicted Delay [min]	$t_i - \mathbb{M}(\mathbf{x_i})$	$(t_i - \mathbb{M}(\mathbf{x_i}))^2$	$t_i - ar{t}$	$(t_i - \bar{t})^2$
1	34	15	19	361	24	576
2	-6	-9	3	9	-16	256
3	3	2	1	1	-7	49
4	9	8	1	1	-1	1
Mean:	10		Sum:	372	Sum:	882

$$R^{2} = 1 - \frac{\text{sum of squared errors}}{\text{total sum of squares}} = 1 - \frac{186}{441} \approx 0.42$$

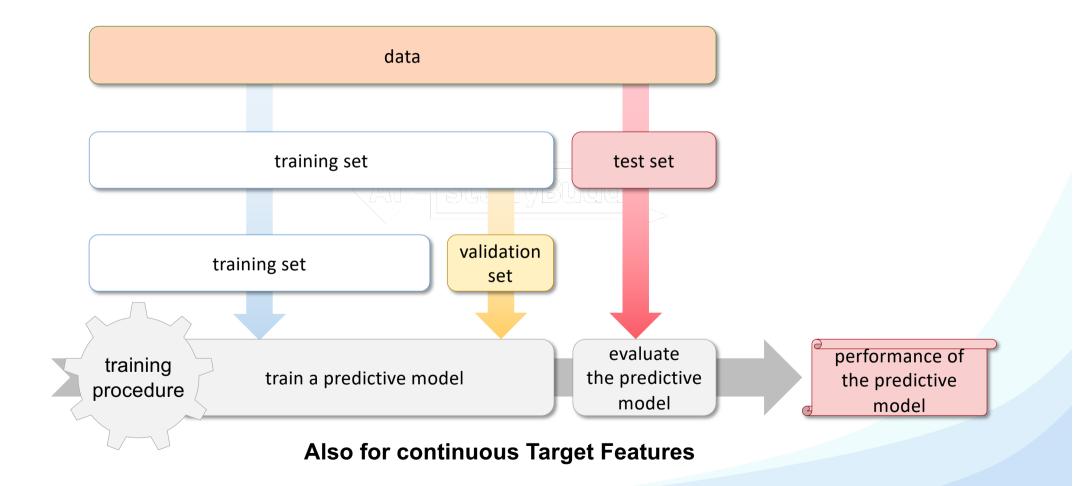
sum of squared errors = $\sum_{i=1}^{N} ((t_{i} - \mathbb{M}(\mathbf{x_{i}}))^{2}) = \frac{1}{2} \cdot 372 = 186$
total sum of squares = $\sum_{i=1}^{N} (t_{i} - \bar{t})^{2} = \frac{1}{2} \cdot 882 = 441$

ID	Delay [min]	Predicted Delay [min]	$t_i - \mathbb{M}(\mathbf{x_i})$	$(t_i - \mathbb{M}(\mathbf{x_i}))^2$	$t_i - ar{t}$	$(t_i - \bar{t})^2$
1	34	15	19	361	24	576
2	-6	-9	3	9	-16	256
3	3	2	1	1	-7	49
4	9	8	1	1	-1	1
Mean:	10		Sum:	372	Sum:	882

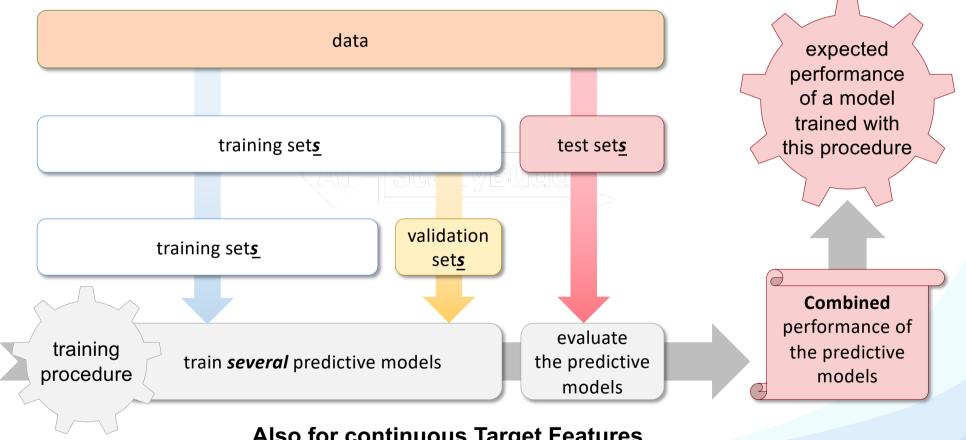
Reminder



Reminder



Reminder (2)



Also for continuous Target Features

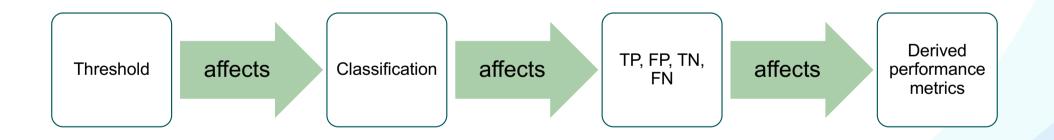
TPS Exercise

You have used supervised ML to train a predictive model for a binary classification problem. The model gives you a numerical prediction score between 0 and 1.

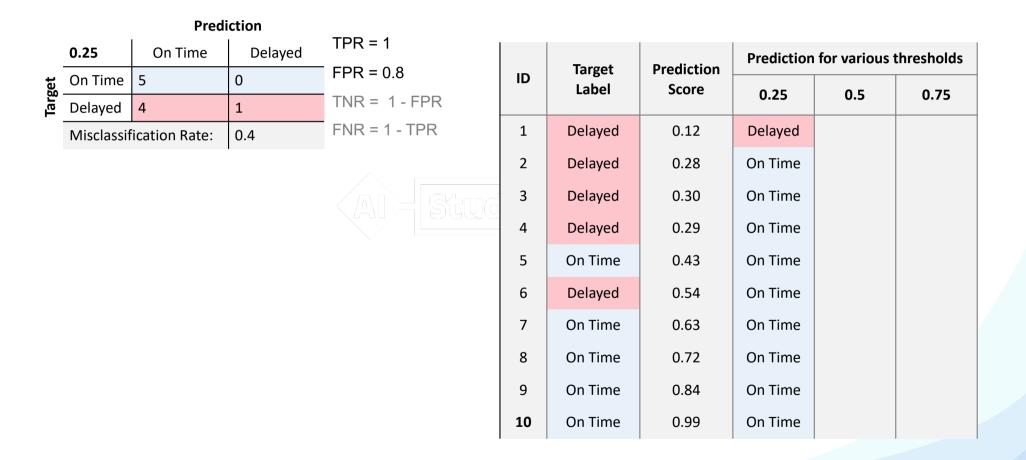
Question: How to assess the quality of the model?

Motivation

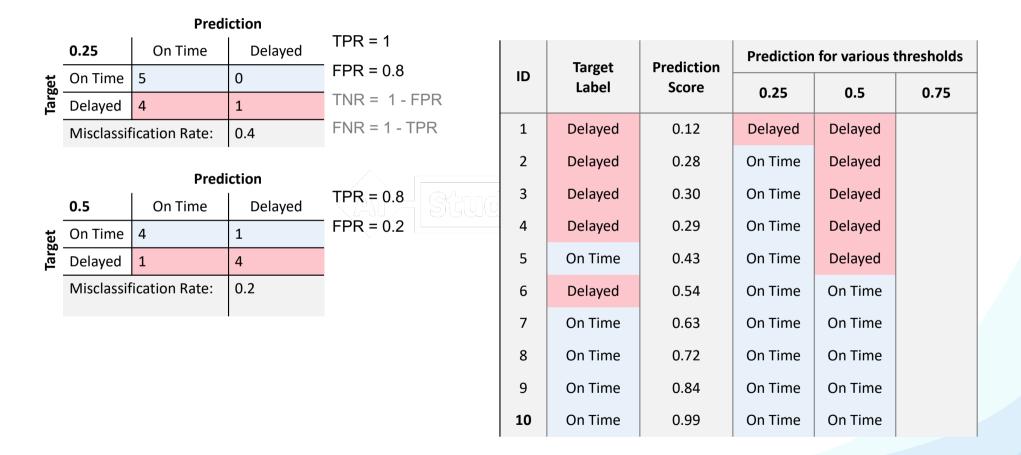
- Models often return **prediction score** representing how 'sure' they are about the target feature (e.g., logistic regression, decision trees, Bayes, NNs)
- Assume prediction score $\in [0,1]$
- Prediction score is mapped to class based on threshold
 often implicitly assume 0.5, but other values possible!



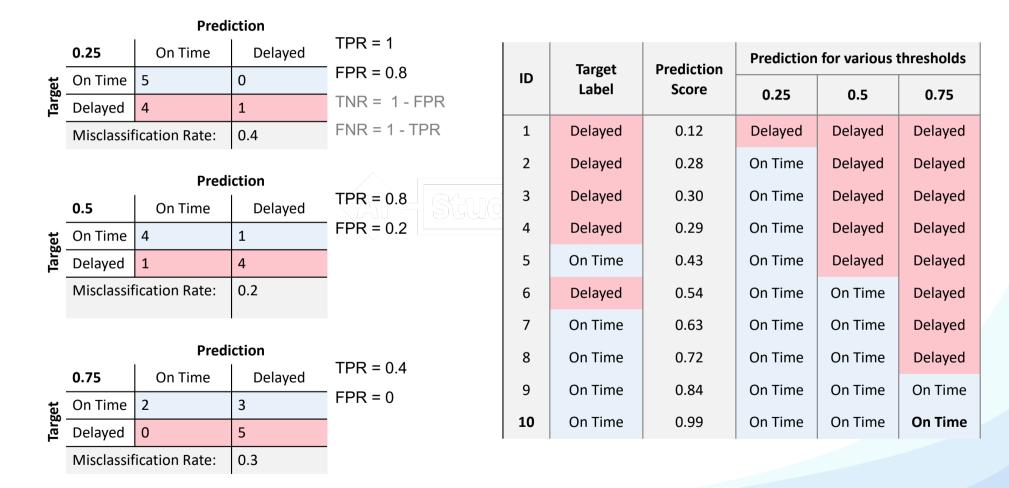
Changing the Threshold - Example



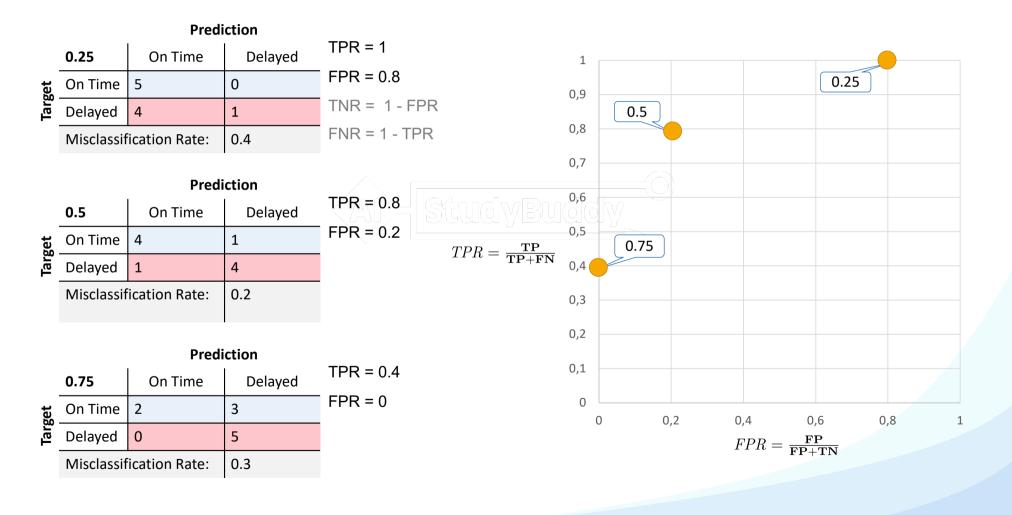
Changing the Threshold - Example



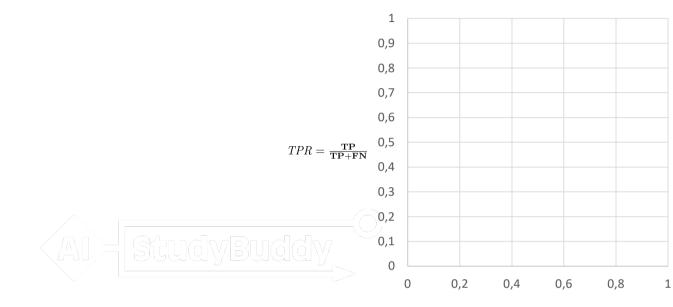
Changing the Threshold - Example



Receiver Operating Characteristic (ROC) Curve – Example



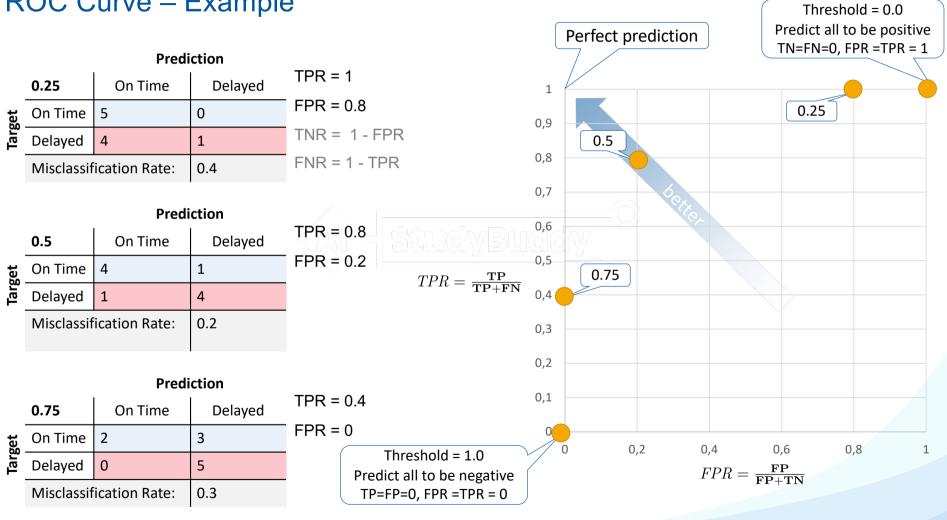
TPS Exercise



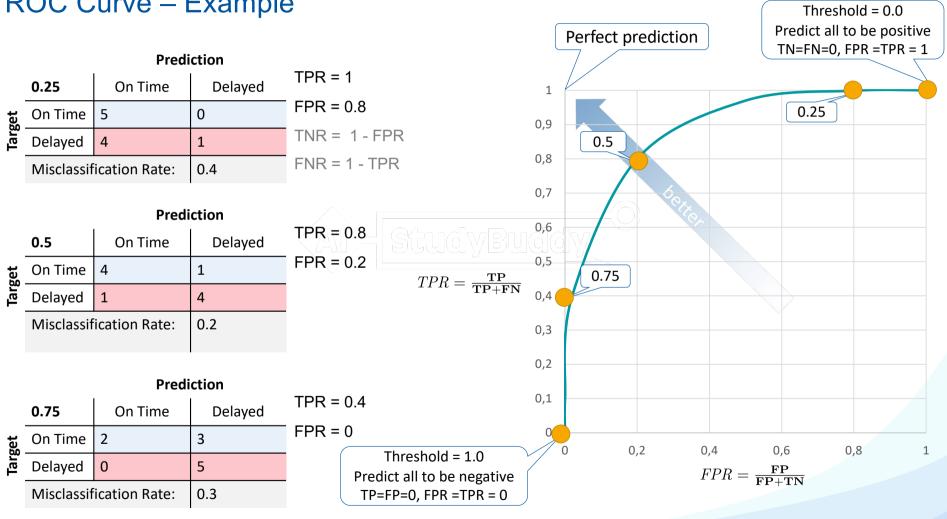
Questions:

 $FPR = \frac{FP}{FP+TN}$

What does an ideal ROC Curve look like? What about worst-case ROC Curve?



ROC Curve – Example



ROC Curve – Example

ROC Curve – Example Threshold = 0.0 Predict all to be positive Perfect prediction TN=FN=0, FPR =TPR = 1 Threshold controls trade-off between 1 • 0.25 accuracy for positive predictions and 0,9 0.5 accuracy for negative predictions 0,8 ROC curve captures this trade-off ٠ 0,7 Focus on positive (TPR, FPR) by convention 0,6 ٠ 0,5 $TPR = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{FN}}$ 0.75 0,4 0,3 0,2 0,1 0 0,2 0,4 0,6 0,8 0 Threshold = 1.0 $FPR = \frac{\mathbf{FP}}{\mathbf{FP} + \mathbf{TN}}$ Predict all to be negative TP=FP=0, FPR=TPR=0

ROC Curve – Beating Random Guessing

Data set with *N* instances:

Fraction of *q* positive instances, fraction of *1-q* negative instances

Prediction Model:

Guess positive with probability **p** and negative with probability **1**-**p**

ROC Curve – Beating Random Guessing

Data set with *N* instances:

Fraction of *q* instances is positive, fraction of *1-q* instances is negative

Prediction Model:

Guess positive with probability **p** and negative with probability **1**-**p**

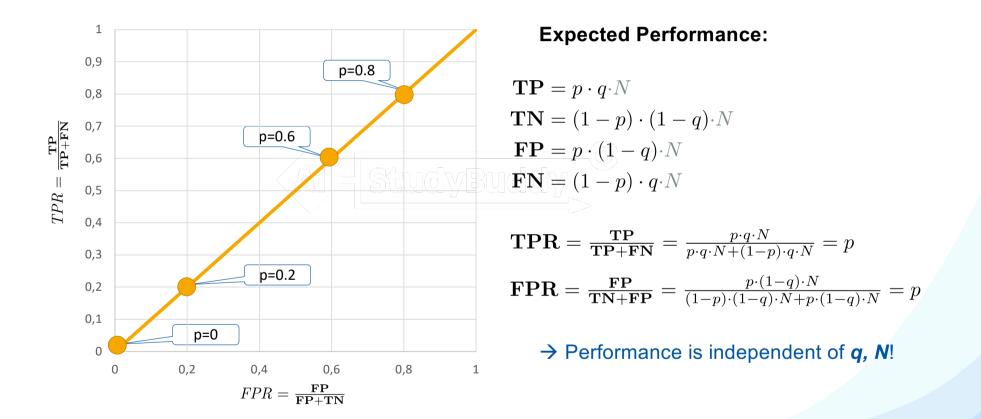
Expected Performance:

$$\mathbf{TP} = p \cdot q \cdot N$$
$$\mathbf{TN} = (1-p) \cdot (1-q) \cdot N$$
$$\mathbf{FP} = p \cdot (1-q) \cdot N$$
$$\mathbf{FN} = (1-p) \cdot q \cdot N$$

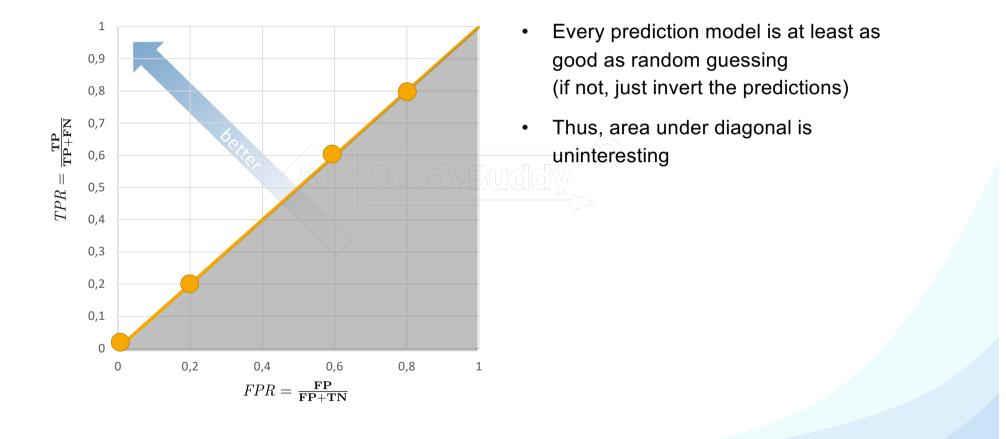
$$\mathbf{TPR} = \frac{\mathbf{TP}}{\mathbf{TP} + \mathbf{FN}} = \frac{p \cdot q \cdot N}{p \cdot q \cdot N + (1-p) \cdot q \cdot N} = p$$
$$\mathbf{FPR} = \frac{\mathbf{FP}}{\mathbf{TN} + \mathbf{FP}} = \frac{p \cdot (1-q) \cdot N}{(1-p) \cdot (1-q) \cdot N + p \cdot (1-q) \cdot N} = p$$

 \rightarrow Performance is independent of q, N!

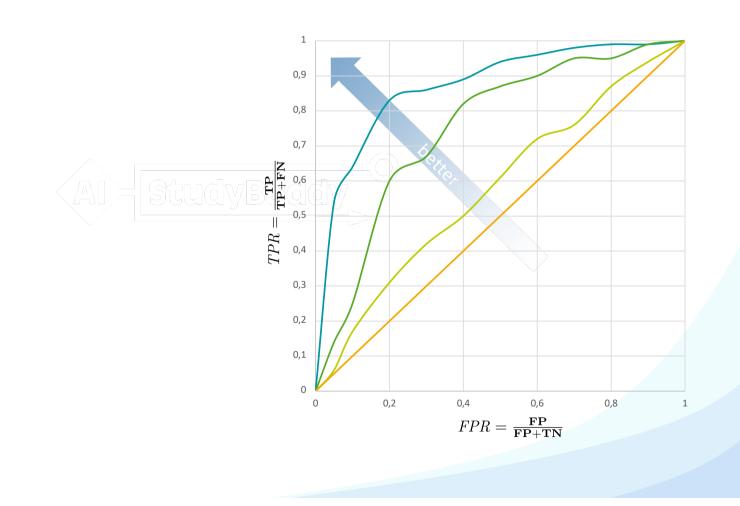
ROC Curve – Beating Random Guessing



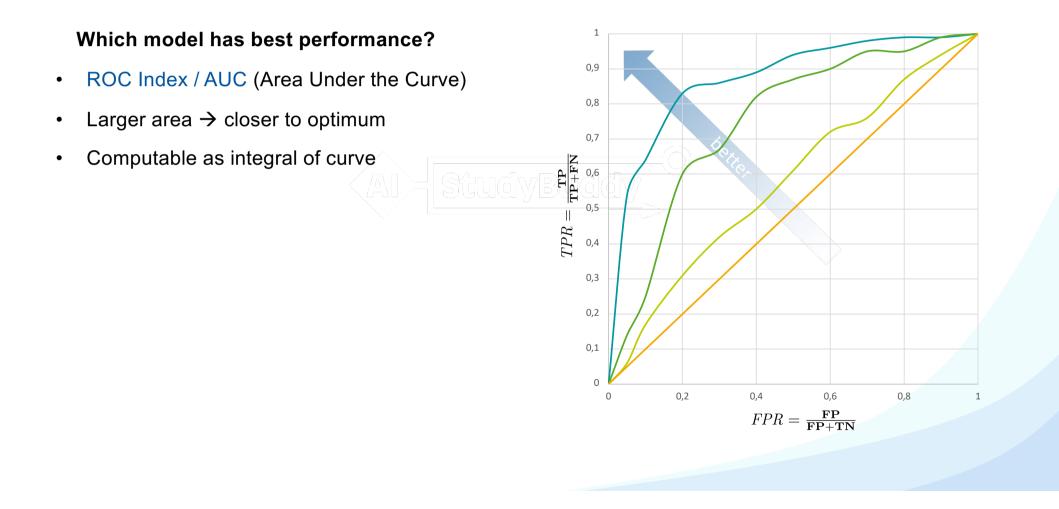
ROC Curve – Beating Random Guessing



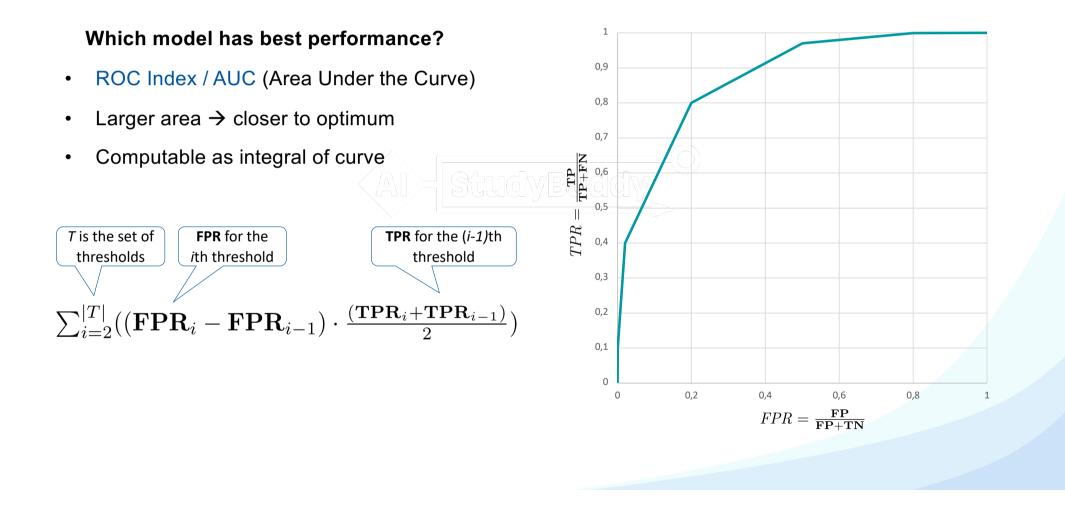
Example ROC Curves



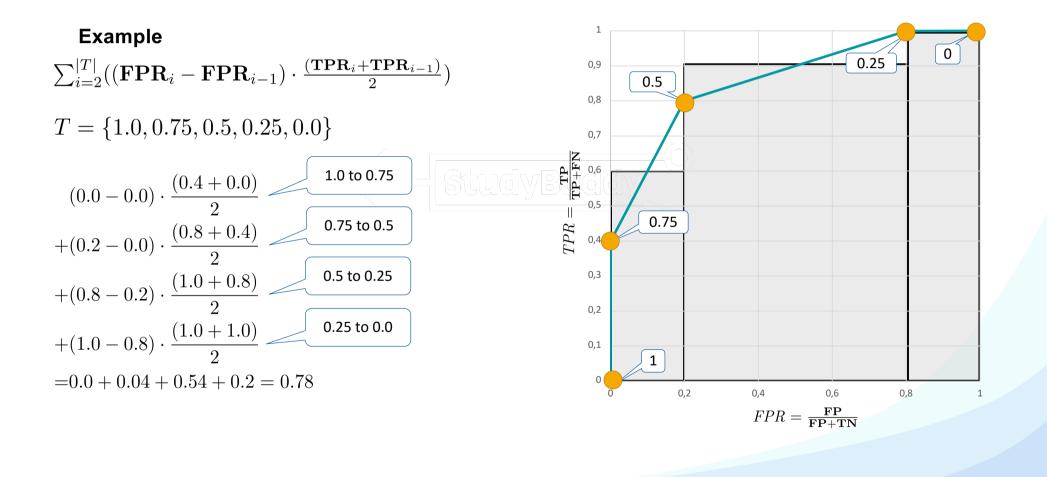
ROC Index / AUC (Area Under the Curve)



ROC Index / AUC (Area Under the Curve)



ROC Index / AUC (Area Under the Curve)



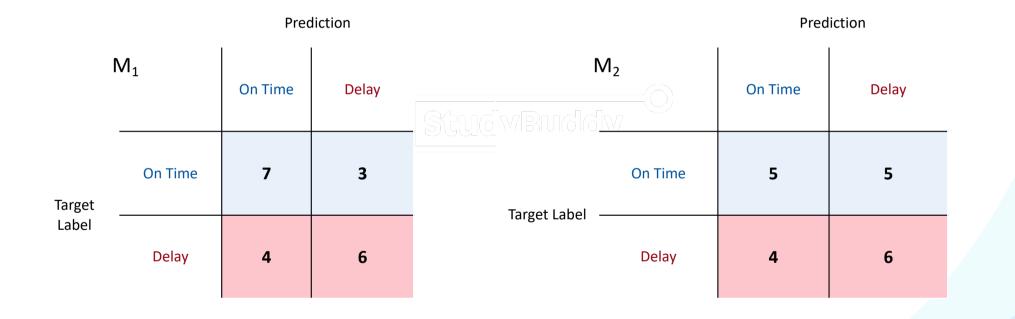
TPS Exercise

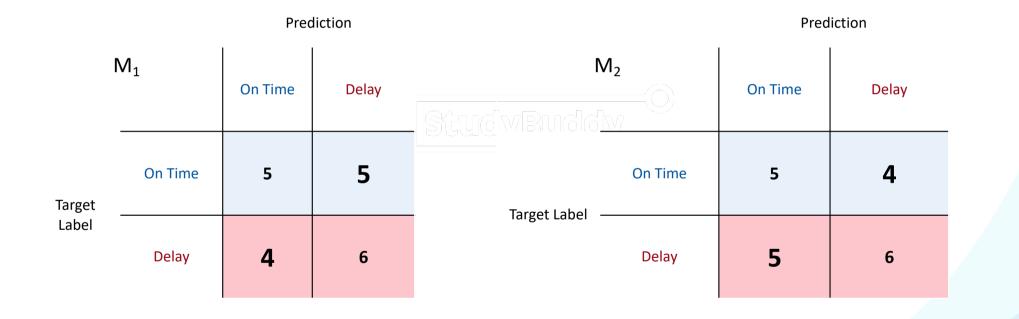
You are <u>comparing two predictive models</u> (e.g., obtained from two different supervised learning methods).

Question:

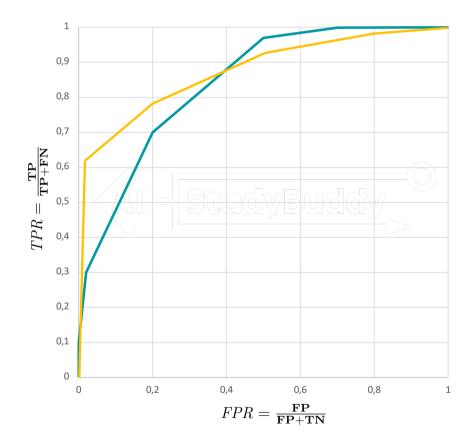
1) How to assess performance differences?

2) What could go wrong?

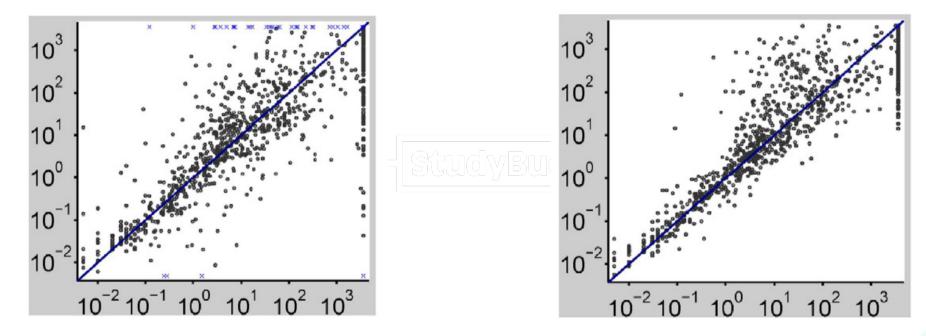




M₁ M₂



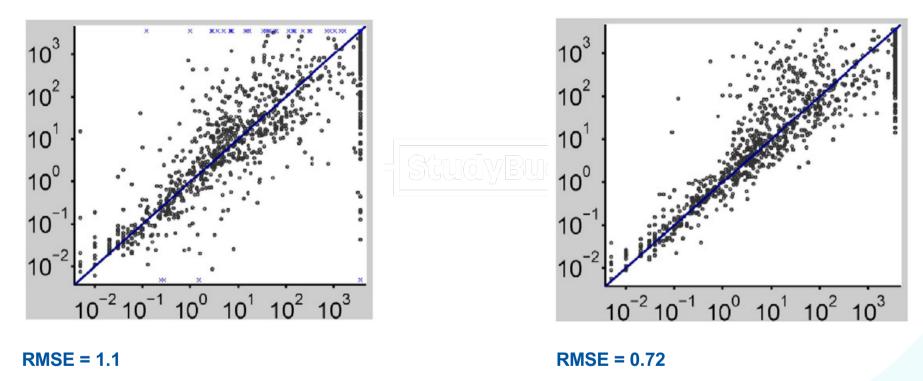
M₁ (Neural Network)



(Source: F. Hutter, L. Xu, H. Hoos, Kevin Leyton-Brown: Algorithm runtime prediction: Methods & evaluation, Artificial Intelligence 206 (2014) 79–111)

M₂ (Random Forest)

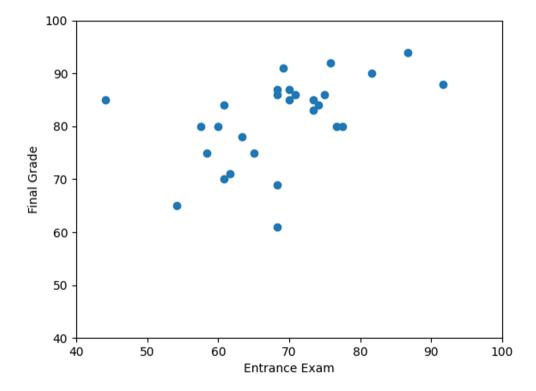
M₁ (Neural Network)



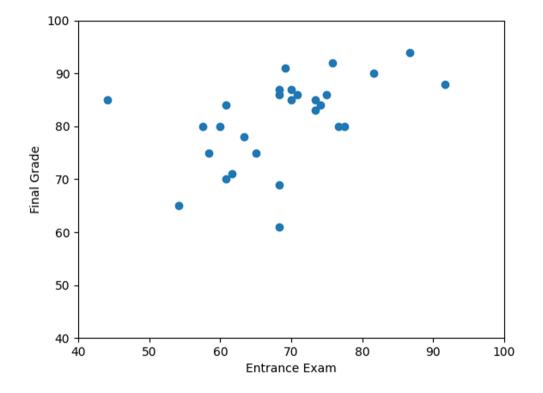
M₂ (Random Forest)

(Source: F. Hutter, L. Xu, H. Hoos, Kevin Leyton-Brown: Algorithm runtime prediction: Methods & evaluation, Artificial Intelligence 206 (2014) 79–111)

Assessing performance correlation

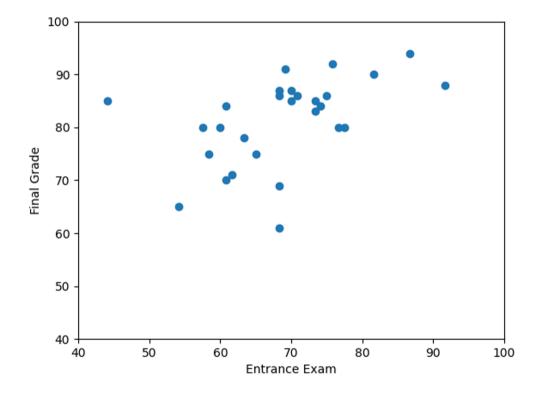


Assessing performance correlation



Pearson correlation coefficient = 0.41 (barely moderate association)

Assessing performance correlation



Pearson correlation coefficient = 0.41 (barely moderate association) Spearman rank correlation coefficient = 0.58 (borderline strong association)

Pearson correlation coefficient:

- measures linear relationship between two sets of data
- both sets of data follow normal distribution (no outliers)

Pearson correlation coefficient:

- measures linear relationship between two sets of data
- both sets of data follow normal distribution (no outliers)

Spearman rank correlation coefficient:

- sort the data and assign ranks (1, 2, ...) = rank transformation
- compute Pearson CC Spearman CC
- assumes monotonic relationship between two sets of data
- does not require normality assumption (non-parametric)

M₁: accuracy from *k*-fold cross-validation = 0.712

M₂: accuracy from k-fold cross-validation = 0.721

- M₁: accuracy from *k*-fold cross-validation = 0.712
- M₂: accuracy from k-fold cross-validation = 0.721
- ➡ performance differences may be due to random effects
- assess statistical significance using statistical hypothesis testing

Quick refresher on statistical hypothesis testing

- H₀: null-hypothesis, typically a statement of no significant effect here: no significant performance difference between M₁, M₂
- α : significance threshold = max. probability of incorrectly rejecting H₀ (incorrectly claiming significant differences = false positive = type I error)
- NB: false negatives can also occur = failure to reject correct H₀ = type II error = incorrectly claiming 'equal' performance (determined by power of the test)

p-value : (estimate) of the probability of committing a type I error

 $p < \alpha \Rightarrow reject H_0$

➡ NB: tests rely on assumptions to work correctly

Testing for significance of performance differences

- consider performance values (e.g., accuracy) over folds (= empirical distribution) for $M_{1,} M_{2}$
 - $\rightarrow (m_{1,1}, m_{1,2}, \dots m_{1,k}),$ $(m_{2,1}, m_{2,2}, \dots m_{2,k}),$

consider pairs (m_{1,i}, m_{2,i}) for each fold
 (NB: these correspond to the points in a scatter plot, one point per fold)

- use a <u>paired *t*-test</u> to assess statistical significance of performance differences between $M_{1,} M_2$ on the given test set based on the given fold, using standard significance level $\alpha = 0.05$ **Caution:** paired *t*-test requires normality assumption!

How can we know whether performance data over folds follows a normal distribution?

What to do if it doesn't?

Caution: paired *t*-test requires normality assumption!

How can we know whether performance data over folds follows a normal distribution?

check <u>QQ plot</u> or use normality test (e.g., <u>Shapiro-Wilk</u>)

What to do if it doesn't?

➡ use a non-parametric test, e.g., <u>Wilcoxon Signed-Ranks Test</u>

Comparing two predictive models

- assess performance of each model individually
- analyse performance correlation
 - classification: overlap/differences in FP, FN, misclassifications
 - regression: scatter plot, correlation coefficient
- use appropriate statistical tests of will build

Don't...

- limit analysis to single performance metric
- limit correlation to single number
 (in particular: standard = Pearson correlation coefficient)

TPS Exercise

You are using a <u>randomised</u> supervised ML procedure to train a predictive model.

Questions:

1) How to assess the training procedure?

2) What could go wrong?

Evaluating randomised supervised ML procedures

- perform *p* independent runs ($p \ge 2$)
 - $\rightarrow p$ models
- assess & compare performance of all p models
- inspect / analyse distribution of performance metrics, multiple performance metrics

Don't...

- just aggregate performance over all p models
- limit analysis to single performance metric
- report only the best result! (No cherry picking!)

TPS Exercise

You have trained a predictive model using supervised ML, you've carefully assessed its performance and deployed it in practice.

Questions:

What could happen to invalidate earlier performance assessment?

TPS Exercise

You have trained a predictive model using supervised ML, you've carefully assessed its performance and deployed it in practice.

Questions:

What could happen to invalidate earlier performance assessment?

Performance degradation due to <u>concept drift</u> (violation of supervised learning assumption)

Key concepts covered today:

- performance measures for multi-class classification (multinomial prediction targets)
- performance measures for regression models (numerical prediction targets)
- ROC curves, AUC
- randomness in the training procedure
- comparative performance analysis
- Spearman's rank correlation coefficient
- statistical significance tests

Learning Goals

At the end of this module, students should be able to

- assess the quality of a model obtained from a supervised machine learning method using widely accepted methods, including standard performance metrics, confusion matrices, ROC curves
- demonstrate understanding and working knowledge of the problems that can occur when using supervised learning procedures and the models obtained from them
- explain when and why it is important to distinguish between training, validation and testing data
- explain standard validation techniques, including *k*-fold and leave-one-out cross-validation
- assess performance differences using appropriate statistical techniques
- explain the problems that can arise from unbalanced data sets and demonstrate understanding as well as working knowledge of methods for addressing these problems