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Machine Learning Topics

1. Introduction to ML

2. Probability Density Estimation

3. Linear Discriminants

4. Linear Regression

5. Logistic Regression

6. Support Vector Machines

7. AdaBoost

8. Neural Network Basics

Linear Regression 

Functions

Overfitting

Regularization Ridge Regression
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Recap: Least-Squares Regression

• We want to optimize the difference between our 

predictor                and the targets    .

• The only difference is that our targets     are now 

continuous values.

• Again, use the familiar squared error objective:

• This has the same solution as for classification 

(normal equations).
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Recap: Overfitting

• We fit the dataset perfectly, but the resulting 

function is clearly not what we want.

• This phenomenon is called overfitting.

• Remember: we assume                           .

• Our model is “too” powerful and models the 

noise instead of the underlying function!

• What can we do to avoid overfitting?

Least-Squares Regression

Degree of 
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Recap: Regularization

• With enough parameters, our model will

overfit to the training set.

• This leads to very large coefficient 

values      and thus to a large       .

• Solution: penalize large parameters.

• is called the loss term. Here, we 

can use the familiar squared loss.

• is called the regularizer. Here, we 

use a squared regularizer. Degree of 

Fitting a polynomial to            datapoints
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Linear Regression

1. Motivation

2. Least-Squares Regression

3. Regularization

4. Ridge Regression
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Ridge Regression

• We want to jointly minimize the squared 

error and the regularization term:

• This model is called ridge regression.
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Derivation

Ridge Regression

Effect of regularization: keeps 

the inverse well-conditioned.
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Machine Learning Topics

1. Introduction to ML

2. Probability Density Estimation

3. Linear Discriminants

4. Linear Regression

5. Logistic Regression

6. Support Vector Machines

7. AdaBoost

8. Neural Network Basics

Parameter EfficiencyLogistic Regression 

Formulation

Cross-Entropy Error Iterative Optimization
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Logistic Regression

1. Logistic Regression Formulation

2. Motivation and Background

3. Iterative Optimization

4. First-Order Gradient Descent

5. Second-Order Gradient Descent

6. Error Function Analysis
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Motivation

• We have seen how to build probabilistic classifiers

using Bayes’ Theorem:

• We have directly modeled the decision boundary 

with linear discriminants:

• In the following, we will combine those two ideas

• We will model the posterior              

• But we will do that using a linear discriminant function 

• The resulting model will be called logistic regression.
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Reminder: Probabilistic Classification

• Remember what we did in probabilistic classification

• We modeled the likelihood of each class

• We scaled the likelihoods with the priors

• We normalized to compute the posterior
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• Let’s now start with the posterior and rewrite it

• This is the equation for the logistic sigmoid function

 If we set 

the logistic sigmoid expresses a posterior probability!

Probabilistic Classification
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Properties of the Logistic Sigmoid

• Definition:

• Inverse (also known as logit function):

• Symmetry:

• Derivative:

Probabilistic Classification
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Logistic Regression

• We now define the logistic regression model

• For the start, let us assume two classes            .

• We model the class posteriors               as

• I.e., we define a linear discriminant model 

that is meant to represent the class posterior with

the help of a logistic sigmoid activation function         .

• Our target labels are now                   .

Logistic sigmoid

activation function:
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Error Function

• Consider a data set

• with data points

• And target labels

• Maximum likelihood approach

• With                            

• We model the probability of the target labels     

given our model parameters      as

Logistic Regression

Trick: use      as an 

indicator variable
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• Maximum likelihood approach

• Define the error function as the negative log-likelihood

• This function is known as the binary cross-entropy error.

Logistic Regression  |  Error Function
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Softmax Regression

• Multi-class extension of logistic regression

• Generalization to      classes with target labels in 1-of- notation 

• Again, we define a linear discriminant function that models the class posteriors

• This makes use of the softmax function as a multi-class extension of the logistic sigmoid
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• We can write the binary cross-entropy error as

• Using one-hot labels     , the generalization to    classes is:

• This function is known as the multi-class cross-entropy error 

or softmax cross-entropy error.

Softmax Regression  |  Error Function

indicator function
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Logistic Regression

1. Logistic Regression Formulation

2. Motivation and Background

3. Iterative Optimization

4. First-Order Gradient Descent

5. Second-Order Gradient Descent

6. Error Function Analysis
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Motivation: Why Logistic Regression?

• Logistic Regression uses models of the form

• Interpretation

• We model the class posteriors              , as required to make Bayes optimal decisions.

• We have seen previously that we can obtain                                           .

• However, here we model               as a linear discriminant function                              instead.

• Why should we do this?

• What advantage does such a model have compared to direct modeling of the probabilities?
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Example

Motivation: Why Logistic Regression? 

Let’s assume the                 are modeled using Gaussians with equal covariances.
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Example

Motivation: Why Logistic Regression? 

Let’s assume the                 are modeled using Gaussians with equal covariances.
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Example

Motivation: Why Logistic Regression? 

Let’s assume the                 are modeled using Gaussians with equal covariances.

 The decision boundary between them will be linear!
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Parameter Efficiency

• #Parameters needed for generative models:

• Assuming an    -dimensional feature space

• Prior

• Means

• Covariances

 Total

• #Parameters needed for logistic regression:

• Weights

Motivation: Why Logistic Regression? 

 For large     , logistic  regression has clear advantages!
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Advantages Limitations

• Nice probabilistic interpretation, directly 

represents the posterior.

• Requires fewer parameters than modeling 

the likelihood + prior.

• Cross-Entropy error is convex: unique 

minimum exists.

• More robust than least-squares.

• No closed-form solution, requires iterative 

optimization approach.

Discussion: Logistic Regression

Motivation: Why Logistic Regression?
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Logistic Regression

1. Logistic Regression Formulation

2. Motivation and Background

3. Iterative Optimization

4. First-Order Gradient Descent

5. Second-Order Gradient Descent

6. Error Function Analysis
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Iterative Optimization

• In general, generalized linear discriminants 

with nonlinear activation and/or basis functions

can no longer be optimized in closed form.

• Instead, we use iterative optimization schemes.

• Here: Gradient Descent.

• Start with initial guess for parameter values.

• Move towards a minimum of the error function

by following the direction of steepest descent.

• Iterate until convergence
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Idea: Gradient Descent

• Start with an initial guess of parameter values        .

Iterative Optimization
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Idea: Gradient Descent

• Start with an initial guess of parameter values        .

• Follow the gradient to move to a (local) minimum:

• is called the learning rate.

• This corresponds to a 1st-order Taylor expansion.

• I.e., we approximate the error function by its

tangent plane around the current point         .

• Repeat this procedure for a number of steps.

Iterative Optimization



33

Idea: Gradient Descent

• Start with an initial guess of parameter values        .

• Follow the gradient to move to a (local) minimum:

• is called the learning rate.

• This corresponds to a 1st-order Taylor expansion.

• I.e., we approximate the error function by its

tangent plane around the current point         .
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Idea: Gradient Descent

• Start with an initial guess of parameter values        .

• Follow the gradient to move to a (local) minimum:

• is called the learning rate.

• This corresponds to a 1st-order Taylor expansion.

• I.e., we approximate the error function by its

tangent plane around the current point         .

• Repeat this procedure for a number of steps.

Iterative Optimization
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Idea: Gradient Descent

• Start with an initial guess of parameter values        .

• Follow the gradient to move to a (local) minimum:

• is called the learning rate.

• This corresponds to a 1st-order Taylor expansion.

• I.e., we approximate the error function by its

tangent plane around the current point         .

• Repeat this procedure for a number of steps.

Iterative Optimization

Eventually, it reaches 

the local optimum.
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Advantages Limitations

• Simple approach for iterative optimization.

• Approximates the error function by its 

tangent plane around the current point in 

order to find the direction of steepest 

descent.

• Local optimization. Unless the error function 

is convex, will only converge to a local 

optimum.

• Relatively slow convergence (can be 

improved by second-order approaches).

• In practice, finding a good step size 

(learning rate) is important for fast 

convergence.

Discussion: Gradient Descent

Iterative Optimization
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Logistic Regression

1. Logistic Regression Formulation

2. Motivation and Background

3. Iterative Optimization

4. First-Order Gradient Descent

5. Second-Order Gradient Descent

6. Error Function Analysis
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First-order Optimization

• Logistic regression uses the binary cross-entropy error:

• Properties

• Convex function, so it has a unique minimum

• But no closed-form solution

• We need to use iterative methods for optimization

• Let’s try (first-order) gradient descent:
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Gradient of the Cross-Entropy Error

First-Order Optimization
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• The gradient for logistic regression is

• We can plug this into gradient descent:

• This update rule is known as the Delta rule (= LMS rule)

• Simply feed back the input data points, weighted by the classification error.

First-Order Optimization  |  Gradient of the Cross-Entropy Error

How should we choose 

the learning rate?
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Effects of the learning rate

First-Order Optimization

too small

Convergence is slow

too large

Might not converge
Converges ideally in 

a single step
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Example: Logistic Regression with Gradient Descent

First-Order Optimization
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First-Order Optimization  |  Example: Logistic Regression with Gradient Descent
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First-Order Optimization  |  Example: Logistic Regression with Gradient Descent
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First-Order Optimization  |  Example: Logistic Regression with Gradient Descent
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First-Order Optimization  |  Example: Logistic Regression with Gradient Descent
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First-Order Optimization  |  Example: Logistic Regression with Gradient Descent
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First-Order Optimization  |  Example: Logistic Regression with Gradient Descent
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First-Order Optimization  |  Example: Logistic Regression with Gradient Descent
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Advantages Limitations

• Simple iterative optimization scheme with a 

familiar update rule (Delta rule).

• Slow convergence

• Need to choose a suitable learning rate.

Discussion: Logistic Regression with Gradient Descent

First-Order Optimization
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Logistic Regression

1. Logistic Regression Formulation

2. Motivation and Background

3. Iterative Optimization

4. First-Order Gradient Descent

5. Second-Order Gradient Descent

6. Error Function Analysis
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Second-Order Optimization

• So far, we have optimized the cross-entropy 

error with gradient descent:

• This is a first-order approximation, and it heavily 

depends on the learning rate   .

• Instead, we can apply a second-order 

optimization scheme that converges faster and 

is independent of the learning rate.
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Newton-Raphson Gradient Descent

• Second-order Newton-Raphson update scheme:

• Here,                            is the Hessian matrix, i.e., the matrix of second derivatives:

• Properties

• Local quadratic approximation

• Much faster convergence by taking into account the curvature of the error function.

Second-Order Optimization
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Intuition

Second-Order Optimization

First-Order Second-Order
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Intuition

Second-Order Optimization

First-Order Second-Order
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Intuition

Second-Order Optimization

First-Order Second-Order
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Intuition

Second-Order Optimization

First-Order Second-Order
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Intuition

Second-Order Optimization

First-Order Second-Order

First-Order needs 

another 16 steps…
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Newton-Raphson for Least-Squares

• First, we apply it to least-squares:

• Resulting update scheme (normal equations):

Second-Order Optimization  |  Newton-Raphson Gradient Descent

This is the closed-form solution 

of the least-squares objective!



63

Newton-Raphson for the Cross-Entropy Error

• Now, let’s try Newton-Raphson on the cross-entropy error function:

• where                      is an diagonal matrix with                                .

• The Hessian now depends on     through the weighting matrix    .

Second-Order Optimization  |  Newton-Raphson Gradient Descent
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Iteratively Reweighted Least Squares (IRLS)

• Update equations:

• Very similar form (normal equations).

• But now with non-constant weighting matrix     (depends on    ).

• Need to apply normal equations iteratively.

• This is called Iteratively Reweighted Least-Squares (IRLS).

Second-Order Optimization  |  Newton-Raphson Gradient Descent

with
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Example: Logistic Regression with IRLS

Second-Order Optimization
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Second-Order Optimization  |  Example: Logistic Regression with IRLS

Zero training error 

with a single step!
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Second-Order Optimization  |  Example: Logistic Regression with IRLS
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Second-Order Optimization  |  Example: Logistic Regression with IRLS
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Second-Order Optimization  |  Example: Logistic Regression with IRLS
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Advantages Limitations

• Faster convergence than first-order methods • Second-order approach, relies on computing 

second derivatives.

• Computing (and inverting) the Hessian 

matrix is expensive for problems with many 

parameters.

Discussion: Second-Order Optimization

Second-Order Optimization
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Logistic Regression

1. Logistic Regression Formulation

2. Motivation and Background

3. Iterative Estimation

4. First-Order Gradient Descent

5. Second-Order Gradient Descent

6. Error Function Analysis
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Error Function Analysis

• We have seen how to learn generalized 

linear discriminant models by optimizing 

an error function.

• We observed problems with least-

squares classification based on the

squared error function.

• We have seen that logistic regression

behaves more robustly.

• Let’s analyze the cross-entropy error in 

more detail…
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Error Contribution Plot

Error Function Analysis

Correct classificationIncorrect classification

Less

confident

More

confident

Less

confident

More

confident
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Ideal Misclassification Error

Error Function Analysis

Counts # of 

misclassifications

Ideal misclassification Error
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Squared Error

Error Function Analysis

Penalizes “too correct” 

datapoints

Leads to closed-form 

solution (good)!
Sensitive to outliers

Squared Error

Ideal misclassification Error
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Squared Error on Tanh

Error Function Analysis

No penalty for 

“too correct” 

datapoints

Zero gradient!

Squared Error

Squared Error on tanh

Ideal misclassification Error
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Cross-Entropy Error

Error Function Analysis

No penalty for 

“too correct” 

datapoints

Robust to outliers

Squared Error

Squared Error on tanh

Ideal misclassification Error

Cross-Entropy Error
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Advantages Limitations

• Minimizer of this error corresponds to 

class posteriors

• Convex function, unique minimum exists

• Robust to outliers

• No closed-form solution, requires iterative 

estimation

Discussion: Cross-Entropy Error

Error Function Analysis
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References and Further Reading

• More information about Logistic Regression is available in Chapter 4.3

of Bishop’s book.

Christopher M. Bishop

Pattern Recognition and Machine Learning

Springer, 2006
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