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Machine Learning Topics

1. Introduction to ML

2. Probability Density Estimation

3. Linear Discriminants

4. Linear Regression

5. Logistic Regression

6. Support Vector Machines

7. AdaBoost

8. Neural Network Basics

Parameter EfficiencyLogistic Regression 

Formulation

Cross-Entropy Error Iterative Optimization
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Logistic Regression

1. Logistic Regression Formulation

2. Motivation and Background

3. Iterative Optimization

4. First-Order Gradient Descent

5. Second-Order Gradient Descent

6. Error Function Analysis
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Recap: Iterative Optimization

• In general, generalized linear discriminants 

with nonlinear activation and/or basis functions

can no longer be optimized in closed form.

• Instead, we use iterative optimization schemes.

• Here: Gradient Descent.

• Start with initial guess for parameter values.

• Move towards a minimum of the error function

by following the direction of steepest descent.

• Iterate until convergence
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Idea: Gradient Descent

• Start with an initial guess of parameter values        .

Iterative Optimization
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Idea: Gradient Descent

• Start with an initial guess of parameter values        .

• Follow the gradient to move to a (local) minimum:

• is called the learning rate.

• This corresponds to a 1st-order Taylor expansion.

• I.e., we approximate the error function by its

tangent plane around the current point         .

• Repeat this procedure for a number of steps.

Iterative Optimization
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Idea: Gradient Descent

• Start with an initial guess of parameter values        .

• Follow the gradient to move to a (local) minimum:

• is called the learning rate.

• This corresponds to a 1st-order Taylor expansion.

• I.e., we approximate the error function by its

tangent plane around the current point         .

• Repeat this procedure for a number of steps.

Iterative Optimization

Eventually, it reaches 

the local optimum.
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Logistic Regression

1. Logistic Regression Formulation

2. Motivation and Background

3. Iterative Optimization

4. First-Order Gradient Descent

5. Second-Order Gradient Descent

6. Error Function Analysis
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First-order Optimization

• Logistic regression uses the binary cross-entropy error:

• Properties

• Convex function, so it has a unique minimum

• But no closed-form solution

• We need to use iterative methods for optimization

• Let’s try (first-order) gradient descent:
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Gradient of the Cross-Entropy Error

First-Order Optimization



18

• The gradient for logistic regression is

• We can plug this into gradient descent:

• This update rule is known as the Delta rule (= LMS rule)

• Simply feed back the input data points, weighted by the classification error.

First-Order Optimization  |  Gradient of the Cross-Entropy Error

How should we choose 

the learning rate?
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Effects of the learning rate

First-Order Optimization

too small

Convergence is slow

too large

Might not converge
Converges ideally in 

a single step
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Example: Logistic Regression with Gradient Descent

First-Order Optimization
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First-Order Optimization  |  Example: Logistic Regression with Gradient Descent
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First-Order Optimization  |  Example: Logistic Regression with Gradient Descent



23

First-Order Optimization  |  Example: Logistic Regression with Gradient Descent
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First-Order Optimization  |  Example: Logistic Regression with Gradient Descent
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First-Order Optimization  |  Example: Logistic Regression with Gradient Descent
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First-Order Optimization  |  Example: Logistic Regression with Gradient Descent
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First-Order Optimization  |  Example: Logistic Regression with Gradient Descent
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Advantages Limitations

• Simple iterative optimization scheme with a 

familiar update rule (Delta rule).

• Slow convergence

• Need to choose a suitable learning rate.

Discussion: Logistic Regression with Gradient Descent

First-Order Optimization
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Logistic Regression

1. Logistic Regression Formulation

2. Motivation and Background

3. Iterative Optimization

4. First-Order Gradient Descent

5. Second-Order Gradient Descent

6. Error Function Analysis
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Second-Order Optimization

• So far, we have optimized the cross-entropy 

error with gradient descent:

• This is a first-order approximation, and it heavily 

depends on the learning rate   .

• Instead, we can apply a second-order 

optimization scheme that converges faster and 

is independent of the learning rate.
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Newton-Raphson Gradient Descent

• Second-order Newton-Raphson update scheme:

• Here,                            is the Hessian matrix, i.e., the matrix of second derivatives:

• Properties

• Local quadratic approximation

• Much faster convergence by taking into account the curvature of the error function.

Second-Order Optimization



32

Intuition

Second-Order Optimization

First-Order Second-Order
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Intuition

Second-Order Optimization

First-Order Second-Order
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Intuition

Second-Order Optimization

First-Order Second-Order
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Intuition

Second-Order Optimization

First-Order Second-Order
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Intuition

Second-Order Optimization

First-Order Second-Order

First-Order needs 

another 16 steps…
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Newton-Raphson for Least-Squares

• First, we apply it to least-squares:

• Resulting update scheme (normal equations):

Second-Order Optimization  |  Newton-Raphson Gradient Descent

This is the closed-form solution 

of the least-squares objective!
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Newton-Raphson for the Cross-Entropy Error

• Now, let’s try Newton-Raphson on the cross-entropy error function:

• where                      is an diagonal matrix with                                .

• The Hessian now depends on     through the weighting matrix    .

Second-Order Optimization  |  Newton-Raphson Gradient Descent
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Iteratively Reweighted Least Squares (IRLS)

• Update equations:

• Very similar form (normal equations).

• But now with non-constant weighting matrix     (depends on    ).

• Need to apply normal equations iteratively.

• This is called Iteratively Reweighted Least-Squares (IRLS).

Second-Order Optimization  |  Newton-Raphson Gradient Descent

with
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Example: Logistic Regression with IRLS

Second-Order Optimization
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Second-Order Optimization  |  Example: Logistic Regression with IRLS

Zero training error 

with a single step!
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Second-Order Optimization  |  Example: Logistic Regression with IRLS
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Second-Order Optimization  |  Example: Logistic Regression with IRLS
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Second-Order Optimization  |  Example: Logistic Regression with IRLS
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Advantages Limitations

• Faster convergence than first-order methods • Second-order approach, relies on computing 

second derivatives.

• Computing (and inverting) the Hessian 

matrix is expensive for problems with many 

parameters.

Discussion: Second-Order Optimization

Second-Order Optimization
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Logistic Regression

1. Logistic Regression Formulation

2. Motivation and Background

3. Iterative Estimation

4. First-Order Gradient Descent

5. Second-Order Gradient Descent

6. Error Function Analysis
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Error Function Analysis

• We have seen how to learn generalized 

linear discriminant models by optimizing 

an error function.

• We observed problems with least-

squares classification based on the

squared error function.

• We have seen that logistic regression

behaves more robustly.

• Let’s analyze the cross-entropy error in 

more detail…
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Error Contribution Plot

Error Function Analysis

Correct classificationIncorrect classification

Less

confident

More

confident

Less

confident

More

confident
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Ideal Misclassification Error

Error Function Analysis

Counts # of 

misclassifications

Ideal misclassification Error
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Squared Error

Error Function Analysis

Penalizes “too correct” 

datapoints

Leads to closed-form 

solution (good)!
Sensitive to outliers

Squared Error

Ideal misclassification Error
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Squared Error on Tanh

Error Function Analysis

No penalty for 

“too correct” 

datapoints

Zero gradient!

Squared Error

Squared Error on tanh

Ideal misclassification Error



52

Cross-Entropy Error

Error Function Analysis

No penalty for 

“too correct” 

datapoints

Robust to outliers

Squared Error

Squared Error on tanh

Ideal misclassification Error

Cross-Entropy Error
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Advantages Limitations

• Minimizer of this error corresponds to 

class posteriors

• Convex function, unique minimum exists

• Robust to outliers

• No closed-form solution, requires iterative 

estimation

Discussion: Cross-Entropy Error

Error Function Analysis
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Machine Learning Topics

1. Introduction to ML

2. Probability Density Estimation

3. Linear Discriminants

4. Linear Regression

5. Logistic Regression

6. Support Vector Machines

7. AdaBoost

8. Neural Network Basics

Maximum Margin 

Classification

Soft-Margin SVM

Primal & Dual Form

Hinge Loss
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Support Vector Machines

1. Maximum Margin Classification

2. Primal Formulation

3. Dual Formulation

4. Soft-Margin SVMs

5. Non-linear SVMs

6. Error Function Analysis
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Maximum Margin Classification

• Overfitting is often a problem with 

linearly separable data

• Which of the many possible 

decision boundaries is correct?

• All of them have zero error on the 

training set…

• However, they will perform 

differently on novel test data.

• How can we select the classifier with 

the best generalization performance?
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Maximum Margin Classification

• Intuitively, we want to choose the 

classifier which leaves maximal “safety 

room” for future data points.

• This classifier has the largest margin

between positive and negative points.

• It can be shown: The larger the margin, 

the lower the capacity for overfitting.

Margin
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Intuition

• Let’s first consider linearly separable data:

• training data points

• Binary labels

• A linear discriminant function models a hyperplane 

separating the data:

• Note that we denote the bias explicitly with   .

• Decision rule

• Decide for     if                , else for     .

Maximum Margin Classification
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Support Vector Machines

• Assuming linearly separable data, we can 

always find a hyperplane with

• In short:

• We can rescale     such that the equation 

holds exactly for the points on the margin:

• There will be at least one such point

on either side.

Maximum Margin Classification
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• We can choose     such that

• The distance between those hyperplanes 

is then the margin:

 Maximize the margin by minimizing

Maximum Margin Classification  |  Support Vector Machines
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• Optimization problem

• Find the hyperplane with maximum margin by optimizing:

• This is a quadratic programming problem with linear constraints.

Maximum Margin Classification  |  Support Vector Machines

such that

“Maximize the margin”

“such that each point 

is on the correct side 

of the margin”
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Support Vector Machines

1. Maximum Margin Classification

a) Constrained Optimization

2. Primal Formulation

3. Dual Formulation

4. Soft-Margin SVMs

5. Non-linear SVMs

6. Error Function Analysis
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Constrained Optimization

• Recall the SVM objective:

• This is a constrained optimization problem.

• We want to optimize an objective           subject to constraints         :

• We can solve such constrained optimization problems 

using the technique of  Lagrange multipliers.

such that

such that equality constraints

inequality constraints

min or max SVM
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Lagrange Multipliers

• We want to maximize

Constrained Optimization
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Lagrange Multipliers

• We want to maximize           subject to constraints                

Constrained Optimization
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Lagrange Multipliers

• We want to maximize           subject to constraints                

• We can only move along                                   , with          .

• Add the constraints to the objective by introducing auxiliary 

variables   :

• is called the Lagrangian form of the optimization 

problem, and is referred to as a Lagrange multiplier.

• Optimize    :

Constrained Optimization

The objective is maximized while 

satisfying the constraints.
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Inequality Constraints

• Now let’s use inequality constraints                .

• Optimize

• Two cases

− Solution lies on boundary:

 for some

− Solution lies inside                 :

 Constraint inactive:

• Karush-Kuhn-Tucker (KKT) conditions:

Constrained Optimization

In both cases:

All valid solutions 

need to fulfill the 

KKT conditions.
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Maximization vs. Minimization

• Note: differences for maximization vs. minimization.

• If we want to maximize subject to                 ,

we optimize the Lagrangian form

− maximize w.r.t.

− minimize w.r.t.

• If we want to minimize subject to                  ,

we optimize the Lagrangian form

− minimize w.r.t.

− maximize w.r.t.

Constrained Optimization
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Support Vector Machines

1. Maximum Margin Classification

2. Primal Formulation

3. Dual Formulation

4. Soft-Margin SVMs

5. Non-linear SVMs

6. Error Function Analysis
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Primal SVM Formulation

• Recall the SVM objective:

• We introduce positive Lagrange multipliers              and get the primal form of SVMs:

such that

KKT conditions:Necessary and sufficient conditions:
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Lagrangian Formulation

• We want to minimize the primal form:

• Setting the gradients for         to zero, we get:

Primal SVM Formulation
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• The hyperplane is computed as a linear 

combination of training examples:

• Additionally, the solution needs to fulfill

• This implies             only for those points for which

Primal SVM Formulation  |  Lagrangian Formulation

Only some data points influence the 

decision boundary!

KKT conditions:
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Intuition

• The training points with              are 

called support vectors.

• They are the points on the margin.

• This makes the SVM robust to

“too correct” points!

Primal SVM Formulation

support vectors
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• We still need to find   .

• Observation: Any support vector       satisfies

• Using            , we can derive

• In practice, it is more robust to average over all support vectors:

Primal SVM Formulation  |  Lagrangian Formulation
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Advantages Limitations

• SVMs yield a linear classifier with 

“guaranteed” generalization capability.

• Convex optimization, yields globally optimal 

solution.

• Solution depends only on a subset of the 

input data points, the support vectors.

• Automatic robustness against “too correct” 

data points.

• Need to solve quadratic programming

problem: time complexity for that is cubic in 

the number of variables.

• Here: Time complexity is in             .

• Scaling to high-dimensional data is difficult.

Primal SVM Formulation
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References and Further Reading

• More information about SVMs is available in Chapter 7.1

of Bishop’s book. 

Christopher M. Bishop

Pattern Recognition and Machine Learning

Springer, 2006
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