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Machine Learning Topics

1. Introduction to ML

2. Probability Density Estimation

3. Linear Discriminants

4. Linear Regression

5. Logistic Regression

6. Support Vector Machines

7. (AdaBoost)

8. Neural Network Basics

Maximum Margin 

Classification

Primal & Dual Form

Soft-Margin SVM Hinge Loss
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Recap: Maximum Margin Classification

• Intuitively, we want to choose the 

classifier which leaves maximal “safety 

room” for future data points.

• This classifier has the largest margin

between positive and negative points.

• We can rescale     such that the 

distance of the points on the margin to

the decision boundary is exactly 1.

• If the data is linearly separable, then

for all points, the following must hold:

Margin
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• Optimization problem

• Find the hyperplane with maximum margin by optimizing:

• This is a quadratic programming problem with linear constraints.

Maximum Margin Classification  |  Support Vector Machines

such that

“Maximize the margin”

“such that each point 

is on the correct side 

of the margin”
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Recap: Constrained Optimization with Lagrange Multipliers

• If we want to minimize subject to                  ,

we optimize the Lagrangian form

− minimize w.r.t.

− maximize w.r.t.

• I.e., we introduce an auxiliary variable      for every 

constraint.     is called a Lagrange multiplier.

• All valid solution need to fulfill the Karush-Kuhn-Tucker

(KKT) conditions

Constrained Optimization
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Support Vector Machines

1. Maximum Margin Classification

2. Primal Formulation

3. Dual Formulation

4. Soft-Margin SVMs

5. Non-linear SVMs

6. Error Function Analysis
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Primal SVM Formulation

• Recall the SVM objective:

• We introduce positive Lagrange multipliers              and get the primal form of SVMs:

such that

KKT conditions:Necessary and sufficient conditions:
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Lagrangian Formulation

• We want to minimize the primal form:

• Setting the gradients for         to zero, we get:

Primal SVM Formulation
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• The hyperplane is computed as a linear 

combination of training examples:

• Additionally, the solution needs to fulfill

• This implies              only for those points for which

Primal SVM Formulation  |  Lagrangian Formulation

Only some data points influence the 

decision boundary!

KKT conditions:
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Intuition

• The training points with              are 

called support vectors.

• They are the points on the margin.

• This makes the SVM robust to

“too correct” points!

Primal SVM Formulation

support vectors
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• We still need to find   .

• Observation: Any support vector       satisfies

• Using            , we can derive

• In practice, it is more robust to average over all support vectors:

Primal SVM Formulation  |  Lagrangian Formulation
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Advantages Limitations

• SVMs yield a linear classifier with 

“guaranteed” generalization capability.

• Convex optimization, yields globally optimal 

solution.

• Solution depends only on a subset of the 

input data points, the support vectors.

• Automatic robustness against “too correct” 

data points.

• Need to solve quadratic programming

problem: time complexity for that is cubic in 

the number of variables.

• Here: Time complexity is in             .

• Scaling to high-dimensional data is difficult.

Primal SVM Formulation
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Support Vector Machines

1. Maximum Margin Classification

2. Primal Formulation

3. Dual Formulation

4. Soft-Margin SVMs

5. Non-linear SVMs

6. Error Function Analysis
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Reminder: Primal SVM Formulation

• SVM objective:

• This is a Quadratic Programming (QP) problem with linear inequality constraints.

• In order to solve it, we have derived the Lagrangian primal form 

• We are minimizing this objective with respect to      and    ,

and maximizing with respect to    .

such that
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Solving a QP 

• SVM objective:

• Solving QPs is a well-understood problem

• Typically done with the help of a QP solver.

• Solving a QP in      variables can be done in runtime             .

• In our case:                  

• #Variables: 

 Complexity: 

such that
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Solving a QP 

• SVM objective:

• Solving QPs is a well-understood problem

• Typically done with the help of a QP solver.

• Solving a QP in      variables can be done in runtime             .

• In our case:                  

• #Variables: 

 Complexity: 

 Curse of dimensionality, the SVM Primal Form does not scale well!

such that

• With basis functions:                  

• #Variables: 

 Complexity: 
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Dual Form of the SVM Objective

• Maximize

• We now have an optimization problem in      variables.

 Complexity: 

Dual SVM Formulation

under the conditions

For the derivation, please watch the video
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Discussion

• What have we gained?

• Previous complexity was             , now it is             .

• Isn’t this much worse for large training sets???

• However, the dual form has several advantages

1. SVMs have sparse solutions:               only for support vectors.

− This makes very efficient algorithms possible.

− E.g., Sequential Minimal Optimization (SMO)

− Effective runtime between            and              .

2. No dependency on the dimensionality anymore.

− We can work with high-dimensional feature spaces!

Dual SVM Formulation
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Advantages Limitations

• Optimization problem only depends on the 

Lagrange multipliers    , resulting in a worst-

case runtime complexity of             .

• Since SVMs have sparse solutions and only 

few             , specialized algorithms can 

solve the dual form very efficiently.

• The complexity of QP optimization no longer 

depends on the dimensionality of the feature 

space. This makes it possible to use very 

high-dimensional feature spaces.

• Evaluating the SVM decision function 

with 

is still costly for high-dimensional feature 

spaces          .

Dual SVM Formulation
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Support Vector Machines

1. Maximum Margin Classification

2. Primal Formulation

3. Dual Formulation

4. Soft-Margin SVMs

5. Non-linear SVMs

6. Error Function Analysis
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• So far, we assumed linearly separable data.

• Our current formulation has no solution if the 

data are not linearly separable!

• Need to introduce tolerance to outlier data points.

• The resulting model is called soft-margin SVM.

Soft-Margin SVM

such that
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Slack Variables

• For non-linearly separable data, not all constraints 

can be satisfied:

• Idea: Introduce slack variables :

 We allow some datapoints to violate the 

constraint.

• For those points, the slack      makes up for 

the difference.

Soft-Margin SVMs
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• Slack variables

• One slack variable      for each training point

• Effect

• for points on the correct side.

• Linear penalty for all other points:

• Slack variables are jointly optimized with    :

where     is a tradeoff parameter.

Soft-Margin SVMs  |  Slack Variables

Point on margin:

Misclassified point:
Point inside margin:
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New Primal Formulation

• Minimize

• KKT conditions

Soft-Margin SVMs

Constraint Constraint
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New Dual Formulation

• Maximize

• Under the side conditions

Soft-Margin SVMs

This is the only 

difference to before.
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New Solution

• The decision hyperplane is again a linear combination of training samples:

• This is still a sparse solution:

• for points on the correct side of the margin

• Slack points with             are now also support vectors!

• Compute    by averaging over support vectors (points with                      ):

Soft-Margin SVMs
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Support Vector Machines

1. Maximum Margin Classification

2. Primal Formulation

3. Dual Formulation

4. Soft-Margin SVMs

5. Non-Linear SVMs

6. Error Function Analysis
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Non-Linear SVMs

• So far, we have only considered linear decision 

boundaries.

• We now combine non-linear basis functions with SVMs.
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Feature Spaces

• We have already seen non-linear basis functions:

• Apply a nonlinear transformation     to the data points      :

• Classify with a hyperplane in higher-dim. space       :

 Linear classifier in       , nonlinear classifier in      .

• Let us now apply this to SVMs…

• We can train our SVM on the transformed features          to 

get non-linear decision boundaries.

• Usually,               : evaluating                can be quite 

expensive!

Non-Linear SVMs
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The Kernel Trick

• On a closer look,          only appears in the form of dot products:

Non-Linear SVMs
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The Kernel Trick

• On a closer look,          only appears in the form of dot products:

Non-Linear SVMs

Define a kernel function

 Use the kernel instead of the dot product.
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The Kernel Trick

• On a closer look,          only appears in the form of dot products:

• implicitly maps the data to some higher-dimensional space, without having to compute         .

Non-Linear SVMs

Define a kernel function

 Use the kernel instead of the dot product.
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When Can We Apply the Kernel Trick?

• In order for this to work,            needs to define an implicit mapping.

• Formally

• A function                                               is a kernel function, iff

− There is a mapping                             such that 

• When will this be the case?

Non-Linear SVMs  |  The Kernel Trick
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• When is a function                  a valid kernel function? Two ways to check:

1. Every Gram matrix of    is symmetric positive definite:

− This is easy to verify for a given training set                              .

− Unfortunately, it has to hold for every possible such set.

 Very hard to prove in practice.

Non-Linear SVMs  |  The Kernel Trick

A matrix      is positive 

definite if all eigenvalues 

of      are positive.
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• When is a function                  a valid kernel function? Two ways to check:

2. We can construct valid kernels from other valid kernels:

− Given valid kernels                and                , the following combinations will also be valid

 Much easier to apply in practice.

Non-Linear SVMs  |  The Kernel Trick
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New SVM Formulation

• Maximize

• Classify new data points using

Non-Linear SVMs

under the constraints



42

Example: Polynomial Kernel

• We slightly adjust the polynomial basis function that we know:

• In fact,                     is the kernel function for a polynomial of degree   .

Non-Linear SVMs
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Example

Non-Linear SVMs
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Example

Non-Linear SVMs
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Advantages Limitations

• We can use high-dimensional or even 

infinite dimensional feature spaces    

• Since           is never computed explicitly.

• We can work with non-vector space data

• We can define kernel functions for 

arbitrary data types!

• Graphs, Sets, Sequences, Histograms, 

…

• Simple to use and work very well in most 

cases

• Which kernel to choose?

• Model selection problem

• How to choose kernel parameters?

• Hyperparameter optimization problem, 

usually solved by performing a grid 

search over the validation set

• Evaluation speed scales linearly with 

number of support vectors

Non-Linear SVMs
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Support Vector Machines

1. Maximum Margin Classification

2. Primal Formulation

3. Dual Formulation

4. Soft-Margin SVMs

5. Non-linear SVMs

6. Error Function Analysis
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Error Function Analysis

• We know how to formulate and optimize an SVM 

as a convex optimization problem:

subject to the constraints
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Error Function Analysis

• We know how to formulate and optimize an SVM 

as a convex optimization problem:

• Integrate the constraints into the objective function:

• Rewrite as

• Thus,  we obtain

subject to the constraints

But what error function 

does this correspond to?
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The Hinge Loss

• Regularization bounds parameter size.

• Hinge Loss enforces sparsity:

• Only a subset of training data points actually influences the decision boundary.

• Still, all input dimensions are used.

• This formulation corresponds to an unconstrained optimization of a non-differentiable function.

• Very efficient: stochastic (sub-)gradient descent.

Error Function Analysis

L2 regularization Hinge loss
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Error Contribution Plot

Error Function Analysis

Correct classificationIncorrect classification

Less

confident

More

confident

Less

confident

More

confident
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Hinge Loss

Error Function Analysis

Favors sparse 

solutions!

Not differentiableRobust to outliers

Hinge Loss

Ideal misclassification Error
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Comparison to Squared Error

Error Function Analysis

Hinge Loss

Squared Error

Ideal misclassification Error

Penalizes “too correct” 

datapoints

Leads to closed-form 

solution (good)!

Sensitive to outliers



53

Comparison to Cross-Entropy

Error Function Analysis

Hinge Loss

Squared Error

Cross-Entropy Error

Ideal misclassification Error

No penalty for 

“too correct” 

datapoints

Robust to outliers
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Advantages Limitations

• Favors sparse solutions that only depend on 

a subset of training data points.

• Robust to outliers (only a linear penalty for 

misclassified points).

• Convex function, unique minimum exists.

• Not differentiable (cannot minimize this loss 

using standard gradient descent, but need 

to use subgradient descent).

Discussion: Hinge Loss

Error Function Analysis
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References and Further Reading

• More information about SVMs is available in Chapter 7.1 

of Bishop’s book. 

Christopher M. Bishop

Pattern Recognition and Machine Learning

Springer, 2006
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