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Machine Learning Topics

1. Introduction to ML

2. Probability Density Estimation

3. Linear Discriminants

4. Linear Regression

5. Logistic Regression

6. Support Vector Machines

7. (AdaBoost)

8. Neural Network Basics

Maximum Margin 

Classification

Primal & Dual Form

Soft-Margin SVM Hinge Loss
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• Idea: Introduce slack variables

• One slack variable      for each training point

• Effect

• for points on the correct side.

• Linear penalty for all other points:

• Slack variables are jointly optimized with    :

where     is a tradeoff parameter.

Recap: Soft-Margin SVM
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Recap: Soft-Margin SVM Primal Form

• Minimize

• KKT conditions

Soft-Margin SVMs

Constraint Constraint
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Recap: Soft-Margin SVM Dual Form

• Maximize

• Under the side conditions

Soft-Margin SVMs

This is the only 

difference to before.
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Recap: Non-linear SVM Formulation

• Maximize

• Classify new data points using

Non-Linear SVMs

under the constraints
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Support Vector Machines

1. Maximum Margin Classification

2. Primal Formulation

3. Dual Formulation

4. Soft-Margin SVMs

5. Non-linear SVMs

6. Error Function Analysis
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Error Function Analysis

• We know how to formulate and optimize an SVM 

as a convex optimization problem:

subject to the constraints
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Error Function Analysis

• We know how to formulate and optimize an SVM 

as a convex optimization problem:

• Integrate the constraints into the objective function:

• Rewrite as

• Thus,  we obtain

subject to the constraints

But what error function 

does this correspond to?
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The Hinge Loss

• Regularization bounds parameter size.

• Hinge Loss enforces sparsity:

• Only a subset of training data points actually influences the decision boundary.

• Still, all input dimensions are used.

• This formulation corresponds to an unconstrained optimization of a non-differentiable function.

• Very efficient: stochastic (sub-)gradient descent.

Error Function Analysis

L2 regularization Hinge loss
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Error Contribution Plot

Error Function Analysis

Correct classificationIncorrect classification

Less

confident

More

confident

Less

confident

More

confident
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Hinge Loss

Error Function Analysis

Favors sparse 

solutions!

Not differentiableRobust to outliers

Hinge Loss

Ideal misclassification Error
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Comparison to Squared Error

Error Function Analysis

Hinge Loss

Squared Error

Ideal misclassification Error

Penalizes “too correct” 

datapoints

Leads to closed-form 

solution (good)!

Sensitive to outliers
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Comparison to Cross-Entropy

Error Function Analysis

Hinge Loss

Squared Error

Cross-Entropy Error

Ideal misclassification Error

No penalty for 

“too correct” 

datapoints

Robust to outliers
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Advantages Limitations

• Favors sparse solutions that only depend on 

a subset of training data points.

• Robust to outliers (only a linear penalty for 

misclassified points).

• Convex function, unique minimum exists.

• Not differentiable (cannot minimize this loss 

using standard gradient descent, but need 

to use subgradient descent).

Discussion: Hinge Loss

Error Function Analysis
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Machine Learning Topics

1. Introduction to ML

2. Probability Density Estimation

3. Linear Discriminants

4. Linear Regression

5. Logistic Regression

6. Support Vector Machines

7. (AdaBoost)

8. Neural Network Basics

Multi-Layer Perceptrons Losses & Regularizers

Backpropagation Stochastic Gradient Descent
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Neural Network Basics

1. Perceptrons

2. Multi-Layer Perceptrons

3. Loss Functions

4. Backpropagation

5. Stochastic Gradient Descent
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Perceptrons

• Inspired by biological neurons.

• The output is determined by the 

activation of the input nodes and a 

set of weights connecting input and 

output layers.

Input

Output

Weights
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Basic Perceptron

• Input Layer:

• Hand-designed features

• Outputs:

• Linear outputs

• Logistic outputs

• Learning: finding optimal weights     .

Perceptrons
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Multi-Class Networks

• One output node per class:

• Linear outputs

• Logistic outputs

• We can do multidimensional linear regression 

or multiclass classification this way.

Perceptrons
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Non-Linear Basis Functions

• Apply a (fixed) mapping          to inputs:

• Linear outputs

• Logistic outputs

Perceptrons
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Connections to linear discriminants

• All of this should feel very familiar.

• Perceptrons are generalized linear discriminants!

• What does that mean?

• We have the same limitations as before.

• Can model any separable function perfectly, given the right input features.

• For some tasks, this may require an exponential number of input features.

 It is the feature design that solves the task!

Perceptrons
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Limitations so far

• Generalized linear discriminants (including perceptrons) are very limited.

• A linear classifier cannot solve certain problems (e.g., XOR).

• However, with a non-linear classifier based on suitable features, 

the problem becomes solvable.

• So far, we have designed the features and kernels by hand.

 How can we learn good feature representations?

Perceptrons
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Neural Network Basics

1. Perceptrons

2. Multi-Layer Perceptrons

3. Loss Functions

4. Backpropagation

5. Stochastic Gradient Descent
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Multi-Layer Perceptrons

• Perceptrons are limited by having a fixed input mapping.
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Multi-Layer Perceptrons

• Perceptrons are limited by having a fixed input mapping.

• Replace it with a hidden layer that learns suitable features.

• Output of hidden layer is input to next layer.

• Each layer computes a matrix multiplication and applies 

an elementwise activation function :

• Key step: Now we also make the earlier layer learnable!

• This is known as a Multi-Layer Perceptron (MLP).
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General Network Structure

• Multi-Layer Perceptron model:

• Usually, each layer adds a bias term.

• Activation functions between layers should be non-linear.

• For example:

• With linear activations, successive layers would still 

compute a linear function.

• The hidden layer can have an arbitrary number of nodes.

• There can also be multiple hidden layers.

Multi-Layer Perceptrons
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MLPs are Universal Approximators

• Universal Approximator Theorem:

• A network with one hidden layer can approximate any 

continuous function of a compact domain arbitrarily well

(assuming sufficient hidden nodes).

 Way more powerful than linear models!

Multi-Layer Perceptrons
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Learning with Hidden Units

• We now have a model that contains multiple layers of adaptive 

non-linear hidden units.

• How can we train such models?

• Need to train all weights, not just last layer.

• Learning the weights to the hidden units = learning features.

• We don’t know what the hidden units should do.

• Basic Idea: Gradient Descent.

Multi-Layer Perceptrons

This is the main challenge 

of deep learning!

Apply Error 

Function

Calculate 

Gradients

Update Weights

Repeat until 

convergence.
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Neural Network Basics

1. Perceptrons

2. Multi-Layer Perceptrons

3. Loss Functions

4. Backpropagation

5. Stochastic Gradient Descent
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Loss Functions

• We train Neural Networks by minimizing an error function

• In principle, any differentiable objective function can be used here.

• Typically, we use a combination of a loss function and a regularizer :

Apply Error 

Function

Calculate 

Gradients

Update Weights
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Examples of Loss Functions

• We can use any of the loss functions we have seen so far

to achieve different effects:

• L2 loss (Squared Error)

• Binary Cross-Entropy loss

• Hinge loss

• Multi-Class Cross-Entropy loss

Loss Functions

 Least-squares regression / classif.

 Logistic regression

 SVM classification

 Multi-class probabilistic classification
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Examples of Regularization Terms

• Similarly, we can use any of the regularization terms 

we have seen so far:

• L2 regularizer (“Weight Decay”)

• L1 regularizer

• Since Neural Networks have many parameters, regularization

becomes an important consideration.

• Many of the more advanced NN “training tricks” can also 

be understood as a form of regularization

Loss Functions

   
   

   

 Prevents overfitting

 Enforces sparsity (feature selection)
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Neural Network Basics

1. Perceptrons

2. Multi-Layer Perceptrons

3. Loss Functions

4. Backpropagation

5. Stochastic Gradient Descent
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Backpropagation

• We know a flexible model that is able to learn features.

• We also know how to compute an error estimate.

• Now we need to compute the gradients with respect to our parameters.

Apply Error 

Function

Calculate 

Gradients

Update Weights
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Approach 1: Naïve Analytical Differentiation

• Compute the gradients of each variable analytically.

• Scalar case is straightforward:

Backpropagation
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Approach 1: Naïve Analytical Differentiation

• Compute the gradients of each variable analytically.

• Scalar case is straightforward.

• Multi-dimensional case: Total derivative

• Need to sum over all paths to target variable:

• With increasing depth, there will be exponentially 

many paths!

Backpropagation
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Approach 2: Numerical Differentiation

• Given the current state        , we can evaluate               .

• Idea: Make small changes to          and accept those that 

improve               .

• Need several forward passes for each weight – over the 

whole dataset.

• This is horribly inefficient!

Backpropagation

   
   

   



40

Approach 3: Incremental Analytical Differentiation

• Idea: compute the gradients layer by layer.

• Each layer below builds upon the results of 

the layer above.

• The gradient is propagated backwards 

through the layers.

• This is the backpropagation algorithm.

Backpropagation
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Example: Backpropagation for MLPs

Backpropagation

Input of layer   :

Output of layer   :
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Example: Backpropagation for MLPs

Backpropagation

Input of layer   :

Output of layer   :
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Example: Backpropagation for MLPs

Backpropagation

Input of layer   :

Output of layer   :



44

Example: Backpropagation for MLPs

Backpropagation

Input of layer   :

Output of layer   :
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Example: Backpropagation for MLPs

Backpropagation

Input of layer   :

Output of layer   :
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Advantages Limitations

• Very general algorithm, widely used.

• Efficiently computes all gradients in the 

network using dynamic programming.

• The same concept can be applied to any 

differentiable function.

• This makes it possible to define other 

types of layers.

• Efficient evaluation of backpropagation 

requires storing all unit activations from 

forward pass.

• The amount of memory necessary for 

this imposes a practical limit on the size 

of the network.

• Successful learning relies on the gradients 

to be propagated to the early network 

layers.

• Numerical challenges may arise here.

Discussion Backpropagation

Backpropagation
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Neural Network Basics

1. Perceptrons

2. Multi-Layer Perceptrons

3. Loss Functions

4. Backpropagation

5. Stochastic Gradient Descent
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Stochastic Gradient Descent

• Now that we have the gradients, we need to update the weights.

• We already know the basic equation for this

• (1st-order) Gradient Descent

• Remaining Questions:

• On what data do we want to apply this?

• How should we choose the learning rate    ?

Apply Error Function

Calculate Gradients

Update Weights
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Stochastic vs. Batch Learning

• Batch Learning

• Process the full dataset in one batch.

• Compute the gradient based on all training examples.

• Stochastic Learning

• Choose a single example from the training set.

• Compute the gradient only based on this example.

• This estimate will generally be noisy, which has some 

advantages.

Stochastic Gradient Descent
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Batch Learning Stochastic Learning

• Conditions of convergence are well 

understood.

• Many acceleration techniques only work in 

batch learning.

• Theoretical analysis of the weight dynamics 

and convergence rates are simpler.

• Usually much faster than batch learning.

• Often results in better solutions.

• Can be used for tracking changes when the 

target distribution shifts.

Stochastic Gradient Descent  |  Stochastic vs. Batch Learning

Middle ground: Minibatches
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Minibatches

• Idea

• Process only a small batch of training examples together.

• Start with a small batch size & increase it as training proceeds.

• Advantages

• Gradients will be more stable than for stochastic gradient descent, 

but still faster to compute than with batch learning.

• Take advantage of redundancies in the training set.

• Matrix operations are more efficient than vector operations.

• Caveat

• Need to normalize error function by the minibatch size 

to use the same learning rate between minibatches

Stochastic Gradient Descent
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Example

Stochastic Gradient Descent
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Choosing the Right Learning Rate

• Consider a simple 1D example:

• What is the optimal learning rate       ?

• If     is quadratic, the optimal learning rate

is given by the inverse of the Hessian:

• For neural networks, the Hessian is usually infeasible to compute.

Stochastic Gradient Descent
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Stochastic Gradient Descent  |  Choosing the Right Learning Rate

too small

Convergence is slow

too large

Might not converge
Converges ideally in 

a single step
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Advantages Limitations

• Very simple, but still quite robust method.

• Minibatches offer a compromise between 

stability and faster computation.

• Stochasticity in minibatches is often 

beneficial for learning

• Finding a good setting for the learning rate 

is very important for fast convergence.

• Choosing the right learning rate is a 

challenge and requires experience.

• A different learning rate may be optimal 

for different parts of the network

• Following the direction of steepest descent 

is not always the fastest way to the optimum

• E.g., in highly correlated data

Discussion: Stochastic Gradient Descent

Stochastic Gradient Descent
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References and Further Reading

• More information about Neural Networks and Deep Learning is available 

in the following book. 

I. Goodfellow, Y. Bengio, A. Courville

Deep Learning

MIT Press, 2016

https://www.deeplearningbook.org/

https://www.deeplearningbook.org/
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