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Introduction to Process Mining

1. Process Mining and Event Data
2. Process Models
3. Software Tools

4. Applications



What is Process Mining?

Traditionally:

Link Between Data and Process Science

not process-centric
focus on specific
tasks or decisions

Traditionally:

* not data-driven

« focus on modeling
(languages) and
automation

Process Mining Handbook



What is Process Mining?

Event Data in Process Mining

We considered timestamped data before. For

ID Activity Time
example:
11152 | Register Order 15.12.22 12:25 « Time series: numerical features with equidistant
11152 | Send Invoice | 15.12.22 12:45 timestamps (determined by the sampling rate).
« Sequence mining: a very specific setting where
11152 Pay 15.12.22 1301 we focus on sequences of itemsets.
11153 | Register Order 15.12.22 13:05
11153 | Send Invoice | 15.12.22 13:08 Event data:

« The occurrence of an event has a meaning, i.e.,
timestamps are not equidistant.
11153 Pay 16.12.22 15:03 « Event refers to (at least) a case identifier, activity

11152 | Make Delivery 17.12.22 8:10 name, and timestamp.
* Very general!

11152 | Confirm Payment 15.12.22 13:11

Normal Event Log



What is Process Mining?

Event Data in Process Mining

ID Activity Time
11152 | Register Order 15.12.22 12:25
11152 Send Invoice 15.12.22 12:45
11152 Pay 15.12.22 13:01
11153 | Register Order 15.12.22 13:05
11153 Send Invoice 15.12.22 13:08
11152 | Confirm Payment 15.12.22 13:11
11153 Pay 16.12.22 15:03
11152 | Make Delivery 17.12.22 8:10

Normal Event Log

Each row refers to an event and per event, there are
three mandatory attributes:

« Case identifier

« Activity name

« Timestamp

But there can be any number of additional attributes,
such as:

 Costs

» Duration

« Location

 Resource

« Etc.



What is Process Mining?

Event Data in Process Mining

Order 11152

ID Activity Time
11152 | Register Order 15.12.22 12:25
11152 Send Invoice 15.12.22 12:45
11152 Pay 15.12.22 13:01
11153 | Register Order 15.12.22 13:05
11153 Send Invoice 15.12.22 13:08
11152 | Confirm Payment 15.12.22 13:11
11153 Pay 16.12.22 15:03
11152 | Make Delivery 17.12.22 8:10

Registe
Order

)

Send
Invoice

)

Pay >

Confirm
Paymen

>

Make
Deliver

)

Normal Event Log

Simplified Event Log



What is Process Mining?

Event Data in Process Mining

ID

Activity

Time

Order 11152

11152
11152
11152
11153
11153
11152
11153
11152

Register Order
Send Invoice
Pay
Register Order
Send Invoice
Confirm Payment
Pay
Make Delivery

15.12.22 12:25
15.12.22 12:45
15.12.22 13:01
15.12.22 13:05
15.12.22 13:08
15.12.22 13:11
16.12.22 15:03
17.12.22 8:10

Registe
Order

)

Send
Invoice

)

Pay >

Confirm
Paymen

>

Make
Deliver

)

Order 11153

Registe
Order

)

Send
Invoice

)

Pay >

Normal Event Log

Simplified Event Log



What is Process Mining?

Event Data in Process Mining

ID

Activity

Time

Order 11152

11152
11152
11152
11153
11153
11152
11153
11152

Register Order
Send Invoice
Pay
Register Order
Send Invoice
Confirm Payment
Pay
Make Delivery

15.12.22 12:25
15.12.22 12:45
15.12.22 13:01
15.12.22 13:05
15.12.22 13:08
15.12.22 13:11
16.12.22 15:03
17.12.22 8:10

Registe
Order

)

Send
Invoice

)

Pa Confirm
y Paymen

>

Make
Delivery

Order 11153

Registe
Order

)

Send
Invoice

)

Pay >

Normal Event Log

N

traces

Simplified Event Log

Simplified event log is a multiset of traces



What is Process Mining?

Process Mining Overview
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What is Process Mining?

Six Tasks in Process Mining

information
systems

extract ‘

event
data

conformance
performance

predictions
|mprovements
2: Conformance | 4: Comparative

Checking Process Mining éc 5
1: Process : *

Discovery 3: Performance
Analysis

5: Predlctlve Process

eXprel select
filter show
: act
clean interpret
drill dog

\\.

6: Action-Oriented
Process Mining




What is Process Mining?

Six Tasks in Process Mining

information
systems

extract /\
process align

- models replav._ 4+
event q 2: Conformance 4: Comparative f i\-“_‘

Checkin ‘@ @ Process Minin J—ﬁ
Discovery = 3: Performance ————

Analysis

conformance
performance
liagnostics

L
H
It

explore select
filter
. act
clean interpret
drill dog

6: Action-Oriented
Process Mining




Introduction to Process Mining

1. Process Mining and Event Data
2. Process Models
3. Software Tools

4. Applications



Process Models

Four Common Types of Process Models

The same process can be visualized in many ways:

 DFGs (Directly-Follows Graphs)

Supported by all process mining tools (simple, but no concurrency)

 Petri nets

The oldest model for concurrent processes and the de facto standard in process mining research

 Process trees

Frequently used in process mining because it is block structured and sound by construction

« BPMN (Business Process Model and Notation)

The industry standard (we use a small subset) related to UML Activity Diagrams (not explained in detail)



Process Models

Directly-Follows Graphs

« Simplest notation
« Marks all edges between activities that occurred
* Helps to get first impression about the data

« Used by process discovery algorithms (e.g., Inductive Miner)




Process Models

Directly-Follows Graphs — Example

Assume we have a simplified log:
L — [(a’? b? d? 67 h>7 <a’7 d? C? e? g>? <a’7 C? d? 67 f? b? d? e? g)i <a’? d? b7 67 h>7 <a’7 c? d? e) f? d? C? e) f? C? d? 67 h’)? <a7 C? d? 67 g>]

a = register request

b = examine thoroughly
¢ = examine casually

d = check ticket

e = decide

f = reinitiate request

g = pay compensation

h = reject request



Process Models

Directly-Follows Graphs — Example

Assume we have a simplified log:

L= [(aaba daea h): (CL, da Cﬂe?g>3 (avca daeafv ba daeag>7 (CL,d, b76:h>7 <CL,C, d: eafa da Caeafa C, daev h): (CL,C, d7€79>]

a = register request
b = examine thoroughly

c = examine casually

Come b OGO

f = reinitiate request START END
g = pay compensation

h = reject request



Process Models

Directly-Follows Graphs — Example

Assume we have a simplified log:

L= [(O),b, daea h): (CL,d, 07€,g>, (avca daeafv ba daeag>7 (a’?d? ba €,h>, <CL,C, daeafv d7 Cveafa C, d,€,h>, <CL}C, d,(%g)]

a = register request
b = examine thoroughly

c = examine casually

= check ticket ‘ Q
a —>| : —>| : }—>| e }—>| h }—>< )
e = decide D

f = reinitiate request START END

L\
g = pay compensation [ C } [ g

h = reject request




Process Models

Directly-Follows Graphs — Example

Assume we have a simplified log:

L= [(G),b, daea h): (O‘,, dv Cﬂe?g>3 (CL,C, da €, f7 ba da 8,9), <a7da b,€,h>7 <CL?C, d: evfa da Caeafa Cadaev h): (CL,C, dvevg”

a = register request

b = examine thoroughly

c = examine casually

= check ticket *
(O

f = reinitiate request START

g = pay compensation

h = reject request



Process Models

Directly-Follows Graphs — Example

Assume we have a simplified log:

L — [(a’) b? d? 63 h)? (a’?d7 c? ejg>? (a’? C? d? e? fﬁ b? d? ejg>? <a7 d? b? 6? h)? (a'? c? d? e) f?d? c? e) f? c? d? 67 h)? (a7 C? d? €7g>]

a = register request
b = examine thoroughly

c = examine casually

= check ticket [
e = ;e(e:icde o ‘ Q Ea] l?.j

f = reinitiate request START

g = pay compensation

h = reject request




Process Models

Directly-Follows Graphs — Example

Assume we have a simplified log:

L — [(a’) b? d? 63 h)? (a’?d7 c? ejg>? (a’? C? d? e? fﬁ b? d? ejg>? <a’?d? b7 67 h>7 <a’? C? d? 61 f? d? C?€Jf7 CJ d? e? h)? <a’? c?d? 67 g)]

a = register request

b = examine thoroughly

c = examine casually

— check ticket ‘ Q — *
a —>| b
e = decide [j —

f = reinitiate request START

i e
g = pay compensation
h = reject request

@




Process Models

Directly-Follows Graphs — Example

Assume we have a simplified log:

L — [(a’) b? d? 63 h)? (a’?d7 c? ejg>? (a’? C? d? e? fﬁ b? d? ejg>? <CI’J d) b? 63 h)? (a'? c? d? e) f?d? c? e) f? c? d? 67 h)? (G‘T# C? d? €?g>]

a = register request

b = examine thoroughly

¢ = examine casually
= check ticket

e = decide

f = reinitiate request

g = pay compensation

h = reject request




Process Models

Directly-Follows Graphs — Example

Assume we have a simplified log:

L — [<a) b? d? 63 h)? (a’?d7 c? ejg>? (a’? C? d? e? f? b? d? e? g)? <a’7 d) b? 63 h)? (a'?cﬂ d? e? f? d? C) e? f? C? d? e? h)? <a’7 c?d? 67 g)]

a = register request

= examine thoroughly

c = examine casually

d = check ticket ‘ )
( )—>| a —>| b
e = decide ] )

START

A
) AR 4

f = reinitiate request

A A4

g = pay compensation

h = reject request

Often we also use numbers or
width of edges to show the
frequency of particular edges




Process Models

Directly-Follows Graphs — Example

Assume we have a simplified log:
L — [(a’) b? d? 63 h)? (a’?dﬂ C, ejg>? (a’? C? d? e? f) b? d? e? g)? <a’7 d) b? 63 h)? (a’? c? d? e? f? d? C) e? f? C) d) e? h)? <a’? c?d? 67 g)]

a = register request

b = examine thoroughly

c = examine casually

d = check ticket ‘ Q—»D —
a —>| b
decide —

A
START

A

= reinitiate request

g = pay compensation

h = reject request




Process Models

Directly-Follows Graphs

? Start 4
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. prepare delivery
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[#)2.68K . send invoice
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confirm payment
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. make delivery
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place order

send invoice
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place order
10000
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prepare delivery send reminder 258 5
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cancel order

prepare delivery

make delivery

2,740 45,912

confirm payment 2,740

1,348

cancel order
1348

make delivery 5912 1348

8652

DFGs in ProM



Process Models

Petri Nets

« Wide variety of application domains
« Oldest and most investigated process modeling language

« Petri net is a bipartite graph consisting of places and transitions

b
t Transition m >D\
Place
® O 7 L R O
o Token start end
— Arcs p2 p4




Process Models

Petri Nets

« Transitions can fire if all input places have tokens (when firing they produce tokens in

all output places and consume tokens from all input places)

* In process mining we use mainly accepting Petri nets
(accepting Petri nets have a defined START and END state)

b
t Transition
Place
® OSNEIs NP IEe
o Token start end

— Arcs




Process Models

One Possible Execution of Petri Net

t Transition

@ Place

® Token

b — Arcs
© 1 » [ = i@
start end

abcd c p4

Initial marking [start], final marking [end]



Process Models

Petri Nets — Example

The same log previously used to build a DFG can be used to discover the following Petri net:

L — [(a) b? d? 67 h)? <a’5d1 C? ejg>? (a’? C? d? 61 f) b? d? 63 g>7 <a’7 d? b? 63 h)? <CLJC? d? 63 fﬂ d? C) e? f? C) d) e? h)? <a7 C? d? 67 g)]

examine
thoroughly

pay
compensation

Cc

examine
casually

: a
start register
request

decide ¢5

end

d
check ticket

reject
request

reinitiate
request




Process Models

Process Tree — Four Types of Operators

« Often used in process mining because it guarantees favourable properties

simplifying many applications

« Hierarchically structures the process into behavioural blocks

(represented as a tree)

« The behaviour of a block is defined by operators



Process Models

Process Tree — Four Types of Operators

sequential
compostion

(2] [0)..[z

’ ﬂ @—vaAO—»bHO—»._—.

en
exclusive
choice
) a b . Z
en

‘a"b}‘Z’ start

parallel

composition /g\k
S JO=E

a [b)..[z] @
-

oon O)
T always refers to p B @ ﬂ @_. .
a silent activity, star

l.e., skip.



Process Models

Process Tree — Example

The same log previously used to build a DFG can be used to discover the following process tree:

L — [(a) b? d? 67 h)? <a’5d1 C? ejg>? (a’? C? d? 61 f? b? d? 63 g>7 <a’7 d) b? 63 h)? (ajicﬂ d? e? fﬂ d? C) e? f? C) d) e? h)? <a7 C? d? 67 g)]

sequential
compostion

O

exclusive
choice

parallel
composition

‘ h redo
reinitiate pay reject loop
request compensation  request

normal @
a

register
request

activity

silent
activity

check
ticket

examine examine
thoroughly casually



Process Models

Process Tree Semantics

register
request /

reinitiate pay reject
request compensation  request

N

check

ticket

examine
casually

decide

[=)”

examine
thoroughly

sequential
compostion

exclusive
choice

parallel
composition

redo
loop

normal
activity

silent
activity

OO X O

start

a

register
request

b
examine
thoroughly g
c1 c3 pay
¢ \‘ o _/~ ™ compensation
[ examine / "
casually decide |c5 end
h
c2 d cd reject
request
L f /
reinitiate
request




Section Summary

Process Models

The same process can be visualized in many ways:

i DFGS Petri net
_
e Petri Nets BPMN
* Process Trees
process tree
« BPMN models

are delivery make delivery confirm payment

The conversion of process mining results into desired notations is relatively easy.



Introduction to Process Mining

1. Process Mining and Event Data
2. Process Models
3. Software Tools

4. Applications



Software Tools

Over 40 commercial process mining tools (see processmining.org)

ProcessMining Introduction Overview ¥ Publications Courses Event Data Software Links

For learning resources and more information about tools check out processmining.org



https://processmining.org/

Software Tools

Process Mining Demo

EH S

event_log-12666-orders.xlsx - Excel

HOME INSERT  PAGE LAYOUT FORMULAS DATA REVIEW  VIEW  ACROBAT

A56852

Je || 9012

TE - &7

Aalst, WMP. van der -~

A B (e D E F G H |
1 |case activity start time end time resource |product prod-price|quantity|address
156849 8993 |[send invoice 2019-06-19 17:02:14|2019-06-19 17:07:13 |Jack APPLE iPhone 6 16 GB 639.0 5 NL-7948DN-12a
56850 8996 |send invoice 2019-06-19 17:04:52 |2019-06-19 17:08:50 |[Emily APPLE iPhone 5s 16 GB 449.0 4 NL-9491BG-41
56851 8918 | prepare delivery [2019-06-19 17:19:01{2019-06-19 17:22:58 |Aiden APPLE iPhone 6 16 GB 639.0 3 NL-7826GD-9
56852[9012 place order 2019-06-19 17:27:31 |2019-06-19 17:33:46 |Sophia MOTOROLA Moto G 199.0 2 NL-7828AM-11a
56853 send invoig 2019-06-117:42:14 |2019-06-19 17:47:22 |Lily SAMSUNG Core Prime G361|135.0 2 NL-7907EJ-42
0 2019-06-19 18:21:58 |Luke SAMSUNG Galaxy $4 329.0 1 NL-7822AW-5
2019-06-19 18:21:11 |Luke APPLE iPhone 6 16 GB 639.0 5 NL-9521KJ-34
2019-06-19 18:25:46 |Avery SAMSUNG Galaxy $4 329.0 2 NL-7948BX-10
2019-06-19 18:30:34 |Abigail SAMSUNG Galaxy S4 329.0 6 NL-9468HG-14
2019-06-19 19:17:16 [Emma MOTOROLA Moto G 199.0 2 NL-7822AW-5 |
2019-06-19 19:22:48 |Emily APPLE iPhone | -5
2019-06-19 22:21:48 |Lucas  |APPLE iPhone | 80,609 events 36 |
019-06-19 20:05:02 |Lily saMsuNG Gal 12,666 cases (= orders) 2|
place ordé 2019-06-19 27: 2019-06-19 22:08:02 |Aiden SAMSUNG Cor ; H- 25
56863 8922 |send reminder 2019-06-19 22:18:26|2019-06-19 22:35:06 |Luke SAMSUNG Cor 8 uni q ue aCtIVItI es ‘n-’-l—
56864 8927 |confirm payment |2019-06-19 22:21:12{2019-06-19 22:30:05 |Lily APPLE iPhone 6 16 GB 639.0 2 NL-7931TV-36
56865 9015 |place order 2019-06-20 07:16:24 |2019-06-20 07:22:23 |[Emma APPLE iPhone 6s Plus 64 GB |969.0 7 NL-7944BB-6
56866 8903 |[cancel order 2019-06-20 08:59:43 |2019-06-20 09:07:33 |Lily SAMSUNG Galaxy S4 329.0 1 NL-7942GT-2
56867 9003 |send invoice 2019-06-2009:11:11|2019-06-20 09:19:46 |Jack SAMSUNG Galaxy S$4 329.0 1 NL-7948DN-12a
56868 8836 |make delivery 2019-06-20 09:36:17|2019-06-20 10:59:53 |Ella APPLE iPhone 6s Plus 64 GB |1969.0 4 NL-7833HT-15
56869 8950 |[send reminder 2019-06-20 09:36:54 |2019-06-20 09:59:18 |Abigzail SAMSUNG Galaxy J5 219.99 4 NL-7887AC-13
56870 8938 pay 2019-06-20 09:57:31 |2019-06-20 10:04:09 |Lily SAMSUNG Galaxy $4 329.0 3 NL-7826GD-9
56871 9016 |place order 2019-06-20 10:00:10/2019-06-20 10:04:01 |Aiden SAMSUNG Galaxv S4 329.0 4 NL-7918AE-48b

X



Software Tools

Proce_ss Mining D_em__(__)__:____ProM

L% ProM UlTopia

Prol
XES Event Log

Select all Deselect all

4,586 traces
36.21% of the log

2,312 traces
18.25% of the log

1,668 traces
13.15% of the log

1,851 traces
13.03% of the log

=

1,118 traces

8.83% of the log make d

BTG traces
B.92% of the log

420 traces
3.32% of the log

30 traces
0.24% of the log

7 traces
0.06% of the log

S

[Traces 12,666

[Events 80,609

Event Classes a8

|Attributes 9

[Variants 9

Events per Trace 6.364

First Event 2015-01-05T09:00:072
Last Event 2021-04-27T11:11:312

— O X

designed by fluxicon

O 6 B > B

Filter Mode (RGNS Match Sub-stri go
12666 TRACE(S) IN SELECTED VARIANT5(5)

222
FE-EE-
- R
= R
e = -2
= R
S = -2

S

Name Type Value




Software Tools

L% ProM UlTopia

XES Event Log

Process Mining Demo — ProM

X Axis Attribute

E: time:time SinceCase Start

Axis Attribute

T: conceptname

¥ Legend

[Trace Sorting

M cancel order

Sort on time:duration of trace.

| | . 3 make defivery
-

pay
M place order

(Color Attribute

send invoice

C: Event Name

|v| 007 . o v M send reminder
! ®all

Shape Attribute

Attribute Statistics

12450

7ass

[[] Connect events
o

7773

[Traces sorted.(in 31 ms)

2205

Trace: conceptnames

o841

7173

e428

3850

ar7e

255

8212

12308

A vy o

o

11383

131 o S confirm payment

w18 r prepare delivery

2d23h0m0 0005, 9423h0mD.000s 181 000: 00o: 0oo: a7, 0oo: ooo:

100 % rendered
in 0.14 sec. ——

80,609 dots, one for each event

[Traces sorted.(in 15 ms)

=
=
=
=
o
c

L]

Trace: conceptname

4151

4201

4251

4401

4451

4701

4751

¥ Legend

M cancel order
confirm payment|
make delivery

Mplace order
prepare delivery
send invoice

.Sﬁlld reminder
a

tApr B-Apr 15-Apr 22-Apr  28Apr  G-May  13-May  20-May  27-May  3-Jun  10-Jun

Event: time-timestamp




Software Tools

Process Mining Demo — ProM

Process Model Discovered Using the Inductive Miner

12 proM UlTopia

[ prol

Inductive visual Miner

What happens?

6289

prepare delivery
11015

1651 cancel order
1651

11015

_ 11015

place order
12666

send invoice
12629

8

>
pay

11015

send reminder
6377

L2 ProM UrTopia

pting Petri net of X

confirm payment
015

[sesctvsusision._+ JRIORRNY

Ofmen O
prepare delivery . confirm payment .

place order

send invoice

cancel order

11015

1 08
Classifier conceptname -

pre-mining filters

Miner default miner (IM) -
edit model
Show paths -

trace colouring
highlighting filters
traces
data analysis
export log
export model

export

time: animat
Highlighting all



Software Tools

Process Mining Demo — ProM

Process Model Discovered Using the Inductive Miner

12 proM UlTopia

[ prol

Inductive visual Miner

What happens?

11015
~ \ -
1101 11015, (N 110153
67%9 1 10] 5. W = 3 0 5 : (.(_\I]ﬁl]l‘l}([;]i% ment ) _' \'/\ . 11015
12666 . MR ()66 12629 g‘wv“m 12629 12666 . _\,’_ 12666 11015 11015 12666 > - SN 12666
Qe G50 40880 > 200000 307000 : o 6377 6377 =0 = SIBIBNI -0 B ") il
W et : y 1651 cancel order 1651 -
e |
©. Miner

trace colouring

highlighting filters
traces
data analysis
export log
export model

export

time: 06-08-2 :47:722
Highlighting al
9 >



Software Tools

Process Mining Demo — ProM

Using Conformance Checking to See Process Deviations

12 proM UlTopia

R o=

Inductive visual Miner

Where do we deviate from the happy path? I

make delivery

11015 11015 11015
37 3 1-59 prepare delivery 11015 11015 JRIOEIMN confirm payment 11015
O 12666 place order 12666 ”‘75555- """""" .-.]-2.6?2.9..&3‘ 12666 . 6289 12666 U les1 ,izl " 11015 11015 ° @ 11015 @ 11015 "
12666 6377 6377 Do ST O 666 o o 666 9 : Y
send invoice ) cancel order 1651 Classifier e -
el o1 =
6377 y pre-mining filters
11015 Miner default miner (IM1) -
editmodel
Show paths and deviations ¥

trace colouring
highlighting filters
traces
data analysis
export log
export model

export

time: animat
Highlighting al
o R N 7 done



Software Tools

Process Mining Demo — ProM

Bottleneck Analysis — Enriching the Model with Performance Information

| 12 proM UlTopia

ProlM ®

Inductive visual Miner

Where are the bottlenecks?

‘make delivery

11015 d 21:22:59:93

11015 11015 11015 _ (Gonfirm payment
6289 11015 1d 15:07:07:360
12666 12666 12629 - 12629 12666 377 377 12666 oy 12666

send r

1651 1651

11d 18

5 executions\day
Ak Pt ¢ lI|J F HI_I,H
fh/ .,,‘ WA A ot I
‘ | | L] | II ..'
[] ions\day

j.t ty prepare delivery

mumber of occurrences 1101%

occurrences per trace 1.0

minimm elapsed time &d 20:30:49:000
average elapsed time 20d 05:40:09:515
maximm elapsed time 50d 23:49:54:000

minimm sojourn time

average sojourn time

maximm sojourn time

maximm remaining time 6d 00:59:11:000

11015

11015

11015
12666

Classifier conceptname -

pre-mining filters

Miner default miner (IM7) -
edit model
Show paths and sojourn times ¥

time

done.

trace colouring
highlighting filters
traces
data analysis
exportiog
export model

export ..

: animati
Highlighting al !



Software Tools

Process Mining Demo — Celonis
Frequencies and Times (Using the same event data)

@ Process Start
12,6668

Process Start
12,666

‘ place order
12,6668

.";

/

-
12,655
A4
I
2,

. place order
12,666
[ 12820 l
/ ,’ 102 hours
send invoice
12,686 _\\
_ T~ 280 hours 188 hours )
| \ 3\ +
3\' a0 send reminder S 8252 \ \ ;
Ny 2,588 \ \ 185 hours send reminder 41 hours 254 hours
\ 1 | Sy eaTt
S 1t 5 21
i_ \\ \ | 0 houk 71 howrs 0 hours 11 hours
e Ay |
cancel order o . pay | |'| 5
1,851 11,015 / f cancel order . pay
% | / | 1,851 11,015
.l / l
. 10.084 / /
/
“ * _// '/r 101 hours
i - -
i . prepare delivery ¢' <L
; i 11,015 | . prepare delivery
i / 11,015
] / T
' /
: 040 /
i + ) '/ 20 hours
: -
1,851 2,080 . make delivery €
; ol 14 hours . make delivery
: I el W 11015
. 2,060 045 "*-.‘
: .
i \ + * 12 hours 20 hours
.
i N
. confirm payment 2,080
t ® 11015 ; . confirm payment
., H ',*' 11.015
T 5,048 -~
. H -
. A4 o
ERRRbE 8 Process End
12,686

Process End
12,685

28 hours



Software Tools

Process Mining Demo — Celonis

Process Model Discovered Using the Inductive Mining Algorithm

1 Inbox (2,874) - wwvan-der-aalst@ X order12666 | Studio

C ‘0 @ wvdaalst.eu-1.celonis.cloud/package-m

<« /studio, C cume 7c f2 d d993c-d9b5-45¢ b ¥ f
@ order12666 (Draft) ~ & Publish Package 1

= 12.7k0f 12.7k ST 7 . oy Edit = PREVIEW

aoa - cases selected
388

Conformance

Overview iy
¥

' )

& Allowlist

1

-

Edit process model L.a

KPIs 4-‘ |»

confirm payment

@M@ O

cancel order

send invoice

place order

pay H prepare delivery

send reminder

OO0 0® 000

L m

Upload new model Download model Clear model Save model in the repository Launch analysis

Case Explorer 2 | Process Explorer 3 Conformance 4 & +

@ o v ow




Software Tools

Reality Is Not So Simple

Real Processes May Look Like This

i)

700,000 cases may exhibit 7,000 unique variants of traces...




Software Tools

Examples of Tools

« ProM is the most complete open-source process tool that served as an

example for all later tools
— Download from https://promtools.org/
* Celonis is the leading commercial tool (there are 40+ other commercial tools)

— Get via https://signup.celonis.com/

— Free course: https://www.celonis.com/wils-process-mining-class/

* Inthis course, we will mostly use PM4Py ‘
— Python-based process mining library P I 4 P (

— Easy to combine with other data science techniques

\

~ Fraunhofer

I J
7 v
! ﬂ #E Chair of Process
FIT A o and Data Science

— Collaborative effort PADS@RWTH and Fraunhofer FIT



Introduction to Process Mining

1. Process Mining and Event Data
2. Process Models
3. Software Tools

4. Applications



Applications

Process Mining is Used in All Domains!

finance and insurance (Rabobank, Wells Fargo, ADAC, APG, Suncorp, VTB, etc.)
« logistics and transport (Uber, Deutsche Bahn, Lufthansa, Airbus, Vanderlande, etc.)
« production (ABB, Siemens, BMW, Fiat, Bosch, AkzoNobel, Bayer, Neste, etc.)

* healthcare, biomedicine, and pharmacy (Uniklinik RWTH Aachen, Charite University Hospital, GE Healthcare,

Philips, Medtronic, Pfizer, Bayer, AstraZeneca, etc.)
« telecom (Deutsche Telekom, Vodafone, A1 Telekom Austria, Telekom ltalia, etc.)
« food and retail (Edeka, MediaMarkt, Globus, Zalando, AB InBey, etc.)
« energy (Uniper, Chevron, Shell, BP, E.ON, etc.)
« |IT services (Dell, Xerox, IBM, Nokia, ServiceNow, etc.)

« consultancy (Deloitte, Ernst & Young, KPMG, PwC, etc.)



Applications

Process Mining Example — Airports

Why do bags miss a plane’?-: 2

-

Why do | need to wait so long for my bag5'>—-—-——~ - \
When and why does the system break down?—: &

% Am | usmg the avallable capamty properly?
: : 7 i ‘:ﬁ:\ k 1 |

| é
Y
‘.
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Part Il: Unsupervised Process Mining

Process Discovery



Unsupervised Process Mining

L
g s Zogiy

1. Process Discovery

2. Bottom-Up Discovery (very brief)

3. Top-Down Discovery (IM)



Process Discovery

Positioning Process Discovery

P »
<« »

supports
controls
records
events, e.g.,
SpeCifieS messages,
models configures transactions,
analyzes implements etc.
analyzes !

A

discovery

Process

A
y

Models conformance

enhancement

A




Process Discovery

Let’'s Consider the Simplest Setting Possible

A process model describes
a (possibly infinite) set of

traces.

models
analyzes

Process - Event
Models conformance Logs
<

start

p5

end

|

— Software
supports
controls SyStem

records

events, e.g.,
specifies messages,
configures transactions,
implements etc.

analyzes

discovery

A simplified event log is just

enhancement a multiset of traces, and
each trace is a sequence of
activities.

[1]

LOg - [(CL, ba C, d>39 <CL, C, ba d)47 ((1, b7 ¢, €, f7 ba C, d>27 ((1, b? ¢, €, f: C, ba d)a
(aacabaevfnbacad>27(aacabaenfnbacaeafaca bnd>]




Process Discovery

Process Discovery Approaches

?-n

7

Pl
AN R
e o

Bottom-Up

P




Unsupervised Process Mining

L
ran Zogiy

1. Process Discovery

2. Bottom-Up Discovery

3. Top-Down Discovery



Bottom-Up Discovery

Explaining Bottom-Up Approach Using Accepting Petri Nets

m b )\
o] " Poze
start \(t end

p2 C p4




Bottom-Up Discovery

Example Trace (1/3)

© {1 ] = {i-®

start end

abcd ¢ p4

Initial marking [start], final marking [end]



Bottom-Up Discovery

Example Trace (2/3)

© {1 ] = {i-®

start end

acbd ¢ p4

Initial marking [start], final marking [end]



Bottom-Up Discovery

Example Trace (3/3)

© {1 ] = {i-®

start end

aed p2 ¢ p4

Initial marking [start], final marking [end]



Bottom-Up Discovery

Another Example — Loop

Infinitely many possible traces

abd abcbchbd

(@1 ¢ =

abcbcbcbd abcbd

Initial marking [start], final marking [end]



Bottom-Up Discovery

Places are Constraints

» Places cannot have ‘negative

tokens’

* Must have the correct number of tokens in the end (indicated by final marking)

abde

(@) a

start
abcd

aebhd

da

aced

C

aed ad
d > )
acbd —
dcccab

Initial marking [start], final marking [end]



Bottom-Up Discovery

Places are Constraints

» Places cannot have ‘negative

tokens’

* Must have the correct number of tokens in the end (indicated by final marking)

abtle

(@) a

start
abcd

aebd

aa

aced

aed ad

acbhd i :::

end

dcccab

Initial marking [start], final marking [end]



Bottom-Up Discovery

Process Discovery — Finding Places

L
?_?+a/"‘”'\e/'>[~ 10s?
\?/ TR




Bottom-Up Discovery

Many Approaches Possible

« Heuristics that provide only guarantees for limited classes of models

(e.g., Alpha algorithm and heuristic miner)
» Approaches that formally guarantee perfect replayability of the event log (e.g., state-based regions)
« Genetic and other evolutionary approaches (very flexible)
* Optimization-based approaches that turn discovery into an optimization problem (e.g., ILP miner)

« Brute-force approaches that exploit monotonicity properties (apriori-style algorithms)



Bottom-Up Discovery

Example — Heuristic Miner Applied to SAP Data

L% proM UlTopia

- ] X

DralM designedt by G fluxicon
era e Data-aware He er for Ano 0 0 elo ase Ay .xe
Base Model +

INPUT: TRACES
attribute = "value" (use right clic vailahle attrib

Using 2,654/2 654 traces, 21,534/21,534 events

QUTPUT: PROCESS MODEL

SELECTED HEURISTICS
Dependency Heuristic Flexible Heuristics Miner
Conditional Heuristic C4.5 (Cohen's Kappa)
Bindings Heuristic Nearest Activity (FHM)

OPTIONS & THRESHOLDS
Frequency: Dependency: Bindings: Conditions:

Print and
Send

(" Purchase

_ |Create Purchase
e ( Order

() Item

\I‘C}- Create Purchase |/~

Requisit...

Send Purchase
Order
(eMail)

Receive Order
Confirmation

Record Goods
Receipt

Vendor creates
Invoice

~. | Record Invoice
Receipt M

1 | i
T 04 0s

0.1 0.9




Unsupervised Process Mining

L
ran Zogiy

1. Process Discovery

2. Bottom-Up Discovery

3. Top-Down Discovery



Top-Down Discovery

Example Top-Down Algorithm Approach: Inductive Mining

« Based on work done by Sander Leemans, Dirk Fahland, and Wil van der Aalst

« Family of approaches with different guarantees and scalability characteristics

(all can ensure replayability of the whole event log)

Ls =[{a,b,c,d,e, f,b,d,c,e,g),(a,b,d, ¢, e, g)>
(a,b,e,dye, f,bye,dye, f,b,d,c,e, g)]

Ly = [(a, c, d)45, (b, c, d)42, (a,c, e>38, (b, c, 6)22}

Ls =[{a,b,e, f)*,{a,b,e,c,d,b, f)°, {a,b,c,e,d,b, f)?. {a,b,c,d,e,b, f)?,
{a,e,b,c,d,b, f)S]

Ls =[(a,c,e,0)%, (a,e,¢,9)", (b,d, f,9)%, (b, f.d 9)"] »
L, = [(a, C)Q, {a,b,c)®, {a,b,b, C>2, {a,b,b,b,b, c)]
Lg = [{a, b,d)?, {a,b,c,b,d)?, {a,b,c,b,c,b, d)}
Lg = [(a, c,d) (b, e, 6)42}
Lo =|{a, (1)55} Q () aw ©)
L1y =[{a,b, )20, (a,c)go] k) X) 2]
al [b] [d] [e]




Top-Down Discovery

Inductive Mining

Input — simplified event log



Top-Down Discovery

Inductive Mining

Input — simplified event log

register
request

reinitiate pay reject
request compensation  request

examine examine
thoroughly casually

Output — process tree

sequential
compostion

exclusive
choice

parallel
composition

redo
loop

normal
activity

silent
activity




Top-Down Discovery

Inductive Mining in Steps

Apply recursively (split into multiple sublogs):

1.

2.

Create DFG based on the event log
Find a cut in the DFG

Partition event log based on chosen cut
Handle base cases

Recurse on non-base cases




Top-Down Discovery

Applying Inductive Mining Recursively

Step 1 — Create DFG Based On the Event Log

e8a bcd

24acbd

29 alblclelflblcld 4
24acbeflbcd
abcefcbd
Malcbe flbclelflcbd

Input — simplified event log

Directly-follows graph




Top-Down Discovery

Inductive Mining — Possible Cuts

@

b

(a) exclusive-choice cut (b) sequence cut

1 Order

(c) parallel cut

(d) redo-loop cut

4




Top-Down Discovery

Applying Inductive Mining Recursively

Step 2 — Choose Cut

_—>

% 2
5 9

f

6
[
7&‘
L 4

v

13

Exclusive choice cut not possible,
but we can apply sequence cut!

Directly-follows graph



Top-Down Discovery

Applying Inductive Mining Recursively

Step 2 — Choose Cut

Directly-follows graph Sequence cut

a},{b,c.ef}, {d}



Top-Down Discovery

Applying Inductive Mining Recursively

Step 3 — Partition Event Log Based on Chosen Cut

Sequence cut
{a} , {b,c,e,f}, {d}

3X m

4x E

Z3b cle flbic

Z3c ble flbc

B Clel 1 clb .
i cbleflbclefich

Partitioned event log




Top-Down Discovery

Applying Inductive Mining Recursively

Step 4 — Handble Base Cases

/
13xEY | | 3x e |1\3xﬂ 4 bic
4x E 4x E
24b cleflbc — 2x
24 clble flbc 24c ble flblc
b cefclh Mbicefch
i cbeflbiclelficib fcbeflbclefichb

Partitioned event log Process tree after first cut



Top-Down Discovery

Applying Inductive Mining Recursively

Step 5 — Recurse on Non-Base Cases

3x
4x E
2X EEE Apply cuts recursively on sublogs ]
xMEAHEE —
b cle flclb]
M clblelflbiclelflc|b

Process tree after first cut



Top-Down Discovery

Applying Inductive Mining Recursively

Step 1 — Create DFG Based On the Event Log

3x m
4x m
Mo Cle fiblc -
 ANEHRE
1 DEEHER
M ble T blcle flcib

Input — simplified event log Directly-follows graph



Top-Down Discovery

Applying Inductive Mining Recursively

Step 2 — Choose Cut

parallel cuts not possible, but we

can apply loop cut!

Exclusive choice, sequence cut and
Directly-follows graph




Top-Down Discovery

Applying Inductive Mining Recursively

Step 2 — Choose Cut

\6——> ="

g

g

—

Loop cut

{b, c}, {f, e}

Directly-follows graph



Top-Down Discovery

Applying Inductive Mining Recursively

Step 3 — Partition Event Log Based on Chosen Cut

N6

Loop cut

{b, c}, {f, e}

“do” “redo”

11x [k | | 7x DK

ox I3

Partitioned event log



Top-Down Discovery

Applying Inductive Mining Recursively

Step 4 — Handble Base Cases

There aren’t any base cases ]

“redo”

11x [ | | 7x B 11x 3K

/X E

28 c b 4clb

Partitioned event log Process tree after second cut




Top-Down Discovery

Applying Inductive Mining Recursively

Step 5 — Recurse on Non-Base Cases

l{dO”

11x [J¥e
S c b

Process tree after second cut

“redo” Apply cuts recursively on sublogs }




Top-Down Discovery

Applying Inductive Mining Recursively

Repeat All These Steps on the Sublogs

Parallel cut Sequence cut



Top-Down Discovery

Applying Inductive Mining Recursively

Final Process Tree




Top-Down Discovery

Applying Inductive Mining Recursively

Top-Down Process

e albicld

g alcbld
Pl4abcleflblcd
P4alclblelfibicld
ifabcelflclbld
falcblelflblclelflclbld]

e b c|
N (D) 13x [l
Pl bicle flbc]

Z4clble flbic

1x EEE
1x[ | (. EooEEEEGEE

a 4

ye f

20x 8 Y c | 7x




Top-Down Discovery

Alternative Notations




Top-Down Discovery

Inductive Mining Properties

« Basic algorithm formally guarantees that the original event log can be fully replayed
« Models satisfy formal properties that greatly facilitate further analysis (soundness)

« If the event log was generated from a basic process tree (no duplication of labels), then

an equivalent model will be found
« Extensions exist to deal with infrequent behavior and incomplete event logs

« Highly scalable — dealing with billions of events, millions of cases, and thousands of

unique activities

« Allows for distribution, streaming, etc.



Top-Down Discovery

From Process Discovery to Conformance Checking

cofformance predictions

II
information
systems
rg:zl)?gy 4 | performance apply 4 | improvements
digignostics compare *i ==

extract 1
enrich
event [ e [ o A ST ﬁ . X~ .
data e ) 3 ﬁ;
E":\ : ) Eﬁ Z 2‘_ e 2 _-

Ei) —
explore select
filter show show
clean model interpret
— adapt drill down

ﬁ
A
." transform
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Part Ill: Supervised Process Mining

Conformance Checking and the Connection to “Mainstream ML”



Supervised Process Mining

1. Token-Based Replay p3

2. Token-Based Replay Examples

(o)

3. Fitness at the Log Level start

end

4. Generating Supervised Learning Problems

Conformance checking and the link to other data
science technigues (e.g., machine learning).



Token-Based Replay

Positioning Conformance Checking

« > Software
supports System
controls
records
events, e.g.,
specifies messages,
models configures transactions,
analyses implements etc.
analyses !

A

Process discovery
Models ) conformance i
. |
enhancement

[1]
There are several conformance-checking techniques,

here we focus on “token-based replay”.



Token-Based Replay

Counting Tokens While Replaying

0 = produced tokens = 6
Cc = consumed tokens = 6
= missing tokens = 1
b = remaining tokens = 1

abeg

examine
thoroughly

C pay
compensation
@_> d examine
start register casually end
request
r=1 di— reject

check ticket request

reinitiate
request




Token-Based Replay

Fitness at the Trace Level




Token-Based Replay

Fitness at the Trace Level

fitness(o, N) = — 1_6 +—-|1—=-)==~0.83

Y| Ot

p = produced tokens = 6
c = consumed tokens = 6
= missing tokens = 1
= remaining tokens = 1



Token-Based Replay

Token-Based Replay Approach

While running:

Use four counters: P+ m -c tokens
(also per place)

At any time:
p+mz2cz2

(also per place)

p = produced tokens

e ¢ =consumed tokens

v

. = missing tokens

(consumed while not there)

= remaining tokens

(produced but not consumed) At the end:

=p+ -C
(also per place)




Token-Based Replay

Token-Based Replay Approach

« Initially, a token is produced for the start place — increment p

« Finally, a token is consumed from the end place (also if it is missing) — increment ¢

(possibly also m)

»



Token-Based Replay

Diagnostics

Dimensions

« Per place or sum for all

places in the model

« Per trace or sum for all

traces in the event log

Four possible combinations

v

Four counters:

0 = produced tokens

c = consumed tokens

= missing tokens

= remaining tokens



Token-Based Replay

Summary Token-Based Replay Approach

* Pick a trace and initialize the process model by producing a token for the start place

* Fire the transition that corresponds to the next activity in the trace and update the counters for produced and
consumed tokens. If not possible, add the required missing tokens first and update the missing tokens counter

* Repeat the above step until the end of the trace is reached

« Consume a token from the end place. If not possible, add the required missing token first and update the missing

tokens counter
+ Update the remaining tokens counter for each remaining token

« Compute:
1 1
fitness(o, N) = = (1 — M :
2 C 2 D



Supervised Process Mining

1. Token-Based Replay p3

2. Token-Based Replay Examples

(o)

3. Fitness at the Log Level start

end

4. Generating Supervised Learning Problems




Token-Based Replay Examples

Replaying o1 = (a,c,d, e, h)

WBO-O

O o OO

b

C p3

d S
P

end



Token-Based Replay Examples

Replaying o1 = (@)¢,d, e, h)

p=1 b
c=0
m=0
r=0
g
C p3
e
pS end
h
d S
—1 f
- —




Token-Based Replay Examples

Replaying o1 = (a{c)d, e, h)

p=1+2=3

c=0+1=1
m=0
r=0

( y—la

start

2

b

end



Token-Based Replay Examples

Replaying o1 = (a,c,@e,h)

p=3+1=4 b
c=1+1=2
m=0
r=0
o
pl C p3
ORE e
start P5 end
(@ @ h
p2 p4
- —1 f
- —




Token-Based Replay Examples

Replaying o1 = (a,c,de)h)

p=4+1=5

c=2+1=3
m=0
r=0

( y—la

start

b

end



Token-Based Replay Examples

Replaying o1 = (a,c,d, e(h)

p=5+1=6 b
C=3+2=5
m=0
r=0
9
pl C p3
O :
start pPS end
P2 d 04
_— | f
- —




Token-Based Replay Examples

Replaying o1 = (a,c,d, e, h)

p=6+1=7

c=5+1=6
m=0
r=0

( y—la

start

b

C p3

d S
P




Token-Based Replay Examples

Replaying o1 = (a,c,d, e, h)

p=7 b
c=6+1=7
m=20
r=0
9
pl C p3
O :
start P5 end
h
P2 d 04
—1 f
- —




Token-Based Replay Examples

Fitness at the Trace Level

start

-~ 3 O T

LTI T |
O o ~N
®

o1 = (a,c,d,e,h)

1
fitness(o1, N) = 5 (1 — —

pl

p2

p3

p5

end



Token-Based Replay Examples

Fitness at the Trace Level

start pS end

-~ 3 O T

LTI T |
O o ~N
®
®

p2 d

o1 = (a,c,d,e,h)

fitness(oq, N) =

DN |
N\
[—
|

3| O
N
+



Token-Based Replay Examples

Replaying o2 = (a,d,c, e, h)

= 3 0T
A ETIN ||
O o OO

Q
O
o

end




Token-Based Replay Examples

Replaying og = @d, c,e,h)

= 3 0T
A ETIN ||

O 0o OFr

end




Token-Based Replay Examples

Replaying o = (a,@ c,e,h)

p=1+1=2
c=0+1=1
m=0
r=0

O

start pl p2

end
missing
token is
added — T




Token-Based Replay Examples

Replaying o2 = (a,d(c)e, h)

p=2+1=3

c=1+1=2

m=0+1=1
r=0

Q—»a d

start pl p2

end




Token-Based Replay Examples

Replaying o2 = (a,d, c(e)h)

p=3+1=4
c=2+1=3
m=1
r=0
b
Oz c :
start pl p2 end




Token-Based Replay Examples

Replaying o2 = (a,d, ¢, e(h)

p=4+1=5
c=3+1=4
m=1
r=0
b
g
Q—» a C d HQ—» e 4
start pl p2 pP3 end




Token-Based Replay Examples

Replaying o2 = (a,d,c, e, h)

p=5+1=06
C =

4+1 =5
m=1
r=0

O

start




Token-Based Replay Examples

Replaying o2 = (a,d,c, e, h)

start pl p2 end

remaining f
token




Token-Based Replay Examples

Replaying o2 = (a,d,c, e, h)

p=6
C=6
m=1
r=0+1=1
b
ORF c d
start pl p2 end




Token-Based Replay Examples

Fitness at the Trace Level

Q—»a C

start pl

-~ 3 O T

P = 0O O

end

oo = {(a,d,c,e, h)

1 1
ﬁtness(ag,N) — 5 (1 — @) + 5 (1 — i)



Token-Based Replay Examples

Fitness at the Trace Level

-~ 3 O T

P = 0O O

Q—»a C

start pl

end

oo = {(a,d,c,e, h)

1 1 D
fit N)y=—=11-—-= —|1l—=]===0.
ness(og, N) 2( 6) —|—2( 6) ; 0.83



Token-Based Replay Examples

Replaying o3 = (a)

()L

A2
s

end

-

3 O 0T




Token-Based Replay Examples

Replaying o3 = @

end

-

3 O 0T




Token-Based Replay Examples

Replaying o3 = (a)

o=k

Start

A
s

end

p=1+2=3
c=0+1=1
m=0

r=0




Token-Based Replay Examples

Replaying o3 = (a)

o=k

Start

A
s

end

3 O T

,
I
o




Token-Based Replay Examples

Replaying o3 = (a)

o=k

Start

X

RO

A
s

end

missing
token is
added

p=3
c=1
m=0+1=1
r=0




Token-Based Replay Examples

Replaying o3 = (a)

o=k

Start

X

O

A
s

end

missing
token is
consumed




Token-Based Replay Examples

Replaying o3 = (a)

o=k

Start

two
remaining
tokens




Token-Based Replay Examples

Fithess at the Trace Level

( )—

Start

03 — (CL)

N
hed

1 1
fitness(os, V) = 5 (1 — @) + 5




Token-Based Replay Examples

Fithess at the Trace Level

( )—

Start

03 — (CL)

1
fitness(os, V) = 5 (1 — —) +

AT
A4

1
2 2

p=23
c=2
m=1
end r=2
H
— — | = — ~0.42
3) 12




Token-Based Replay Examples

What is the Worst Case Scenario?

start

&N

1 1
fitness(oped, V) = 5 (1 — —) + 5 (

end

O O

Bﬁ




Supervised Process Mining

1. Token-Based Replay p3

2. Token-Based Replay Examples

(o)

3. Fitness at the Log Level start

end

4. Generating Supervised Learning Problems




Fitness at the Log Level

Fithess at the Log Level

fitness(L, N) =

Less scary than it looks:

The sums of p, ¢, m, and r over
all traces in the entire event log ...

All
tokens

O')X’I’TLN

All produced
tokens

All consumed
tokens

All
tokens




Fitness at the Log Level

Computing Fitness

# |trace f)
455(acdeh n thoroughly
177 |adceh register i:irl?ai\ﬂ;
request
144 abdeh ’ 2 n reject
check ticket request
111 aCdeg reini iate
1 S L(o)xm 1 S L(o)xr
82|adceg ﬁtneSS (L N) -~ (1= oEL N,o 4+ = 1 — ocEL N,o
\ —
56 |adbeh 2 deL L(U) X CN,o 2 ZJGL L(U) X PN,o N, u pay
47 |acdefdbeh compensation
s O GO L OO

w
w

start  register pl: examine  p2 check p3 decid
o Ty
acdefbdeg

[ERN
SN

reinitiate request

11 |acdefdbeg
9|adeefoden fitness (Lgy , N1) = 1
8|adcefdben N
1 examine p3
5 adcefbdeg ﬁtness (qull ’ N2) p— 0.9504 : P casually |
3|acdefbdefdbeg L i decke S st
esectonns fitness (L , N3) = 0.8797 Dalins
2|adcefbdefbdeg fitness ( Lean , N 4) =
1|adcefdbefbdeh Ny tr?;;rﬂ;nhely fi:igt(
1|adbefbdefdbeg
1|adcefdbefcdefdbeg :Zgiusg oxamine
1391 Tequest reiect

request




Fitness at the Log Level

Computing Fitness — Example

Trace Frequency
abcd 10
acbd 10
aed 10
abd 2

acd 1

ad 1
abbd 1

multiset of traces in tabular

format

b
@] 7 L F -0
start end
p2 C p4

« Consider the event log containing 35 cases

 What is the fitness of this process model?



Fitness at the Log Level

Computing Fitness — Example

Consider Trace acd (o = (a, ¢, d))

0=

start

end

-

3 O T
[
OOO




Fitness at the Log Level

Computing Fitness — Example

Consider Trace acd (o = (a, ¢, d))

P

start

end

p=5
c=5
m=1
r=1




Fitness at the Log Level

Computing Fitness — Example

Trace Frequency Produced | Remaining | Consumed Missing Produced | Remaining | Consumed | Missing
(p) () (c) (m) (all) (all) (all) (all)

abcd 10 6 0 6 0 60 0 60 0
achd 10 6 0 6 0 60 0 60 0
aed 10 6 0 6 0 60 0 60 0
abd 2 5 1 5 1 10 2 10 2
acd 1 5 1 5 1 5 1 5 1
ad 1 4 2 4 2 4 2 4 2
abbd 1 6 2 6 2 6 2 6 2

acd:

. FouipoN

C - 5 @—» a pl e p3 d —>©

m — 1 start \(: )/ end

r=1 S i




Fitness at the Log Level

Computing Fitness — Example

Trace Frequency Produced | Remaining | Consumed Missing Produced | Remaining | Consumed | Missing
(p) () (c) (m) (all) (all) (all) (all)

abcd 10 6 0 6 0 60 0 60 0
achd 10 6 0 6 0 60 0 60 0
aed 10 6 0 6 0 60 0 60 0
abd 2 5 1 5 1 10 2 10 2
acd 1 5 1 5 1 5 1 5 1
ad 1 4 2 4 2 4 2 4 2
abbd 1 6 2 6 2 6 2 6 2

acd:

. FouipoN

C - 5 @—» a pl e p3 d —>©

m — 1 start \(: )/ end

r=1 S i




Fitness at the Log Level

Computing Fitness — Example

Trace Frequency Produced | Remaining | Consumed Missing Produced | Remaining | Consumed | Missing
(P) () (c) (m) (all) (all) (all) (all)
abcd 10 6 0 6 0 60 0 60 0
achd 10 6 0 6 0 60 0 60 0
aed 10 6 0 6 0 60 0 60 0
abd 2 5 1 5 1 10 2 10 2
acd 1 5 1 5 1 5 1 5 1
ad 1 4 2 4 2 4 2 4 2
abbd 1 6 2 6 2 6 2 6 2
Sum 205 7 205 7
fitness(L, N) = ! (1 Loer (o) X mNJ) - ! (1 2oer L(7) X TNU)
7 2 ZO’EL L(o) X cN,6 2 ZaeL L(o) x PN,




Fitness at the Log Level

Computing Fitness — Example

Trace Frequency Produced | Remaining | Consumed Missing Produced | Remaining | Consumed | Missing
(P) () (c) (m) (all) (all) (all) (all)
abcd 10 6 0 6 0 60 0 60 0
achd 10 6 0 6 0 60 0 60 0
aed 10 6 0 6 0 60 0 60 0
abd 2 5 1 5 1 10 2 10 2
acd 1 5 1 5 1 5 1 5 1
ad 1 4 2 4 2 4 2 4 2
abbd 1 6 2 6 2 6 2 6 2
Sum 205 7 205 7
1 7 1 7
= (11— —)+ =(1 — —) = 0.966
2( 205) 2 205)




Fitness at the Log Level

Limitations of Token-Based Approach

« Basic replay approach assumes visible & uniquely labeled transitions.

« Most implementations (ProM, PM4Py, Celonis, etc.) use heuristics to deal with silent

transitions and multiple transitions having the same label
« Conformance values are sometimes too optimistic

« Local decision-making may lead to misleading results




Fitness at the Log Level

Alignments
A Better, but More Expensive Way to Check Compliance

Deviations
Where?
Why?

» Find the “closest path” in the model

« Qutside of the scope of this course



Supervised Process Mining

1. Token-Based Replay p3

2. Token-Based Replay Examples

(o)

3. Fitness at the Log Level start

end

4. Generating Supervised Learning Problems




Generating Supervised Learning Problems

Connection to Machine Learning

Machine learning and many
other data science techniques
are not process-centric

Consider an information system
with thousands of tables. How
to get started?

Process mining can generate
valuable machine-learning
problems

(0)—]a

start

register
request

check ticket

How long?

b What should we do?

examine
thoroughly Why’?
e c3 pay
e compensation

examine
casually decide end

d c4 reject

request

reinitiate
request



Generating Supervised Learning Problems

Decision Mining

b
. \
examine
thoroughly
For example:
c L1 ¢ pay « Cases handled by John
a e compensation handled i
examine « Cases handled in January
start  register casually decide end « (Cases that were submitted late
t
reques « Cases of new customers

d c4 reject i

request

check ticket
reinitiate
request

Which cases require a thorough examination?



Generating Supervised Learning Problems

Decision Mining

examine
thoroughly

C

examine
casually

: a
start register
request

d

check ticket

c3

c4

Which cases are rejected?

decide

pay

compensation

reject
request

e

reinitiate

request

end

For example:

Cases above €500
Cases that required multiple checks
Cases that got delayed



Generating Supervised Learning Problems

Performance Mining

thoroughly

c3 pay

compensation

C

examine
casually decide

: a
start register
request

end

d

check ticket

c4 reject

request

reinitiate
request

Which cases took more than two months?

examine For example:

Cases handled by Mary
Cases that required multiple checks



Generating Supervised Learning Problems

Performance Mining

tr?;(s)rslgnhely For example:
A lack of resources due to iliness

c c3 bay * An unusual percentage or rework
@_’ a | o compensation .
examine
start register casually decide ¢5 end
request -
d c4 reject

request

check ticket

reinitiate
request

What caused the delays in decision making in May?



Generating Supervised Learning Problems

Deviation Mining

examine
thoroughly

C

examine
casually

: a
start register
request

d

check ticket

c3

pay
compensation °

decide ¢5 end

reject
request

reinitiate

request

For which cases was the ticket not checked?

For example:

Cases handled by Mary
Cases initiated by the downtown office



Generating Supervised Learning Problems

(@) a

start

register
request

Deviation Mining

examine
thoroughly

C

examine
casually

d

check ticket

Which cases were rejected and not paid?

c3

c4

reinitiate

request

AN

Icompensatior

\E/

reject
request

D

end

For example:

Cases handled by Pete
Cases that arrived in June



Generating Supervised Learning Problems

Operational Support Using Process Mining

What is the expected remaining flow

b time of the blue case?
examine
thoroughly
g
c c3 pay
a e compensation
examine
start register casually decide ¢5 end
request h
d c4 reject
check ticket request

reinitiate
request

What is the expected remaining flow
time of the green case?



Generating Supervised Learning Problems

Operational Support Using Process Mining

: a
start register
request

examine
thoroughly

C

examine
casually

d

check ticket

c3
e
decide €5
c4
f o
reinitiate
request

What is the probability that the blue
case will be rejected?

g

pay
compensation

end

h

reject
request

What is the probability that the green
case will need two decisions?



Generating Supervised Learning Problems

General Pattern

information event log

feature supervised enhanced
process model

systems /real-

life process extraction learning

‘ instances with descriptive ~
features and a selected
target feature

process models performance/
conformance diagnostics

process mining — standard ML problems in

tabular format



Summary

Process Mining

« Event data are omnipresent (just like text data or image data).

« Avery interdisciplinary field! Connections with traditional data science, process management,
simulation, machine learning, ...
« We focused on two tasks:
— Process Discovery: obtain a process model from historic event data
— Conformance Checking: obtain a measure of deviation between expected and actual

behavior

« Arelatively young field of research: Many foundational questions are still open, but already

widely adopted in industry.



Summary

Learn More About Process Mining?

 Also, we created several online courses on Coursera and edX.

« Visit https://www.pads.rwth-aachen.de/ for thesis projects, etc.

@ AACHEN
UNIVERSITY

mtroducmg our newest course:

A Hands-on Introduction

to Process Mining

Cc

Consider taking Business Process Intelligence (BPI) in the next semester.

Wil van der Aalst

Process

Mining

Second Edition

Many opportunities to go deeper, e.g., Advanced Process Mining (APM), seminars, etc.

e Process Mining
8 Handbook


https://www.pads.rwth-aachen.de/

