
Elements of Machine Learning & Data Science

Prof. Wil van der Aalst

Marco Pegoraro, M.Sc.
Christian Rennert, M.Sc.

Text Mining
Lecture 21

Text Mining

1. Introduction to Text Mining

2. Text Preprocessing

3. Modeling

4. Enriching Text: Linked Data

5. N-gram Model

6. Learning a Representation

7. Word2vec

Text Mining Pipeline

Text mining is the extraction of (structured) knowledge from (unstructured) text

Introduction to Text Mining

database corpus
transformed

data

pattern results

selection preprocessing modeling interpretation

Text Mining Applications – Document Clustering

History

History of
Rome

”The History
of Rome”

”Roman
History”

History of
Greece

”The History
of Greece”

”Greek
Ancient

Monuments”

”Greece In
the Past”

Introduction to Text Mining

Text Mining Applications – Document Classification

Introduction to Text Mining

Technology

Art

Sport

Text Mining Applications – Named Entity Recognition

Introduction to Text Mining

Named Entity Recognition (NER)

• recognizes named entities in a text

• classifies them according to their contextual information

”I was at this beach”, said Jenny. She had been traveling through Florida before. ”I’m sure that Max

would love to visit Miami as well”

person place

Text Mining Applications – Sentiment Analysis

Introduction to Text Mining

Sentiment Analysis:

Identifies positive/negative attitudes through recognition of emotions, opinions or moods

Trust ”Amazing news for Bitcoin!”

Fear ”Suspicious assault in Berlin”

Surprise ”What happened with the President of the US?”

Text Mining Applications – Other Examples

Introduction to Text Mining

• Part-Of-Speech (POS) tagging – label words with their corresponding part of a speech (noun, verb,

adjective, etc.)

• Coreference resolution – identification of words and expressions that refer to the same entity in a

text (Max – he, Jenny – her, etc.)

• Keyword extraction – automatic identification of significant terms in a text

• Machine translation – automatic translation from one language to another

database corpus
transformed

data

pattern results

selection preprocessing modeling interpretation

Important steps

Introduction to Text Mining

It’s crucial to preprocess and model the text properly

Don’t get confused: not
the predictive model

generation as seen before!

Important steps

Introduction to Text Mining

• After preprocessing and modeling, we can apply other techniques:

 Supervised learning

 Unsupervised learning

 Statistical methods

database corpus
transformed

data

pattern results

selection preprocessing modeling interpretation

Decision trees
Regression

SVMs
Neural networks

Clustering
Frequent itemsets
Association rules
Sequence mining
Process mining

Process discovery
Conformance checking

Text Mining

1. Introduction to Text Mining

2. Text Preprocessing

3. Modeling

4. Enriching Text: Linked Data

5. N-gram Model

6. Learning a Representation

7. Word2vec

Structuring Text

• Challenge: from unstructured data (text) to

structured data (ideally numbers)

• Texts are usually unstructured:

 Do we consider sentences or words?

 Lengths of single units of information vary.

 What are text features and instances?

Text Preprocessing

Corpus

Text mining pipeline – Step 1: Extract a corpus

Text Preprocessing

database corpus
transformed

data

pattern results

selection preprocessing modeling interpretation

Corpus

Text mining pipeline – Step 1: Extract a corpus

• A corpus is a collection of pieces of a text

• Pieces can be words, sentences, paragraphs, tweets, posts, …

• Pieces in the corpus are often called documents (regardless of their nature and size)

Text Preprocessing

database corpus
transformed

data

pattern results

selection preprocessing modeling interpretation

Annotated Corpus

• Annotated corpus: units (or fractions of units) of a text are annotated with additional information in

order to work as a training set for a specific application

• Corpora are usually annotated by hand

Text Preprocessing

Annotated Corpus
for domain-specific (medical) named entity recognition

”Patient is a 55-year-old male with a history of hypertension and type 2 diabetes mellitus. On physical

examination, there was mild tenderness over the right upper quadrant and laboratory testing revealed

elevated liver enzymes. Based on these findings, the patient was diagnosed with non-alcoholic fatty

liver disease and started on a treatment plan consisting of lifestyle modifications and medication.”

Text Preprocessing

age gender medical history medical history

anatomical location

laboratory findings

diagnosis

Preprocessing

Text mining pipeline – Step 2: the corpus goes through the preprocessing

Text Preprocessing

database corpus
transformed

data

pattern results

selection preprocessing modeling interpretation

Preprocessing

Text mining pipeline – Step 2: the corpus goes through the preprocessing

Presented Techniques:

• Tokenization

• Stop word removal

• Token normalization: stemming or lemmatization

Text Preprocessing

database corpus
transformed

data

pattern results

selection preprocessing modeling interpretation

Tokenization

• Splitting the text into smaller units: tokens

• Usually tokens are words (word tokenization)

• Could also be characters, ideograms, phonemes, syllables, sentences, phrases, clauses, …

Text Preprocessing

Word Tokenization

Easy! Just split after spaces, right?

Text Preprocessing

“He’s been talking to Bill de Blasio, the 109th New York City mayor.”

‘He’s’, ‘been’, ‘talking’ ‘to’ ‘Bill’ ‘de’ ‘Blasio,’, ‘the’, ‘109th’, ‘New’, ‘York’, ‘City’, ‘mayor.’

Word Tokenization

Not always that easy…

“He’s been talking to Bill de Blasio, the 109th New York City mayor.”

‘He’s’, ‘been’, ‘talking’ ‘to’ ‘Bill’ ‘de’ ‘Blasio,’, ‘the’, ‘109th’, ‘New’, ‘York’, ‘City’, ‘mayor.’

Text Preprocessing

This one token should actually be 2

Should there be 3 tokens or 1?

Does this mean something? Should

we have a token for each number?

3 tokens or 1?

Shouldn’t be there
Shouldn’t be there

Tokenization Is Not Trivial

• Other languages differ from English and can have 40- or even 60-letter words that are a

combination of a few single words

• Example: German

Is this one token?

Text Preprocessing

Arbeiterunfallversicherungsgesetz

accident

employee insurance

law

Tokenization Is Not Trivial

• Other languages differ from English and can have 40- or even 60-letter words that are a

combination of a few single words

• There exists specific software to tokenize

• Usually tokenization has to be specifically

designed ad-hoc for a certain task

• Tokenization is application-dependent

Text Preprocessing

Stop Word Removal

• Removing words that are not informative

• A stop list commonly contains:

 ”to be” and ”to have” verbs: is, are, am, was, have, has, ...

 articles: the, a, an, …

 auxiliary verbs: will, should, would, shall, must, …

 prepositions: in, to, from, of, by, on, …

 interrogative words: who, what, which, where, when, how, why, …

• Stop lists are language-dependent

Text Preprocessing

Stop Word Removal
Why do we remove stop words?

What happens if we compare the following two sentences by counting the number of identical words?

“The cats, which were seven, started to climb the tree.”

“The Saxons, which were outnumbered, started to prepare the siege.”

Text Preprocessing

Stop Word Removal
Why do we remove stop words?

6/10 words are the same! → These sentences should be very similar.

“The cats, which were seven, started to climb the tree.”

“The Saxons, which were outnumbered, started to prepare the siege.”

Text Preprocessing

Stop Word Removal
Why do we remove stop words?

However, 5 out of 6 common words are common stop words…

“The cats, which were seven, started to climb the tree.”

“The Saxons, which were outnumbered, started to prepare the siege.”

Text Preprocessing

Stop Word Removal
Why do we remove stop words?

• After removing stop words, sentences are not so similar anymore

• We went from 60% overlap to 10% overlap

“The cats, which were seven, started to climb the tree.”

“The Saxons, which were outnumbered, started to prepare the siege.”

Text Preprocessing

Stop Word Removal

• Be careful about what you remove!

• Assuming our previous stop list:

The Who’s seventh studio album is titled ”The Who by Numbers”

→

seventh studio album titled Numbers

Text Preprocessing

Stop Word Removal

• Designing a good stop list is not a trivial task

• Deciding which words should be stop words depends on the context/goal

• Stop lists can be domain-dependent

 Example: in a healthcare domain, ”patient” and ”hospital” could be stop words

Text Preprocessing

Token Normalization

• Goal: Transforming tokens to make them comparable

• Main forms:

 Stemming

 Lemmatization

• Other forms:

 Case-folding – converting everything into lowercase

 Alternative spelling (color/colour)

 Transliterations

 ä → ae, ö → oe

Text Preprocessing

Stemming

• Reducing words to their word stem (base or root form)

• Works most of the time

• A stem does not need to be a word

• Usually a word stem carries the meaning

• Stemming algorithms can be aggressive or conservative

 Aggressive stemmers focus on similarities between documents

 Conservative stemmers carefully consider differences

Text Preprocessing

comput

compute

computer

computers

computing

computational

Stemming - Example

” As I walked through the dark forest, the rustling

of leaves under my feet echoed through the silent

night. I could feel the chill of the autumn air

seeping through my jacket, and the moonlight

shone down in a pale glow. Suddenly, a twig

snapped, and I froze. Was someone or

something watching me? I held my breath,

waiting for a sign, but all I heard was the sound of

my own heartbeat, thumping in my ears. Slowly, I

continued on, my nerves on edge, unsure of what

lays ahead.”

Text Preprocessing

as i walk through the dark forest the rustl of leav

under my feet echo through the silent night i

could feel the chill of the autumn air seep through

my jacket and the moonlight shone down in a

pale glow sudden a twig snap and i froze was

someon or someth watch me i held my breath

wait for a sign but all i heard was the sound of my

own heartbeat thump in my ear slowli i continu on

my nerv on edg unsur of what lay ahead

Lemmatization

• Lemmatization applies vocabulary and

morphological analysis

• Goal:

 To remove inflectional endings only

 To return the base or dictionary form of a word

 This form is known as the lemma

• More sophisticated than stemming

• Often rule-based (every language has exceptions)

Text Preprocessing

compute

compute

computer

computers

computing

computational

”comput” in stemming

Lemmatization - Example

” As I walked through the dark forest, the rustling

of leaves under my feet echoed through the silent

night. I could feel the chill of the autumn air

seeping through my jacket, and the moonlight

shone down in a pale glow. Suddenly, a twig

snapped, and I froze. Was someone or

something watching me? I held my breath,

waiting for a sign, but all I heard was the sound of

my own heartbeat, thumping in my ears. Slowly, I

continued on, my nerves on edge, unsure of what

lay ahead.”

Text Preprocessing

as I walk through the dark forest the rustle of leaf

under my foot echo through the silent night I

could feel the chill of the autumn air seep through

my jacket and the moonlight shine down in a pale

glow suddenly a twig snap and I freeze be

someone or something watch me I hold my

breath wait for a sign but all I hear be the sound

of my own heartbeat thump in my ear slowly I

continue on my nerve on edge unsure of what lay

ahead

Stemming vs Lemmatization

as i walk through the dark forest the rustl of leav

under my feet echo through the silent night i

could feel the chill of the autumn air seep through

my jacket and the moonlight shone down in a

pale glow sudden a twig snap and i froze was

someon or someth watch me i held my breath

wait for a sign but all i heard was the sound of my

own heartbeat thump in my ear slowli i continu on

my nerv on edg unsur of what lay ahead

Text Preprocessing

as I walk through the dark forest the rustle of leaf

under my foot echo through the silent night I

could feel the chill of the autumn air seep through

my jacket and the moonlight shine down in a pale

glow suddenly a twig snap and I freeze be

someone or something watch me I hold my

breath wait for a sign but all I hear be the sound

of my own heartbeat thump in my ear slowly I

continue on my nerve on edge unsure of what lay

ahead

Other Challenges

• Prepositional attachment (e.g., what does a prepositional phrase “with” refer to)

“eating spaghetti with chopsticks” vs “eating spaghetti with meatballs”

• Anaphora resolution (an expression whose interpretation depends on another expression)

“He convinced his roommate to buy a TV for himself”

• Other hidden information

“He quit smoking” → he used to smoke

• Homonyms (same word can have different meanings, be a noun or verb, etc.)

sign, firm, tie, watch, tear, bark…

Text Preprocessing

Text Mining

1. Introduction to Text Mining

2. Text Preprocessing

3. Modeling

4. Enriching Text: Linked Data

5. N-gram Model

6. Learning a Representation

7. Word2vec

Modeling

After preprocessing the data, we can focus on building a usable model (i.e., representation)

Modeling

database corpus
transformed

data

pattern results

selection preprocessing modeling interpretation

Bag of Words Model

• Bag of Words (BoW) is the simplest model

• It represents each document d in the corpus as a bag of words

(a multisets of words)

Modeling

Bag of Words Model – Examples

“Process discovery and conformance checking are part of process mining.”

[‘process’ 2, ‘discover’ 1, ‘conform’ 1, ‘check’ 1, ‘part’ 1, ‘min’ 1]

Modeling

(apply stemming and
stop word removal)

Bag of Words Model – Examples

“Process discovery and conformance checking are part of process mining.”

[‘process’ 2, ‘discover’ 1, ‘conform’ 1, ‘check’ 1, ‘part’ 1, ‘min’ 1]

”I love to eat pizza. Pizza is my favorite food. When I want to eat, I always choose pizza.”

[‘pizza’ 3, ‘eat’ 2, ‘love’ 1, …]

Modeling

Bag of Words Model

• A naïve model - multiset representation loses the order of the items:

“James loves watching movies, Kate hates it.”

“Kate loves watching movies, James hates it.”

“Chickens hatch from eggs.”

“Eggs hatch from chickens.”

 BoW can be unsuitable for applications that strongly depend on word order

Modeling

[‘James’, ‘love’, ‘watch’,

‘movie’, ‘Kate’, ‘hate’]

[‘chicken’, ‘hatch’, ‘egg’]

Bag of Words Model
Why is it still useful?

• Easy to implement

• Works well enough in many applications

• Was successfully used in the past

(e.g., for spam detection, information retrieval)

• Today, it’s often used as an intermediate step (feature

extraction) in combination with more advanced techniques

Modeling

Document-Term Matrix

Tabular form for text data representation – Bag of Words in matrix form

Modeling

Document love eat pizza favorite food

Doc1 1 2 2 1 1

Doc2 0 1 2 0 0

Doc3 1 1 1 0 1

Frequency of
‘love’ in Doc3

Term Frequency (TF)

• A document-term matrix is a mathematical matrix that contains frequencies of the terms (words)

found in documents

• These frequencies are called term frequencies (tf)

Modeling

Term Frequency (TF) - Example

Modeling

”I love to eat pizza. Pizza is my favorite food. When I want to eat, I always choose pizza.

Pizza toppings can vary, but my go-to toppings are pepperoni and mushrooms. I could eat pizza every

day and I would never get tired of it.”

Term Frequency (TF) - Example

Modeling

”I love to eat pizza. Pizza is my favorite food. When I want to eat, I always choose pizza.

Pizza toppings can vary, but my go-to toppings are pepperoni and mushrooms. I could eat pizza every

day and I would never get tired of it.”

What is the
topic of the
document?

Inverse Document Frequency (IDF)

• IDF reflects how ”special” the word is in the corpus 𝑐 in terms

of its frequency

• Intuition: The more unlikely the word is, the higher the value

Modeling

Inverse Document Frequency (IDF) - Example

Consider an imaginary corpus of 100 recipes from a cookbook 𝑐:

Modeling

Inverse Document Frequency (IDF)

• Words with low idf score appear in many documents

• These words are not useful for distinguishing between the documents

Modeling

Inverse Document Frequency (IDF)

• Words with low idf score appear in many documents

• These words are not useful for distinguishing between the documents

• Low-scored words can be stop word candidates (add to a stop list)

Modeling

TF-IDF Scoring

• Combination of the tf and idf scoring

 tf: strength of the association between a word and a document

 idf: the relevance of a word in a whole corpus (how “special“ it is)

• Essential in information retrieval

Modeling

idf(w, c) < 1: w occurs in more than half of the documents
idf(w, c) > 1: w occurs in less than half of the documents

TF-IDF Scoring - Example

Four documents 𝑑1, 𝑑2, 𝑑3 and 𝑑4 in corpus 𝑐

‘Cats are the only pet of the felines

family, while dogs are canids.’

‘Cats are the third-most popular pet in

the US.’

‘Dogs have been selected for millennia

as pet animals.’

‘Normally, dogs are not aggressive

towards other dogs outside their territory.’

Modeling

stem: feline

Four documents 𝑑1, 𝑑2, 𝑑3 and 𝑑4 in corpus 𝑐

TF-IDF Scoring - Example

‘Cats are the only pet of the felines

family, while dogs are canids.’

‘Cats are the third-most popular pet in

the US.’

‘Dogs have been selected for millennia

as pet animals.’

‘Normally, dogs are not aggressive

towards other dogs outside their territory.’

Modeling

stem: cat

‘Cats are the only pet of the felines

family, while dogs are canids.’

‘Cats are the third-most popular pet in

the US.’

‘Dogs have been selected for millennia

as pet animals.’

‘Normally, dogs are not aggressive

towards other dogs outside their territory.’

TF-IDF Scoring - Example

Modeling

Four documents 𝑑1, 𝑑2, 𝑑3 and 𝑑4 in corpus 𝑐
stem: dog

TF-IDF Scoring

• Many querying systems rely on TF-IDF scoring (or a variation)

• Simple algorithm:

 Input: a query (a set of words) and a corpus 𝑐

 For each document d in the corpus compute

 Rank documents by their scores

 Return first x documents

Modeling

Document-Term Matrix with TF-IDF

• The document-term matrix can also be built with TF-IDF scores

• Tabular data with instances (documents) and features (words) – other features can be added

• The matrix allows to apply a wide range of data science techniques

Modeling

word1 word2 word3 word4 …

doc1

doc2

…

each column is

a word/term

each row is

a document

each cell

contains the

TF-IDF score

Document Classification

Modeling

Document love eat pizza favorite food Article class

Doc1 1 2 2 1 1 recipe

Doc2 0 1 2 0 0 restaurant menu

Doc3 1 1 1 0 1 cookbook

Target label for

classification (e.g.,

to train a neural

network)

Every document is represented by a vector of a constant length

(term frequencies or TF-IDF scores)

Document Clustering

• Having a fixed length vector, we need a distance/similarity measure to perform clustering

• Recall the Clustering lecture– we can use cosine similarity

Modeling

Document Clustering

• Cosine similarity is well-suited to compute for sparse vectors or vectors with different lengths

(but in principle other metrics are possible)

• With a distance metric for text data, we can perform clustering

(e.g., K-means, K-medoids, DBSCAN, etc.)

Modeling

Text Mining

1. Introduction to Text Mining

2. Text Preprocessing

3. Modeling

4. Enriching Text: Linked Data

5. N-gram Model

6. Learning a Representation

7. Word2vec

Information Structure

• Representing text using a matrix makes it

”processable”, but connections between

concepts and their meaning are missing

Enriching Text: Linked Data

Information Structure

• Representing text using a matrix makes it

”processable”, but connections between

concepts and their meaning are missing

• Solution: databases that are able to store

connections between terms

• Querying these databases allows to navigate

words on the basis of lexical relationships

Enriching Text: Linked Data

WordNet

• A lexical network for English

• 155.000+ words

• Organized in graphs and divided in synsets (sets of synonyms, i.e., semantically equivalent)

• Relationship information:

 antonyms (cold vs warm),

 hyponyms (daisy and rose are hyponyms of a flower, i.e., “is a” relation),

 meronyms (wheel and engine are meronyms of a car, i.e., “part of” relation),

 …

Enriching Text: Linked Data

Resource Description Framework (RDF)

• One step further: a general data model

• Describes relationships between things – connections between concepts can carry any meaning

• Based on triples - statements of the following form:

• Looks simple, but with a database large enough, we can answer very complex queries

Enriching Text: Linked Data

subject object
predicate

Resource Description Framework (RDF) - Example

<ent:Elizabeth II>

<rel:was_the_Queen_of>

<ent:United Kingdom>

<ent:Berlin>

<rel:located_in>

<ent:Germany>

Enriching Text: Linked Data

subject object
predicate

Uniform Resource Identifier (URI)

• Unique and unambiguous identifiers for entities

• Easy to define for limited domains

 Student ID is a URI for students

 ISBN is a URI for books

• If we want to identify all entities, it becomes more difficult

Enriching Text: Linked Data

DBpedia
Wikipedia for machines

Information extracted from Wikipedia, but organized in RDF triples

Enriching Text: Linked Data

https://dbpedia.org/page/Pizza, 07/03/2023

https://dbpedia.org/page/Pizza

Linked Open Data

• A number of open source databases are

interconnected and form the Linked Open Data

– a large database of statements

• Publicly available and reusable

• Combined dimensions – tens of billions

of RDF triples!

• Example: http://cas.lod-cloud.net/

• Word in text can be related to entities in such a

database

Enriching Text: Linked Data

cas.lod-cloud.net

http://cas.lod-cloud.net/

Text Mining

1. Introduction to Text Mining

2. Text Preprocessing

3. Modeling

4. Enriching Text: Linked Data

5. N-gram Model

6. Learning a Representation

7. Word2vec

Completion Prediction

• Completion prediction is another text mining application

• Given a sequence of words, predict the next word

• Examples:

 Apple gets the most of its revenue from selling cell _____

 Your code crashed, it has a _____

N-gram Model

Completion Prediction

• Completion prediction is another text mining application

• Given a sequence of words, predict the next word

• Examples:

 Apple gets the most of its revenue from selling cell _____

 Your code crashed, it has a _____

N-gram Model

phones

Completion Prediction

• Completion prediction is another text mining application

• Given a sequence of words, predict the next word

• Examples:

 Apple gets the most of its revenue from selling cell _____

 Your code crashed, it has a _____

N-gram Model

phones

bug

Completion Prediction

• Completion prediction is another text mining application

• Given a sequence of words, predict the next word

• Examples:

 Apple gets the most of its revenue from selling cell _____

 Your code crashed, it has a _____

• The BoW model is not useful in this case

• We need a model that is capable to retain information about the word order

N-gram Model

phones

bug

N-gram Model

• N-gram models use sequences of consecutive tokens, instead of individual tokens

• The N in N-gram indicates the length of a sequence

N-gram Model

N-gram Model (N=1)

“Apples are good for you.”

Unigram model:

[‘apples’, ‘are’, ‘good’, ‘for’, ‘you’]

The unigram model is identical to BoW!

N-gram Model

N-gram Model (N=2)

“Apples are good for you.”

Unigram model:

[‘apples’, ‘are’, ‘good’, ‘for’, ‘you’]

Bigram model:

[(‘apples’, ‘are’), (‘are’, ‘good’), (‘good’, ‘for’), (‘for’, ‘you’)]

N-gram Model

N-gram Model (N=3)

“Apples are good for you.”

Unigram model:

[‘apples’, ‘are’, ‘good’, ‘for’, ‘you’]

Bigram model:

[(‘apples’, ‘are’), (‘are’, ‘good’), (‘good’, ‘for’), (‘for’, ‘you’)]

Trigram model:

[(‘apples’, ‘are’, ‘good’), (‘are’, ‘good’, ‘for’), (‘good’, ‘for’, ‘you’)]

N-gram Model

Preprocessing

• Preprocessing steps are context and application dependent

• For example, stop word removal is useful for the document classification, however, it should not be

utilized for completion prediction

• Examples in this video do not use any preprocessing steps

(no stop word removal, stemming or lemmatization)

N-gram Model

Motivation

• We use N-grams is to estimate the probability of a word occurrence given its prior context

• An N-gram uses N-1 tokens for the context

 Unigram:

P(phone)

 Bigram:

P(phone | cell)

 Trigram:

P(phone | your cell)

N-gram Model

Probability that a random word in the corpus is “phone”

Motivation

• We use N-grams is to estimate the probability of a word occurrence given its prior context

• An N-gram uses N-1 tokens for the context

 Unigram:

P(phone)

 Bigram:

P(phone | cell)

 Trigram:

P(phone | your cell)

N-gram Model

Probability that a random word in the corpus is “phone”

given that the previous is “cell”

Motivation

• We use N-grams is to estimate the probability of a word occurrence given its prior context

• An N-gram uses N-1 tokens for the context

 Unigram:

P(phone)

 Bigram:

P(phone | cell)

 Trigram:

P(phone | your cell)

N-gram Model

Probability that a random word in the corpus is “phone”

given that the two previous words are “your” and “cell”

Example

N-gram Model

If you wait too long for the perfect moment, the perfect moment will pass you by.

If you wait too long for the perfect moment, the perfect moment will pass you by.

If you wait too long for the perfect moment, the perfect moment will pass you by.

If you wait too long for the perfect moment, the perfect moment will pass you by.

If you wait too long for the perfect moment, the perfect moment will pass you by.

2-gram

3-gram

4-gram

5-gram

6-gram

N-gram Model

• Our goal is to quantify the strength of the relationship represented by the arrows

• Use N-grams to learn a function that quantifies the probability of a word “w” given its prior context

N-gram Model

Bigram: arrows from w1 to w2 imply that “w2 depends on w1”.

apples are good for you

N-gram Model

• Our goal is to quantify the strength of the relationship represented by the arrows

• Use N-grams to learn a function that quantifies the probability of a word “w” given its prior context

N-gram Model

Bigram: arrows from w1 to w2 imply that “w2 depends on w1”.

apples are good for you

Trigram: “wk depends on wk-1 and wk-2”

apples are good for you

N-gram Model – Computing Probabilities

Word sequences

Chain rule:

N-gram Model

Example (n = 5):

1 2 3 4 5

1 2 1 3 2 4 3 5 4

N-gram Model – Markov Assumption

• The Markov assumption: probability of a certain word depends only on a limited context

• Assumption on bigrams:

• Assumption on N-grams:

• Formalization of ‘the last N-1 words matter’

• Note that we need to handle the special case by using default values

N-gram Model

Bigrams: N=2
Trigrams: N=3
…

N-gram Model – Computing Probabilities

• Based on the Markov assumption and the chain rule:

 Chain rule:

Example (n=5)

N-gram Model

1 2 3 4 5

1 2 1 3 2 4 3 5 4

N-gram Model – Computing Probabilities

• Based on the Markov assumption and the chain rule:

• Bigram approximation:

 Chain rule:

Example (n=5)

N-gram Model

1 2 3 4 5

Special case
(missing context)

The last word

1 2 1 3 2 4 3 5 4

N-gram Model – Computing Probabilities

• Based on the Markov assumption and the chain rule:

• Trigram approximation:

 Chain rule:

Example (n=5)

N-gram Model

1 2 3 4 5

Special case
(missing context)

Special case
(missing context)

The last 2 words

1 2 1 3 2 4 3 5 4

N-gram Model – Computing Probabilities

• Based on the Markov assumption and the chain rule:

• N-gram approximation:

 Chain rule:

N-gram Model

The last N-1 words

Maximum Likelihood Estimation in N-gram Models

• How to estimate these probabilities?

 Maximum Likelihood Estimation method (MLE)

• Count function: the number of occurrences of in the corpus

• Bigram MLE estimation:

N-gram Model

the most likely wn given
the last word

Maximum Likelihood Estimation in N-gram Models

• How to estimate these probabilities?

 Maximum Likelihood Estimation method (MLE)

• Count function: the number of occurrences of in the corpus

• Bigram MLE estimation:

• N-gram MLE estimation:

N-gram Model

the most likely wn given
the last word

the most likely wn given
the last N-1 words

Example

Corpus of 3 sentences:

 Ensure context for N-grams: add special ‘words’ on sentence beginning and end

N-gram Model

Bigram MLE estimation:

Bigrams (2-grams)

Example
Bigrams (2-grams)

Corpus of 3 sentences:

N-gram Model

Bigram MLE estimation:

Example
Bigrams (2-grams)

Corpus of 3 sentences:

N-gram Model

Bigram MLE estimation:

Example
Bigrams (2-grams)

Corpus of 3 sentences:

N-gram Model

Bigram MLE estimation:

Corpus of 3 sentences:

Example
Bigrams (2-grams)

N-gram Model

Bigram MLE estimation:

• Use the Markov assumption and the chain rule

• Multiply the bigrams (N-gram) probabilities

Example 2
Estimation for a whole sentence

N-gram Model

Sentences generated by sampling from the distributions of different N-gram models trained on

Shakespeare’s sonnets:

N-grams: Effectiveness

N-gram Model

“of hour loved worship sweet metre moving fore rank and the for of fair better a art
careful graciously with“

“thou wilt prove me thus by day by but day by their physicians know not to the
bath for blunting the“

“methinks no face so gracious is as mine importune thee root pity in the face
sweet love remembered such wealth brings that“

“yet this shall I neer know but live in doubt till my bad angel fire my good one out“

1
gram

2
gram

3
gram

4
gram

• Sparseness

• Assume we use sentences based on a vocabulary of 30 000 words.

 Bigrams: 300002 = 900000000

 Trigrams: 300003 = 27000000000000

 4-grams: 300004 = 810000000000000000

• In a vector model based on N-grams, this is the number of dimensions

• The dataset would contain mostly zeroes

 this method is non-applicable for classification problems (as-is)

Limitation: Sparseness

N-gram Model

• Imagine we split into test and training data

 Train an N-gram model on the training corpus

 Test it on sequences of length N-1 in the test corpus

• Likely, there are sequences in the test corpus that are unseen in the training data

 The model assigns probability 0

 The model “as is” is overfitting the training data

 Solution: Smoothing

Limitation: Sparseness

N-gram Model

• Chip-off some probability from likely sequences

• Distribute it to unseen sequences (small but non-zero probability)

• Example: Laplace Smoothing

Solution: Smoothing

N-gram Model

Ensure non-zero
probability

Normalize using size of the
vocabulary, to make the
sum of all probabilities 1

• The basic version of the N-gram model is often applied to characters instead of words

• The vocabulary is just the alphabet (much smaller than all possible words)

N-grams on Characters

N-gram Model

Once_upon_a_time: Once

Once_upon_a_time: nce_

Once_upon_a_time: ce_u

Once_upon_a_time: e_up

4-grams

• What if a test corpus contains words that do not occur in the training corpus?

• These are called Out of Vocabulary words (OOV) or unknowns

 the model cannot predict them

• We can model such unknown words using a specific pseudo-word: <UNK>

Unknowns

N-gram Model

Text Mining

1. Introduction to Text Mining

2. Text Preprocessing

3. Modeling

4. Enriching Text: Linked Data

5. N-gram Model

6. Learning a Representation

7. Word2vec

Sparseness

• The representations of words are based on the length of the dictionary (BoW, N-grams)

 tend to be very long

• This is because words behave like the categorical data

 needs one-hot encoding, one feature per word

Learning a Representation

Sparseness

• Categorical data needs one-hot representation

 A vector of length equal to the number of possible values

Rome = [1, 0, 0, 0, … , 0]

Paris = [0, 1, 0, 0, … , 0]

Italy = [0, 0, 1, 0, … , 0]

France = [0, 0, 0, 0, … , 1]

• Text mining: the number of possible values is the size of the vocabulary

Learning a Representation

Learning a Representation

• Solution: use machine learning to automatically identify a smaller data representation

• Autoencoders use neural networks

Learning a Representation

Autoencoders

• Consider a neural network with a specific structure:

 Input and output layers of dimension V

 Hidden layer of dimension N with N << V

Learning a Representation

0

0

0

1

0

…

0

0

0

0

0

0

1

0

…

0

0

0

Autoencoders

Learning a Representation

0

0

0

1

0

…

0

0

0

0

0

0

1

0

…

0

0

0

Softmax:

probabilistic

interpretation

of the output

Output vector:

size of the

vocabulary V

Hidden layer
Input vector:

size of the

vocabulary V

Autoencoders

Softmax: transform the output of the NN into interpretable probabilities

2.0

1.0

0.1

p ≈ 0.7

p ≈ 0.2

p ≈ 0.1

1

0

0

Autoencoders - Training

• Train network with the same data in the input and output

 Convert the corpora into one-hot encoded vectors

 Feed these one by one into the neural network

 Perform backpropagation comparing the output with the input

• We obtain a network that outputs (almost) the same one hot encoded vector given as input

Learning a Representation

Autoencoders

Learning a Representation

The same

word used

as a target

Input layer: V neurons

(one-hot encoding of

the vocabulary)

Input vector: a

word

0

0

0

1

0

…

0

0

0

0

0

0

1

0

…

0

0

0

Output of the hidden layer:

compressed (N-dimensional)

representation of

Autoencoders

• The output of the hidden layer gives us a compressed representation of the input word

• The compression ratio is V/N

• These neural networks are called autoencoders

 one way to automatically learn a representation of data

Learning a Representation

Autoencoders

It is possible to split an autoencoder in the encoding and decoding part after the training

Learning a Representation

0

0

0

1

0

…

0

0

0

0

0

0

0

0

…

0

1

0

Encoder: from V to N dimensions Decoder: from N to V dimensions

Learning a Representation

• Autoencoders are one way to automatically learn a representation of data

• Learning a smaller data representation is often called embedding

• When applied to a text, it’s referred to as word embeddings

Learning a Representation

Text Mining

1. Introduction to Text Mining

2. Text Preprocessing

3. Modeling

4. Enriching Text: Linked Data

5. N-gram Model

6. Learning a Representation

7. Word2vec

Word Embeddings

• Compression is very useful, but autoencoders do not incorporate context

• N-grams allow to consider the word order and the context

• Can we obtain a word embedding that contains order and context?

• use an N-grams generalization: skip-grams

Word2vec

Skip-grams
K-skip N-grams

• A skip-gram is an N-gram that allows to skip words

• Skip-grams constructed for a certain skip distance K allow a total of K or less skips for N-grams

• Example:

 A 3-skip-gram includes: 3 skips, 2 skips, 1 skip or no skip (in total)

 A 3-skip-trigram (x,y,z) covers “xyz”, “x_yz”, “xy_z”, “x_y_z”, “x_ _yz”, “xy_ _z”, “x_ _y_z”, “x_y_

z”, “x _ _yz”, “xy_ _ _z” in a document

Word2vec

Skip-grams - Example

"Hi Jen did you eat the cake?"

1-skip trigrams: [‘Hi Jen did’, ‘Hi Jen you’, ‘Jen did you’, ‘Jen did eat’, ‘Hi did you’, ‘did you eat’, ‘did

you the’, ‘you eat cake’, …]

2-skip trigrams: [‘Hi Jen eat’, ‘did you cake’, ‘Jen you the’, …]

Word2vec

Recall: 2-skip-trigrams also
include all 1-skip-trigrams.

Skip-grams - Example

• Skip-grams are can associate a more general notion of a context compared to N-grams

• The surrounding context can be partially skipped:

this implies less overfitting when used in a learning phase

Word2vec

Word2vec

• Word2vec: one of the most popular techniques to learn word embeddings using shallow neural

networks

• Idea: an extension of the autoencoder method

 Word2vec learns a compressed representation of a word NOT from itself, but from its context

• Step 1: build a training set extracting skip-grams from a text

 For each word, consider the context in a sliding window around it

 Create tuples with the word and every skip-gram in the window that does not contain it

Word2vec

Example with 2-skip trigrams and a window size of 2 on each side

The little goose swims on a large pond. (the, [<s>, little, goose])

The little goose swims on a large pond.

The little goose swims on a large pond.

The little goose swims on a large pond.

Word2vec – Training Set

Word2vec

(little, [the, goose, swims]), (little, [<s>, the, goose]),

(little, [<s>, the, swims]), (little, [<s>, goose, swims])

(goose, [the, little, swims]), (goose, [the, little, on]),

(goose, [the, swims, on]), (goose, [little, swims, on])

(swims, [little, goose, on]), (swims, [little, goose, a]),

(swims, [little, on, a]), (swims, [goose, on, a])

The context has fixed length representation and its order matters!

(the, [<s>, <s>, little]), (the, [<s>, <s>, goose]),

(the, [<s>, little, goose]),

Word2vec – Training a Neural Network

• Step 2: train a neural network with a word as

input and its context as output

(using the tuples we built in Step 1)

• This is what the network looks like for our

example training set (using skip-trigrams)

Word2vec

Word2vec – Training a Neural Network

Word2vec

Input word

(one-hot

encoded) as

training data

Hidden layer:

word vector

Target: context

of the word

(skip-gram)

Word2vec – Training Example

Word2vec

goose

the

Hidden layer:

word vector

little

swims

(goose, [the, little, swims])

(goose, [the, little, on])

(goose, [the, swims, on])

(goose, [little, swims, on])

Word2vec – Training Example

Word2vec

goose

goose

the

the

Hidden layer:

word vector

little

little

swims

on

(goose, [the, little, swims])

(goose, [the, little, on])

(goose, [the, swims, on])

(goose, [little, swims, on])

Word2vec – Training Example

Word2vec

goose

goose

goose

the

the

the

Hidden layer:

word vector

little

little

swims

swims

on

on

(goose, [the, little, swims])

(goose, [the, little, on])

(goose, [the, swims, on])

(goose, [little, swims, on])

Word2vec – Training Example

Word2vec

goose

goose

goose

goose

the

the

the

little

Hidden layer:

word vector

little

little

swims

swims

swims

on

on

on

(goose, [the, little, swims])

(goose, [the, little, on])

(goose, [the, swims, on])

(goose, [little, swims, on])

Word2vec – Training Example

Hidden Layer after training:

brown = (0,0,0,0,0,0,0,1,0,…0)

is mapped to the word vector

(0.23, 0.74, 0.10)

Word2vec

goose

goose

goose

goose

the

the

the

little

Hidden layer:

word vector

little

little

swims

swims

little

on

on

on

(goose, [the, little, swims])

(goose, [the, little, on])

(goose, [the, swims, on])

(goose, [little, swims, on])

Word2vec – Training Example

Resulting word vector can be

used as lower dimensional

input for other techniques

Word2vec

goose

goose

goose

goose

the

the

the

little

Hidden layer:

word vector

little

little

swims

swims

little

on

on

on

(goose, [the, little, swims])

(goose, [the, little, on])

(goose, [the, swims, on])

(goose, [little, swims, on])

Continuous Bag of Words (CBoW)
Another Variant

The input is the context and the

output is the word

Word2vec

context

Embedding of the

target word based on

the context

target

word

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5

Word2vec – Advantages

• Word2vec captures the meaning of

a word using its context

• Returns a powerful and meaningful

word representation

• Vectors for similar words are

close to each other

• It’s possible to add and remove

context with vector operations

Word2vec

king – man + woman = queen

Father – man + woman = mother

Waitress – woman + man = waiter

…

nephew

niece

aunt

uncle
father

mother

woman

man

queen

king

waitress

waiter

Doc2vec

• Same principles as Word2vec

• Uses one-hot encoded documents

• Training set of tuples: (one-hot encoded document, skip-gram from that document)

Word2vec

Doc2vec

Example with 2-skip trigrams (but any feature is possible):

Word2vec

‘Cats are the only pet of the felines family, while dogs are

canids.’

‘Cats are the third-most popular pet in the US.’

‘Dogs have been selected for millennia as pet animals.’

‘Normally, dogs are not aggressive towards other dogs outside

their territory.’

0001

0010

0100

1000

(0001, [<s>, cats, are]), (0001, [cats, are, the]),

(0001, [cats, are, only]), ...

(0010, [<s>, cats, are]), (0010, [cats, are, the]),

(0010, [cats, are, third]), ...

(0100, [<s>, dogs, have]), (0100, [dogs, have, been]),

(0100, [dogs, have, selected]), ...

(1000, [<s>, normally, dogs]),

(1000, [normally, dogs, are]),

(1000, [normally, dogs, not]), ...

One-hot
encodings of

four documents

Doc2vec – Training a Neural Network

Learn a representation for a document by training a neural network

• Same architecture as before

• the input is the one-hot encoding of the document

• the output is a skip-gram of the document

 Hidden layer gives a compact representation of the document

Word2vec

Doc2vec – Training a Neural Network

Word2vec

Input document

(one-hot

encoded) as

training data

Hidden layer:

document

representation

Target: skip-gram

contained in a

document

(one-hot encoded)

D – size of the

corpus

Doc2vec

• Doc2vec: find a low-dimensional, expressive, powerful and context-aware vector representation for

documents in the corpus

• Considers the problems we have seen previously:

 Keeps track of the order of words

 Avoid the problem of high sparseness of textual data

 Gives a fixed length representation of the documents

 suitable as input for other data science applications (e.g. clustering)

• Many other variations possible…

Word2vec

Text Mining Pipeline With Doc2vec

Word2vec

database corpus
transformed

data

Word/document

embedding

selection preprocessing doc2vec interpretation

king

man
woman

queen Document classification

Document clustering

Outlook

N-gram Model

Bag of Words

Naïve, order-unaware
model

Outlook

N-gram Model

N-Grams

Able to account for
order and context

Bag of Words

Naïve, order-unaware
model

Outlook

N-gram Model

N-Grams

Able to account for
order and context

Bag of Words

Naïve, order-unaware
model

Word Embeddings

Able to learn semantic
relationships between
words and documents

Outlook

N-gram Model

N-Grams

Able to account for
order and context

Bag of Words

Naïve, order-unaware
model

LSTMs

Can handle long-term
dependencies in
texts or sentences

Word Embeddings

Able to learn semantic
relationships between
words and documents

Outlook

N-gram Model

N-Grams

Able to account for
order and context

Bag of Words

Naïve, order-unaware
model

LSTMs

Can handle long-term
dependencies in
texts or sentences

Word Embeddings

Able to learn semantic
relationships between
words and documents

Transformers

Powerful general tools for
many text mining related tasks
(and beyond)

Outlook

N-gram Model

N-Grams

Able to account for
order and context

Bag of Words

Naïve, order-unaware
model

LSTMs

Can handle long-term
dependencies in
texts or sentences

Word Embeddings

Able to learn semantic
relationships between
words and documents

Transformers

Powerful general tools for
many text mining related tasks
(and beyond)

Next up: Responsible Data Science

