| ™

Elements of Machine Learning & Data Science
Winter semester 2023/24

Automated Machine Learning (3)

Maria Anastacio & Holger Hoos

brief recap

Key concepts covered last class:

- Hyper Parameter Optimisation

- Random / Grid
- Bayesian Optimisation

- Multi Fidelity Bandit Approach

Search Space

A

Ac A

L
Search Strategy

_/

Performance
Estimation
Strategy

performance
estimate of A

Source: Elsken et al. (2019)

A quick reminder of Neural Networks:

Input Layer 1 Layer 2 Output

Reminder

Key questions:

- How to describe the architecture of a Neural Network?
- What would be / how to find a better architecture?
- How to cheaply estimate the performance of a network?

architecture
Ac
Search Space | —— | Performance
Search Strategy Estimation
A S~ Strategy
performance

estimate of A

Source: Elsken et al. (2019)

In this case our search space is A

Preparation for today:

Remind yourself of your lecture regarding Neural Networks.

Read the paper :

“Towards Automatically-Tuned Neural Networks”, Hector Mendoza, Aaron Klein, Matthias Feurer, Jost
Tobias Springenberg, Frank Hutter

Proceedings of the Workshop on Automatic Machine Learning, PMLR 64:58-65, 2016.

(https://proceedings.mir.press/v64/mendoza_towards_2016.html)

Focus in particular on the following questions

- In table 1, which hyperparameters correspond to the ones optimised by HPO as seen in the
previous class? Which ones correspond to the architecture (the structure) of the network?

What’s the fundamental difference?
- Why did they limit the number of layer to 6 at most?
- Which main challenge can you see when searching the architecture of a network?

- Do you think that their search space covers all possible neural networks? If no, what is missing?

https://proceedings.mlr.press/v64/mendoza_towards_2016.html

2min pair, 4min share = 6min

TPS Exercise (T part = done as homework)

1. In table 1, which hyperparameters correspond to the ones optimised
by HPO as seen in the previous class? Which ones correspond to the
architecture (the structure) of the network?

What’s the fundamental difference?

2. Do you think that their search space covers all possible neural
networks? If no, what is missing?

3. Which main challenge can you see when searching the architecture
of a network?

Share
Point out conditional parameters
Point out the number of layer

In table 1, which hyperparameters correspond to the ones optimised by
HPO as seen in the previous class? Which ones correspond to the
architecture (the structure) of the network?

‘ Name Range Default log scale Type Conditional
batch size [32,4096] 32 v float, -
Network number of updates [50, 2500] 200 v int -
hyperpa- number of layers [1,6] 1 - int -
rameters learning rate [1075,1.0] 102 v float -
Ly regularization [10-7,1072) 104 v float, -
dropout output layer [0.0,0.99] 0.5 v float -
solver type {SGD, Momentum, Adam, Adadelta, Adagrad, smorm, Nesterov } ~ smorm3s - cat -
Ir-policy {Fixed, Inv, Exp, Step} fixed - cat -
" B [10-4,1071] 1071 v float v
gs‘s'g;f;“ed By (104, 101] 10! ¢ float v
p P [0.05,0.99] 0.95 v float, v
e momentum [0.3,0.999] 0.9 v float, v
o v [1073,107Y] 1072 v float v
S;";f‘;gi‘;d & 0.0, 1.0] 0.5 - float v
s 2,20] 2 int v
activation-type {Sigmoid, TanH, ScaledTanH, ELU, ReLU, Leaky, Linear} ReLU - cat v
Per-layer number of units (64, 4096] 128 v int v
hyperparam- | dropout in layer [0.0,0.99] 0.5 - float v
eters weight initialization {Constant, Normal, Uniform, Glorot-Uniform, Glorot-Normal, He-Normal - cat v

He-Normal, He-Uniform, Orthogonal, Sparse}

std. normal init. [1077,0.1] 0.0005 - float v
leakiness [0.01,0.99] 1 - float v
tanh scale in [0.5,1.0] 2/3 - float v
tanh scale out [1.1,3.0] 1.7159 v float v

Source: Mendoza et al. (2016)

Suming up the search space
Do you know of more complex architectures?
Can you imagine an easy way to have more complex architectures?

Does it cover all possible neural networks? If no, what is missing?

1.Number of layers

2.Number of unit per layer
3.Operation performed by each layer
4.Parameters of the operations

5. Input(s) of each layer

Source: Elsken et al. (2019)

Which main challenge can you see when searching the architecture

of a network? Output

Probabilities

Add & Norm

J
((Add & Norm J«~
Multi-Head

Add & Norm

Feed Attention
Forward Nx
Add & Norm
Add & Norm Maskod
Multi-Head Multi-Head
Attention Attention
A 2 A 2
\. —
Positional A Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Source: Vaswani et al. (2017)

128x128x6
128x128x32
125x125x32

31x31x32
31x31x64
/7 30x30x64

15x15x64

15x15x128 () convolution + ReLU
14x14x128 0 max pooling

(7 fully conected + ReLU

7x7x256 softmax / sigmoid

_3x3x256

Source: Shendryk et al. (2019)

Share challenges

Huge search space

In practice typically 15-20 hidden layers for image recognition, up to hundreds
Example of architectures

Left, transformer, used by LLM

Right CNN, used for image recognition

Focus on CNN, what do you notice?
2 black, one red, 2 convolution, one reduction

That's the idea behind the next type of search space
Cells
Optimise cells put them together

Limitation : you need to know the high level structure of the network

Carefully crafting a search space

Source: Elsken et al. (2019)

Softmax

xN

xN

x N

CIFAR10
Architecture

Source: Zoph et al. (2018)

TPS Exercise

You have your 2 possible search spaces:
- separate layers with their hyper parameters
- cells of layers inside a given arrangement

How could you combine them to be more expressive than each
separately?

2min think, 2min pair, 3min share = 7min

Share
Hierarchical search space
From small sets of operations, to cells, to network

How could you combine them to be more expressive than each

separately?
3x3
1x1
o s (@ assemble
x1 3x3 3x3 -
pooling 1x1
0§2) Og'))

052) 053)
" a5 = merge(of” (v2), 0" (a1))
01 & 1x1
2 = o (21) O3 " 1x1conv 3x3conv 3x3 max-pooling as.%ble 3x3
PO, oG
G(IZ) 0(12)

Source: Liu et al. (2018)

Other example, similar idea

How could you combine them to be more expressive than each
separately?

Top level Mid level Bottom Level

stage 1

Input

Output Output

Task Specific Layer (e.q. classification)

Source: Ru et al. (2020)

1min think, 2min pair, 2min share = 5min

TPS Exercise

Which strategies could you use to optimise your architecture
within those search spaces?

» Random

» Bayesian optimisation

- Gradient descent

» Evolutionary algorithm
» Monte Carlo tree search
- Reinforcement Learning

TPS Exercise

Which strategies could you use to optimise your architecture
within those search spaces?

» Random

- Bayesian optimisation

- Gradient descent

» Evolutionary algorithm
» Monte Carlo tree search
- Reinforcement Learning

TPS Exercise

Which strategies could you use to optimise your architecture
within those search spaces?

» Random

- Bayesian optimisation

- Gradient descent

- Evolutionary algorithm

> Monte Carlo tree search
- Reinforcement Learning

Random, actually working pretty well

Which strategies could you use to optimise your architecture
within those search spaces?

Random
\ - Sample uniformly at random
Eél?" - Keep the best found architecture
o

Which strategies could you use to optimise your architecture
within those search spaces?
Bayesian optimisation

\ - Sample uniformly at random
Eﬁlo] - Learn a surrogate model to know which works
S, 7 best
o - Sample more using Bayesian optimisation

Bayesian optimisation, BOHB based on it implemented in come of current autoML systems

Which strategies could you use to optimise your architecture
within those search spaces?
Gradient descent

2
SR
(a) (c) (d)

Source: Liu et al. (2019)

Gradient Descent, DARTS, optimise the type of operation at the same time as the weights.

2min think, 2min pair, 3min share = 7min

TPS Exercise
Training every architecture during the search process would be very
costly.

How to lower the cost of deciding which generated architecture to
keep?

- low number of epoch, can use learning curves for prediction

How could you lower the cost of deciding which generated architecture
to keep?

- Low number of Epoch

- Share weights between similar networks (Weight Sharing)
- Optimise architecture and weights together (DARTS)

- Train a surrogate model

- Train one super network (One-shot model)

How could you lower the cost of deciding which generated architecture

to keep?

Layers

Input

|
Scales

Output

Source: Saxena and Verbeek (2016)

One Shot Model
Train a super network, give you an idea of the performance of a subnetwork.

Estimate not super good but still it works

Key concepts covered today:

- Search space : macro, cell-based, hierarchical
- Search strategies : random, Bayesian optimisation, gradient descent

- Performance estimation strategies : partial training, surrogate model, one-
shot model

architecture
AcA
Search Space | —— | Performance
Search Strategy Estimation
A S~ Strategy
performance

estimate of A

Source: Elsken et al. (2019)

Reference for figures:

Mendoza et al. (2016) Towards Automatically-Tuned Neural Networks

Saxena and Verbeek (2016) Convolutional Neural Fabrics

Vaswani et al. (2017) Vaswani et al. (2017)

Liu et al. (2018) Hierarchical Representations for Efficient Architecture Search

Zoph et al. (2018) Learning Transferable Architectures for Scalable Image Recognition

Elsken et al. (2019) Neural Architecture Search: A Survey

Liu et al. (2019) DARTS: Differentiable Architecture Search

Shendryk et al. (2019) Deep learning for multi-modal classification of cloud, shadow and land cover scenes

in PlanetScope and Sentinel-2 imagery
Ru et al. (2020) Neural Architecture Generator Optimization

If you want to go further:

In depth explanation of DARTS towardsdatascience.com

Python libaries Auto-PyTorch, AutoKeras

https://github.com/automl/Auto-PyTorch
https://autokeras.com/
https://towardsdatascience.com/intuitive-explanation-of-differentiable-architecture-search-darts-692bdadcc69c

