
Elements of Machine Learning & Data Science
Winter semester 2023/24

Automated Machine Learning (3)

Maria Anastacio & Holger Hoos

Key concepts covered last class:

Performance
Estimation
Strategy

Search Space

A
Search Strategy

architecture
A 2 A

performance
estimate of A

Figure 1: Abstract illustration of Neural Architecture Search methods. A search strategy
selects an architecture A from a predefined search space A. The architecture is
passed to a performance estimation strategy, which returns the estimated perfor-
mance of A to the search strategy.

• Search Space. The search space defines which architectures can be represented
in principle. Incorporating prior knowledge about typical properties of architectures
well-suited for a task can reduce the size of the search space and simplify the search.
However, this also introduces a human bias, which may prevent finding novel archi-
tectural building blocks that go beyond the current human knowledge.

• Search Strategy. The search strategy details how to explore the search space
(which is often exponentially large or even unbounded). It encompasses the clas-
sical exploration-exploitation trade-o↵ since, on the one hand, it is desirable to find
well-performing architectures quickly, while on the other hand, premature convergence
to a region of suboptimal architectures should be avoided.

• Performance Estimation Strategy. The objective of NAS is typically to find
architectures that achieve high predictive performance on unseen data. Performance

Estimation refers to the process of estimating this performance: the simplest option is
to perform a standard training and validation of the architecture on data, but this is
unfortunately computationally expensive and limits the number of architectures that
can be explored. Much recent research therefore focuses on developing methods that
reduce the cost of these performance estimations.

We refer to Figure 1 for an illustration. The article is also structured according to these
three dimensions: we start with discussing search spaces in Section 2, cover search strategies
in Section 3, and outline performance estimation methods in Section 4. We conclude with
an outlook on future directions in Section 5.

2. Search Space

The search space defines which neural architectures a NAS approach might discover in
principle. We now discuss common search spaces from recent works.

A relatively simple search space is the space of chain-structured neural networks, as illus-
trated in Figure 2 (left). A chain-structured neural network architecture A can be written
as a sequence of n layers, where the i’th layer Li receives its input from layer i � 1 and

2

Source: Elsken et al. (2019)

- Hyper Parameter Optimisation
- Random / Grid
- Bayesian Optimisation
- Multi Fidelity Bandit Approach

brief recap

A quick reminder of Neural Networks:

Input Layer 1 Layer 2 Output

Reminder

Key questions:

- How to describe the architecture of a Neural Network?
- What would be / how to find a better architecture?
- How to cheaply estimate the performance of a network?

Performance
Estimation
Strategy

Search Space

A
Search Strategy

architecture
A 2 A

performance
estimate of A

Figure 1: Abstract illustration of Neural Architecture Search methods. A search strategy
selects an architecture A from a predefined search space A. The architecture is
passed to a performance estimation strategy, which returns the estimated perfor-
mance of A to the search strategy.

• Search Space. The search space defines which architectures can be represented
in principle. Incorporating prior knowledge about typical properties of architectures
well-suited for a task can reduce the size of the search space and simplify the search.
However, this also introduces a human bias, which may prevent finding novel archi-
tectural building blocks that go beyond the current human knowledge.

• Search Strategy. The search strategy details how to explore the search space
(which is often exponentially large or even unbounded). It encompasses the clas-
sical exploration-exploitation trade-o↵ since, on the one hand, it is desirable to find
well-performing architectures quickly, while on the other hand, premature convergence
to a region of suboptimal architectures should be avoided.

• Performance Estimation Strategy. The objective of NAS is typically to find
architectures that achieve high predictive performance on unseen data. Performance

Estimation refers to the process of estimating this performance: the simplest option is
to perform a standard training and validation of the architecture on data, but this is
unfortunately computationally expensive and limits the number of architectures that
can be explored. Much recent research therefore focuses on developing methods that
reduce the cost of these performance estimations.

We refer to Figure 1 for an illustration. The article is also structured according to these
three dimensions: we start with discussing search spaces in Section 2, cover search strategies
in Section 3, and outline performance estimation methods in Section 4. We conclude with
an outlook on future directions in Section 5.

2. Search Space

The search space defines which neural architectures a NAS approach might discover in
principle. We now discuss common search spaces from recent works.

A relatively simple search space is the space of chain-structured neural networks, as illus-
trated in Figure 2 (left). A chain-structured neural network architecture A can be written
as a sequence of n layers, where the i’th layer Li receives its input from layer i � 1 and

2

Source: Elsken et al. (2019)

In this case our search space is A

Remind yourself of your lecture regarding Neural Networks.
Read the paper :
“Towards Automatically-Tuned Neural Networks”, Hector Mendoza, Aaron Klein, Matthias Feurer, Jost
Tobias Springenberg, Frank Hutter
Proceedings of the Workshop on Automatic Machine Learning, PMLR 64:58-65, 2016.
(https://proceedings.mlr.press/v64/mendoza_towards_2016.html)

Focus in particular on the following questions

- In table 1, which hyperparameters correspond to the ones optimised by HPO as seen in the
previous class? Which ones correspond to the architecture (the structure) of the network?
What’s the fundamental difference?
- Why did they limit the number of layer to 6 at most?
- Which main challenge can you see when searching the architecture of a network?
- Do you think that their search space covers all possible neural networks? If no, what is missing?

Preparation for today:

https://proceedings.mlr.press/v64/mendoza_towards_2016.html

TPS Exercise (T part = done as homework)

1. In table 1, which hyperparameters correspond to the ones optimised
by HPO as seen in the previous class? Which ones correspond to the
architecture (the structure) of the network?
What’s the fundamental difference?

2. Do you think that their search space covers all possible neural
networks? If no, what is missing?

3. Which main challenge can you see when searching the architecture
of a network?

2min pair, 4min share = 6min

In table 1, which hyperparameters correspond to the ones optimised by
HPO as seen in the previous class? Which ones correspond to the
architecture (the structure) of the network?

Towards Automatically-Tuned Neural Networks

Name Range Default log scale Type Conditional

Network
hyperpa-
rameters

batch size [32, 4096] 32 X float -
number of updates [50, 2500] 200 X int -
number of layers [1, 6] 1 - int -
learning rate [10�6, 1.0] 10�2 X float -
L2 regularization [10�7, 10�2] 10�4 X float -
dropout output layer [0.0, 0.99] 0.5 X float -
solver type {SGD, Momentum, Adam, Adadelta, Adagrad, smorm, Nesterov } smorm3s - cat -
lr-policy {Fixed, Inv, Exp, Step} fixed - cat -

Conditioned
on solver
type

�1 [10�4, 10�1] 10�1 X float X
�2 [10�4, 10�1] 10�1 X float X
⇢ [0.05, 0.99] 0.95 X float X
momentum [0.3, 0.999] 0.9 X float X

Conditioned
on lr-policy

� [10�3, 10�1] 10�2 X float X
k [0.0, 1.0] 0.5 - float X
s [2, 20] 2 - int X

Per-layer
hyperparam-
eters

activation-type {Sigmoid, TanH, ScaledTanH, ELU, ReLU, Leaky, Linear} ReLU - cat X
number of units [64, 4096] 128 X int X
dropout in layer [0.0, 0.99] 0.5 - float X
weight initialization {Constant, Normal, Uniform, Glorot-Uniform, Glorot-Normal, He-Normal - cat X

He-Normal, He-Uniform, Orthogonal, Sparse}
std. normal init. [10�7, 0.1] 0.0005 - float X
leakiness [0.01, 0.99] 1

3
- float X

tanh scale in [0.5, 1.0] 2/3 - float X
tanh scale out [1.1, 3.0] 1.7159 X float X

Table 1: Hyperparameter configuration space of Auto-Net. The configuration space for the
preprocessing methods can be found in Feurer et al. (2015a).

3.1. Baseline evaluation of Auto-Net and Auto-sklearn

In our first experiment, we compare di↵erent instantiations of Auto-Net on the five datasets
of phase 0 of the AutoML challenge. First, we use the CPU-based and GPU-based versions
to study the di↵erence of running NNs on di↵erent hardware. Second, we allow the combina-
tion of neural networks with the models from Auto-sklearn. Third, we also run Auto-sklearn
without neural networks as a baseline. On each dataset, we performed 10 one-day runs of
each method, allowing up to 100 minutes for the evaluation of a single configuration by
5-fold cross-validation on the training set. For each time step of each run, following Feurer
et al. (2015a) we constructed an ensemble from the models it had evaluated so far and plot
the test error of that ensemble over time. In practice, we would either use a separate process
to calculate the ensembles in parallel or compute them after the optimization process.

Figure 1 shows the results on two of the five datasets. First, we note that the GPU-based
version of Auto-Net was consistently about an order of magnitude faster than the CPU-
based version. Within the given fixed compute budget, the CPU-based version consistently
performed worst, whereas the GPU-based version performed best on the newsgroups dataset
(see Figure 1(a)), tied with Auto-sklearn on 3 of the other datasets, and performed worse
on one. Despite the fact that the CPU-based Auto-Net was very slow, in 3/5 cases the
combination of Auto-sklearn and CPU-based Auto-Net still improved over Auto-sklearn;
this can, for example, be observed for the dorothea dataset in Figure 1(b).

3.2. Results for AutoML competition datasets

Having developed Auto-Net during the AutoML challenge, we used a combination of Auto-
sklearn and GPU-based Auto-Net for the last two phases to win the respective human

61

Source: Mendoza et al. (2016)

Share
Point out conditional parameters
Point out the number of layer

Does it cover all possible neural networks? If no, what is missing?

input

L0

L1

Ln

output

input

L0

L2

L4

L6

L8

L10

L1

L3

L7

L9

L5

output

Ln�1

Figure 2: An illustration of di↵erent architecture spaces. Each node in the graphs cor-
responds to a layer in a neural network, e.g., a convolutional or pooling layer.
Di↵erent layer types are visualized by di↵erent colors. An edge from layer Li to
layer Lj denotes that Lj receives the output of Li as input. Left: an element of a
chain-structured space. Right: an element of a more complex search space with
additional layer types and multiple branches and skip connections.

its output serves as the input for layer i + 1, i.e., A = Ln � . . . L1 � L0. The search space
is then parametrized by: (i) the (maximum) number of layers n (possibly unbounded);
(ii) the type of operation every layer executes, e.g., pooling, convolution, or more advanced
operations like depthwise separable convolutions (Chollet, 2016) or dilated convolutions (Yu
and Koltun, 2016); and (iii) hyperparameters associated with the operation, e.g., number
of filters, kernel size and strides for a convolutional layer (Baker et al., 2017a; Suganuma
et al., 2017; Cai et al., 2018a), or simply number of units for fully-connected networks (Men-
doza et al., 2016). Note that the parameters from (iii) are conditioned on (ii), hence the
parametrization of the search space is not fixed-length but rather a conditional space.

Recent work on NAS (Brock et al., 2017; Elsken et al., 2017; Zoph et al., 2018; Elsken
et al., 2019; Real et al., 2019; Cai et al., 2018b) incorporates modern design elements
known from hand-crafted architectures, such as skip connections, which allow to build
complex, multi-branch networks, as illustrated in Figure 2 (right). In this case the input
of layer i can be formally described as a function gi(Lout

i�1
, . . . , Lout

0
) combining previous

layer outputs. Employing such a function results in significantly more degrees of freedom.
Special cases of these multi-branch architectures are (i) the chain-structured networks (by
setting gi(Lout

i�1
, . . . , Lout

0
) = Lout

i�1
), (ii) Residual Networks (He et al., 2016), where previous

layer outputs are summed (gi(Lout
i�1

, . . . , Lout
0

) = Lout
i�1

+ Lout
j , j < i� 1) and (iii) DenseNets

(Huang et al., 2017), where previous layer outputs are concatenated (gi(Lout
i�1

, . . . , Lout
0

) =
concat(Lout

i�1
, . . . , Lout

0
)).

Motivated by hand-crafted architectures consisting of repeated motifs (Szegedy et al.,
2016; He et al., 2016; Huang et al., 2017), Zoph et al. (2018) and Zhong et al. (2018a)
propose to search for such motifs, dubbed cells or blocks, respectively, rather than for whole

3

1.Number of layers
2.Number of unit per layer
3.Operation performed by each layer
4.Parameters of the operations

5. Input(s) of each layer

Source: Elsken et al. (2019)

Suming up the search space
Do you know of more complex architectures?
Can you imagine an easy way to have more complex architectures?

Source: Vaswani et al. (2017)

Which main challenge can you see when searching the architecture
of a network?

and contrasted the performance of three CNN architectures, such as 201
layers deep DenseNet (DenseNet201) (Huang et al., 2017), 50 layers
deep ResNet (ResNet50) (He et al., 2016) and 10weight layers deep
VGG (VGG10). The VGG10 architecture was based on the VGG13 block-
style architecture (Simonyan and Zisserman, 2014), with a convolu-
tional block and dense layer removed to accommodate the size of image
scenes in the T-PS and T-S2 datasets. Our VGG10 architecture for an
input image scene of 128× 128× 6 in size and 12 output labels is
given in Fig. 3.

Each CNN model (i.e. DenseNet201, ResNet50 and VGG10) was
trained in triplicate for the three groups of labels (see Table 1). Speci-
fically, for each architecture we trained two models with softmax output
activations, for cloud and shade labels, and one model with a sigmoid
output activation, for the land cover labels. This was done to reflect the
mutual exclusivity of cloud and shade label groups, and from here on
we treat each homogenous group of three models as a single CNN multi-
label classifier predicting all 12 labels.

Prior to training the DenseNet201 and ResNet50 based models,
scenes in both A-PS and T-PS+T-S2 datasets were resampled to a re-
solution of 224× 224 pixels to facilitate the deep architectures, which
have many size-reducing convolutional layers. In all CNNs, all con-
volutional and fully-connected (i.e. dense) layers included rectified
linear unit (ReLU) activation functions, while the kernel-stride, both
horizontal and vertical, for each convolutional layer in the VGG10
model was fixed at 1. During training, CNN models were optimized
with the Adam optimizer (Kingma and Ba, 2014) and batch size of 128.
Categorical and binary cross-entropy loss functions were used for
models with softmax and sigmoid outputs, respectively.

The accuracy of CNN based classifications on a test set was assessed
using overall accuracy (OA):

= ++ + +OA
TP TN

TP TN FP FN (3)
where TP – true positive, TN – true negative, FP – false positive, FN –
false negative (Fawcett, 2006). Although OA is a conventional accuracy
metric for evaluating classification results, it is misleading when
working with imbalanced classes (He and Ma, 2013). Therefore, we also
used the F2 score (Baeza-Yates and Ribeiro-Neto, 1999), which is a form
of the F score (Sasaki, 2007) representing the weighted mean of recall
and precision:

= ◊◊ + ◊ +F TP
TP FN FP

5
5 42 (4)

Note that F2 emphasises the importance of recall over precision and
ranges from 0 to 1, the latter being the optimal value. In this study, we
used two types of OA and F2 when comparing models. Per-sample OA
and F2 takes the OA and F2 over labels for each sample, which is then
averaged across all samples. Per-label OA and F2 is simply the OA and

F2 score for a particular label, over all images. We use per-sample F2 for
comparisons between different CNN models, as it accounts for the im-
balance in label frequencies, whilst per-label F2 is used to compare
performance on individual labels within a single model.

2.3. CNN ensemble

In attempt to maximize the accuracy of our CNN models for clas-
sification of cloud, shade and land cover types we also employed an
ensemble learning approach similar to the one proposed in Kaggle
(2017b). The final ensemble consisted of three model architectures (i.e.
DenseNet201, ResNet50 and VGG10), each trained to perform a multi-
label prediction of classes outlined in Table 1. In order to combine the
scores from the three models into a final binary prediction of each label,
we employed ridge regression, with the weight penalty hyperparameter
set to 1.

The scores from each model were combined in ensemble scores, by
solving the ridge regression problem:+ =Z u y u lmin | | | | 1, , 12
u

l l l l2 2
l 3 (5)
Here Zl is the N by 3 matrix which contains the probabilities out-

putted by all three models for a label l. After solving for ul , the vector of
regression weights, the ensemble scores for label l are given by Z ul l .

Prediction thresholds were found by optimizing F2 of each label
using random optimization. Specifically, we used an iterative process
where proposals for a new threshold were generated from a normal
distribution with standard deviation equal to ·10 t0 and centered on
the current best threshold. Proposals were accepted if they resulted in a
higher per-label F2. Here is a decay parameter (set to 0.001), t is the
iteration number and 0 is the starting standard deviation (set to 0.25).
The search was terminated after a fixed maximum number of iterations
(1000). In this instance random optimization was more useful than a
gradient descent method due to the non-differentiability of F2 as a
function of the prediction threshold.

2.4. Model generalization

To assess the generalization ability of our CNN models between
datasets, eight CNN ensembles were trained and tested on a mixture of
datasets. These are detailed in Table 2, where “train” refers to the fixed
training subset in that dataset and likewise with “test”. As dataset A-PS
did not contain shade label group, we could not fully examine the direct
generalization ability of these labels to the T-PS and T-S2 datasets.

Knowing that pre-training of CNN models generally results in im-
proved performance, we used A-PS to pre-train networks that were only
fine-tuned on T-PS and T-S2 data to avoid overfitting and reduce design
time (Castelluccio et al., 2015; Girshick et al., 2016). The ensemble

Fig. 3. VGG10 architecture used in this study.

Y. Shendryk, et al. ISPRS Journal of Photogrammetry and Remote Sensing 157 (2019) 124–136

128

Source: Shendryk et al. (2019)

Share challenges
Huge search space
In practice typically 15-20 hidden layers for image recognition, up to hundreds
Example of architectures
Left, transformer, used by LLM
Right CNN, used for image recognition

Focus on CNN, what do you notice?
2 black, one red, 2 convolution, one reduction

Figure 2. Scalable architectures for image classification consist of
two repeated motifs termed Normal Cell and Reduction Cell. This
diagram highlights the model architecture for CIFAR-10 and Ima-
geNet. The choice for the number of times the Normal Cells that
gets stacked between reduction cells, N , can vary in our experi-
ments.

as input: (1) convolutional cells that return a feature map of
the same dimension, and (2) convolutional cells that return
a feature map where the feature map height and width is re-
duced by a factor of two. We name the first type and second
type of convolutional cells Normal Cell and Reduction Cell

respectively. For the Reduction Cell, we make the initial
operation applied to the cell’s inputs have a stride of two to
reduce the height and width. All of our operations that we
consider for building our convolutional cells have an option
of striding.

Figure 2 shows our placement of Normal and Reduction
Cells for CIFAR-10 and ImageNet. Note on ImageNet we
have more Reduction Cells, since the incoming image size
is 299x299 compared to 32x32 for CIFAR. The Reduction
and Normal Cell could have the same architecture, but we
empirically found it beneficial to learn two separate archi-
tectures. We use a common heuristic to double the number
of filters in the output whenever the spatial activation size is
reduced in order to maintain roughly constant hidden state
dimension [32, 53]. Importantly, much like Inception and
ResNet models [59, 20, 60, 58], we consider the number of
motif repetitions N and the number of initial convolutional
filters as free parameters that we tailor to the scale of an
image classification problem.

What varies in the convolutional nets is the structures of

the Normal and Reduction Cells, which are searched by the
controller RNN. The structures of the cells can be searched
within a search space defined as follows (see Appendix,
Figure 7 for schematic). In our search space, each cell re-
ceives as input two initial hidden states hi and hi�1 which
are the outputs of two cells in previous two lower layers
or the input image. The controller RNN recursively pre-
dicts the rest of the structure of the convolutional cell, given
these two initial hidden states (Figure 3). The predictions
of the controller for each cell are grouped into B blocks,
where each block has 5 prediction steps made by 5 distinct
softmax classifiers corresponding to discrete choices of the
elements of a block:

Step 1. Select a hidden state from hi, hi�1 or from the set of hidden
states created in previous blocks.

Step 2. Select a second hidden state from the same options as in Step 1.

Step 3. Select an operation to apply to the hidden state selected in Step 1.

Step 4. Select an operation to apply to the hidden state selected in Step 2.

Step 5. Select a method to combine the outputs of Step 3 and 4 to create
a new hidden state.

The algorithm appends the newly-created hidden state to
the set of existing hidden states as a potential input in sub-
sequent blocks. The controller RNN repeats the above 5
prediction steps B times corresponding to the B blocks in
a convolutional cell. In our experiments, selecting B = 5
provides good results, although we have not exhaustively
searched this space due to computational limitations.

In steps 3 and 4, the controller RNN selects an operation
to apply to the hidden states. We collected the following set
of operations based on their prevalence in the CNN litera-
ture:

• identity • 1x3 then 3x1 convolution
• 1x7 then 7x1 convolution • 3x3 dilated convolution
• 3x3 average pooling • 3x3 max pooling
• 5x5 max pooling • 7x7 max pooling
• 1x1 convolution • 3x3 convolution
• 3x3 depthwise-separable conv • 5x5 depthwise-seperable conv
• 7x7 depthwise-separable conv

In step 5 the controller RNN selects a method to combine
the two hidden states, either (1) element-wise addition be-
tween two hidden states or (2) concatenation between two
hidden states along the filter dimension. Finally, all of the
unused hidden states generated in the convolutional cell are
concatenated together in depth to provide the final cell out-
put.

To allow the controller RNN to predict both Normal Cell
and Reduction Cell, we simply make the controller have
2 ⇥ 5B predictions in total, where the first 5B predictions
are for the Normal Cell and the second 5B predictions are
for the Reduction Cell.

Source: Zoph et al. (2018)

input

input

output

output

input

output

Figure 3: Illustration of the cell search space. Left: Two di↵erent cells, e.g., a normal cell
(top) and a reduction cell (bottom) (Zoph et al., 2018). Right: an architecture
built by stacking the cells sequentially. Note that cells can also be combined in a
more complex manner, such as in multi-branch spaces, by simply replacing layers
with cells.

architectures. Zoph et al. (2018) optimize two di↵erent kind of cells: a normal cell that
preserves the dimensionality of the input and a reduction cell which reduces the spatial
dimension. The final architecture is then built by stacking these cells in a predefined
manner, as illustrated in Figure 3. This search space has three major advantages compared
to the ones discussed above:

1. The size of the search space is drastically reduced since cells usually consist of signif-
icantly less layers than whole architectures. For example, Zoph et al. (2018) estimate
a seven-times speed-up compared to their previous work (Zoph and Le, 2017) while
achieving better performance.

2. Architectures built from cells can more easily be transferred or adapted to other data
sets by simply varying the number of cells and filters used within a model. Indeed,
Zoph et al. (2018) transfer cells optimized on CIFAR-10 to ImageNet and achieve
state-of-the-art performance.

3. Creating architectures by repeating building blocks has proven a useful design prin-
ciple in general, such as repeating an LSTM block in RNNs or stacking a residual
block.

Consequently, this cell-based search space is also successfully employed by many recent
works (Real et al., 2019; Liu et al., 2018a; Pham et al., 2018; Elsken et al., 2019; Cai et al.,
2018b; Liu et al., 2019b; Zhong et al., 2018b). However, a new design-choice arises when

4

Source: Elsken et al. (2019)

Carefully crafting a search space

That’s the idea behind the next type of search space
Cells
Optimise cells put them together

Limitation : you need to know the high level structure of the network

TPS Exercise

You have your 2 possible search spaces:
- separate layers with their hyper parameters
- cells of layers inside a given arrangement

How could you combine them to be more expressive than each
separately?

2min think, 2min pair, 3min share = 7min

How could you combine them to be more expressive than each
separately? Published as a conference paper at ICLR 2018

Figure 1: An example of a three-level hierarchical architecture representation. The bottom row
shows how level-1 primitive operations o(1)1 , o(1)2 , o(1)3 are assembled into a level-2 motif o(2)1 . The
top row shows how level-2 motifs o(2)1 , o(2)2 , o(2)3 are then assembled into a level-3 motif o(3)1 .

in a way that the resulting neural network sequentially computes the feature map xi of each node i
from the feature maps xj of its predecessor nodes j following the topological ordering:

xi = merge
⇥
{oGij (xj)}j<i

⇤
, i = 2, . . . , |G| (2)

Here, |G| is the number of nodes in a graph, and merge is an operation combining multiple feature
maps into one, which in our experiments was implemented as depthwise concatenation. An alter-
native option of element-wise addition is less flexible as it requires the incoming feature maps to
contain the same number of channels, and is strictly subsumed by concatenation if the resulting xi

is immediately followed by a 1⇥ 1 convolution.

2.2 HIERARCHICAL ARCHITECTURE REPRESENTATION

The key idea of the hierarchical architecture representation is to have several motifs at different
levels of hierarchy, where lower-level motifs are used as building blocks (operations) during the
construction of higher-level motifs.

Consider a hierarchy of L levels where the `-th level contains M` motifs. The highest-level ` = L
contains only a single motif corresponding to the full architecture, and the lowest level ` = 1 is the
set of primitive operations. We recursively define o(`)m , the m-th motif in level `, as the composition
of lower-level motifs o(`�1) =

�
o(`�1)
1 , o(`�1)

2 , ..., o(`�1)
M(`�1)

according to its network structure G(`)

m :

o(`)m = assemble
⇣
G(`)

m ,o(`�1)
⌘
, 8` = 2, . . . , L (3)

A hierarchical architecture representation is therefore defined by
⇣�

{G(`)
m }M`

m=1

 L

`=2
,o(1)

⌘
, as it is

determined by network structures of motifs at all levels and the set of bottom-level primitives. The
assembly process is illustrated in Fig. 1.

2.3 PRIMITIVE OPERATIONS

We consider the following six primitives at the bottom level of the hierarchy (` = 1,M` = 6):

• 1⇥ 1 convolution of C channels
• 3⇥ 3 depthwise convolution
• 3⇥ 3 separable convolution of C channels
• 3⇥ 3 max-pooling

3

Source: Liu et al. (2018)

Share
Hierarchical search space
From small sets of operations, to cells, to network

How could you combine them to be more expressive than each
separately?

Source: Ru et al. (2020)

0

Task Specific Layer (e.g. classification)

Stage 1

Stage 2

Stage 3

Top	level

Input

4

Output

21

Input

Output

Mid	level Bottom	Level

7 56

4 3

3x3
Pool

5x5
Conv

3x3
Conv

3x3
Conv

1x1
Conv

1x1
Conv

5x5
Pool

3x3
Conv

0 1

32

Figure 1: Architecture sampled from HNAG, given hyperparameters ⇥. Each node, both in the
top-level and mid-level graphs, is an independently sampled graph. Finally, at the bottom level each
node corresponds to an independently sampled atomic operation. Note how features at the top level
can flow between different stages (e.g. from node 1 and 4 to 7), which is beneficial for certain tasks.

advantages for NAS: the smaller number of parameters is easier to optimize and easier to interpret
when compared to the popular categorical, high-dimensional search spaces. Furthermore it allows the
algorithm to focus on macro differences (e.g. global connectivity) rather than the micro differences
arising from minor variations with little impact on the final accuracy.

To summarize, our main contributions are as follows.

1) A Network Architecture Generator Optimization framework (NAGO), which redirects the
focus of NAS from optimizing a single architecture to optimizing an architecture generator. To the
best of our knowledge, we are the first to investigate this direction and we demonstrate the usefulness
of this by using Bayesian Optimization (BO) in both multi-fidelity and multi-objective settings.

2) A new hierarchical, graph-based search space, together with a stochastic network genera-
tor which can output an extremely wide range of previously unseen networks in terms of wiring
complexity, memory usage and training time.

3) Extensive empirical evaluation showing that NAGO achieves state-of-the-art NAS results on a
variety of vision tasks, and finds lightweight yet competitive architectures.

2 Neural Architecture Generator

Previous research has shown that small perturbations in the network’s structure do not significantly
change its performance, i.e. the specific connection between any single pair of nodes is less important
than the overall connectivity [14, 7]. As such, we hypothesize, and experimentally confirm in
Section 4.1, that architectures sampled from the same generative distribution perform similarly. This
assumption allows us to greatly simplify the search and explore more configurations in the search
space by only evaluating those sampled from different generator hyperparameters. Therefore, instead
of optimizing a specific architecture, we focus on finding the optimal hyperparameters for a stochastic
network generator [14].

2.1 Hierarchical Graph-based Search Space (HNAG)

Our network search space is modelled as a hierarchical graph with three levels (Figure 1). At the
top-level, we have a graph of cells. Each cell is itself represented by a mid-level graph. Similarly,
each node in a cell is a graph of basic operations (conv3⇥3, conv5⇥5, etc.). This results in 3
sets of graph hyperparameters: ✓top,✓mid,✓bottom, each of which independently defines the graph
generation model in each level. Following [14] we use the Watts-Strogatz (WS) model as the
random graph generator for the top and bottom levels, with hyperparameters ✓top = [Nt,Kt, Pt] and
✓bottom = [Nb,Kb, Pb]; and use the Erdős–Rényi (ER) graph generator for the middle level, with
hyperparameters ✓mid = [Nm, Pm] to allow for the single-node case 1. This gives us the flexibility
to reduce our search space to two levels (when the mid-layer becomes single node) and represent a

1The WS model cannot generate a single-node graph but the ER model can.

2

Other example, similar idea

TPS Exercise

Which strategies could you use to optimise your architecture
within those search spaces?

‣ Random
‣ Bayesian optimisation
‣ Gradient descent
‣ Evolutionary algorithm
‣ Monte Carlo tree search
‣ Reinforcement Learning

1min think, 2min pair, 2min share = 5min

TPS Exercise

Which strategies could you use to optimise your architecture
within those search spaces?

‣ Random
‣ Bayesian optimisation
‣ Gradient descent
‣ Evolutionary algorithm
‣ Monte Carlo tree search
‣ Reinforcement Learning

TPS Exercise

Which strategies could you use to optimise your architecture
within those search spaces?

‣ Random
‣ Bayesian optimisation
‣ Gradient descent
‣ Evolutionary algorithm
‣ Monte Carlo tree search
‣ Reinforcement Learning

Which strategies could you use to optimise your architecture
within those search spaces?

Published as a conference paper at ICLR 2019

Figure 1: An overview of DARTS: (a) Operations on the edges are initially unknown. (b) Continuous
relaxation of the search space by placing a mixture of candidate operations on each edge. (c) Joint
optimization of the mixing probabilities and the network weights by solving a bilevel optimization
problem. (d) Inducing the final architecture from the learned mixing probabilities.

A special zero operation is also included to indicate a lack of connection between two nodes. The
task of learning the cell therefore reduces to learning the operations on its edges.

2.2 CONTINUOUS RELAXATION AND OPTIMIZATION

Let O be a set of candidate operations (e.g., convolution, max pooling, zero) where each operation
represents some function o(·) to be applied to x

(i). To make the search space continuous, we relax
the categorical choice of a particular operation to a softmax over all possible operations:

ō
(i,j)(x) =

X

o2O

exp(↵(i,j)
o)

P
o02O

exp(↵(i,j)
o0)

o(x) (2)

where the operation mixing weights for a pair of nodes (i, j) are parameterized by a vector ↵(i,j) of
dimension |O|. The task of architecture search then reduces to learning a set of continuous variables
↵ =

�
↵
(i,j)

, as illustrated in Fig. 1. At the end of search, a discrete architecture can be obtained by

replacing each mixed operation ō
(i,j) with the most likely operation, i.e., o(i,j) = argmaxo2O ↵

(i,j)
o .

In the following, we refer to ↵ as the (encoding of the) architecture.

After relaxation, our goal is to jointly learn the architecture ↵ and the weights w within all the mixed
operations (e.g. weights of the convolution filters). Analogous to architecture search using RL (Zoph
& Le, 2017; Zoph et al., 2018; Pham et al., 2018b) or evolution (Liu et al., 2018b; Real et al., 2018)
where the validation set performance is treated as the reward or fitness, DARTS aims to optimize the
validation loss, but using gradient descent.

Denote by Ltrain and Lval the training and the validation loss, respectively. Both losses are deter-
mined not only by the architecture ↵, but also the weights w in the network. The goal for architecture
search is to find ↵

⇤ that minimizes the validation loss Lval(w⇤
,↵

⇤), where the weights w⇤ associated
with the architecture are obtained by minimizing the training loss w⇤ = argminw Ltrain(w,↵⇤).

This implies a bilevel optimization problem (Anandalingam & Friesz, 1992; Colson et al., 2007) with
↵ as the upper-level variable and w as the lower-level variable:

min
↵

Lval(w
⇤(↵),↵) (3)

s.t. w
⇤(↵) = argminw Ltrain(w,↵) (4)

The nested formulation also arises in gradient-based hyperparameter optimization (Maclaurin et al.,
2015; Pedregosa, 2016; Franceschi et al., 2018), which is related in a sense that the architecture ↵

could be viewed as a special type of hyperparameter, although its dimension is substantially higher
than scalar-valued hyperparameters such as the learning rate, and it is harder to optimize.

3

 Random

- Sample uniformly at random

- Keep the best found architecture

Random, actually working pretty well

Which strategies could you use to optimise your architecture
within those search spaces?

Published as a conference paper at ICLR 2019

Figure 1: An overview of DARTS: (a) Operations on the edges are initially unknown. (b) Continuous
relaxation of the search space by placing a mixture of candidate operations on each edge. (c) Joint
optimization of the mixing probabilities and the network weights by solving a bilevel optimization
problem. (d) Inducing the final architecture from the learned mixing probabilities.

A special zero operation is also included to indicate a lack of connection between two nodes. The
task of learning the cell therefore reduces to learning the operations on its edges.

2.2 CONTINUOUS RELAXATION AND OPTIMIZATION

Let O be a set of candidate operations (e.g., convolution, max pooling, zero) where each operation
represents some function o(·) to be applied to x

(i). To make the search space continuous, we relax
the categorical choice of a particular operation to a softmax over all possible operations:

ō
(i,j)(x) =

X

o2O

exp(↵(i,j)
o)

P
o02O

exp(↵(i,j)
o0)

o(x) (2)

where the operation mixing weights for a pair of nodes (i, j) are parameterized by a vector ↵(i,j) of
dimension |O|. The task of architecture search then reduces to learning a set of continuous variables
↵ =

�
↵
(i,j)

, as illustrated in Fig. 1. At the end of search, a discrete architecture can be obtained by

replacing each mixed operation ō
(i,j) with the most likely operation, i.e., o(i,j) = argmaxo2O ↵

(i,j)
o .

In the following, we refer to ↵ as the (encoding of the) architecture.

After relaxation, our goal is to jointly learn the architecture ↵ and the weights w within all the mixed
operations (e.g. weights of the convolution filters). Analogous to architecture search using RL (Zoph
& Le, 2017; Zoph et al., 2018; Pham et al., 2018b) or evolution (Liu et al., 2018b; Real et al., 2018)
where the validation set performance is treated as the reward or fitness, DARTS aims to optimize the
validation loss, but using gradient descent.

Denote by Ltrain and Lval the training and the validation loss, respectively. Both losses are deter-
mined not only by the architecture ↵, but also the weights w in the network. The goal for architecture
search is to find ↵

⇤ that minimizes the validation loss Lval(w⇤
,↵

⇤), where the weights w⇤ associated
with the architecture are obtained by minimizing the training loss w⇤ = argminw Ltrain(w,↵⇤).

This implies a bilevel optimization problem (Anandalingam & Friesz, 1992; Colson et al., 2007) with
↵ as the upper-level variable and w as the lower-level variable:

min
↵

Lval(w
⇤(↵),↵) (3)

s.t. w
⇤(↵) = argminw Ltrain(w,↵) (4)

The nested formulation also arises in gradient-based hyperparameter optimization (Maclaurin et al.,
2015; Pedregosa, 2016; Franceschi et al., 2018), which is related in a sense that the architecture ↵

could be viewed as a special type of hyperparameter, although its dimension is substantially higher
than scalar-valued hyperparameters such as the learning rate, and it is harder to optimize.

3

 Bayesian optimisation

- Sample uniformly at random

- Learn a surrogate model to know which works

best

- Sample more using Bayesian optimisation

Bayesian optimisation, BOHB based on it implemented in come of current autoML systems

Which strategies could you use to optimise your architecture
within those search spaces?

Published as a conference paper at ICLR 2019

Figure 1: An overview of DARTS: (a) Operations on the edges are initially unknown. (b) Continuous
relaxation of the search space by placing a mixture of candidate operations on each edge. (c) Joint
optimization of the mixing probabilities and the network weights by solving a bilevel optimization
problem. (d) Inducing the final architecture from the learned mixing probabilities.

A special zero operation is also included to indicate a lack of connection between two nodes. The
task of learning the cell therefore reduces to learning the operations on its edges.

2.2 CONTINUOUS RELAXATION AND OPTIMIZATION

Let O be a set of candidate operations (e.g., convolution, max pooling, zero) where each operation
represents some function o(·) to be applied to x

(i). To make the search space continuous, we relax
the categorical choice of a particular operation to a softmax over all possible operations:

ō
(i,j)(x) =

X

o2O

exp(↵(i,j)
o)

P
o02O

exp(↵(i,j)
o0)

o(x) (2)

where the operation mixing weights for a pair of nodes (i, j) are parameterized by a vector ↵(i,j) of
dimension |O|. The task of architecture search then reduces to learning a set of continuous variables
↵ =

�
↵
(i,j)

, as illustrated in Fig. 1. At the end of search, a discrete architecture can be obtained by

replacing each mixed operation ō
(i,j) with the most likely operation, i.e., o(i,j) = argmaxo2O ↵

(i,j)
o .

In the following, we refer to ↵ as the (encoding of the) architecture.

After relaxation, our goal is to jointly learn the architecture ↵ and the weights w within all the mixed
operations (e.g. weights of the convolution filters). Analogous to architecture search using RL (Zoph
& Le, 2017; Zoph et al., 2018; Pham et al., 2018b) or evolution (Liu et al., 2018b; Real et al., 2018)
where the validation set performance is treated as the reward or fitness, DARTS aims to optimize the
validation loss, but using gradient descent.

Denote by Ltrain and Lval the training and the validation loss, respectively. Both losses are deter-
mined not only by the architecture ↵, but also the weights w in the network. The goal for architecture
search is to find ↵

⇤ that minimizes the validation loss Lval(w⇤
,↵

⇤), where the weights w⇤ associated
with the architecture are obtained by minimizing the training loss w⇤ = argminw Ltrain(w,↵⇤).

This implies a bilevel optimization problem (Anandalingam & Friesz, 1992; Colson et al., 2007) with
↵ as the upper-level variable and w as the lower-level variable:

min
↵

Lval(w
⇤(↵),↵) (3)

s.t. w
⇤(↵) = argminw Ltrain(w,↵) (4)

The nested formulation also arises in gradient-based hyperparameter optimization (Maclaurin et al.,
2015; Pedregosa, 2016; Franceschi et al., 2018), which is related in a sense that the architecture ↵

could be viewed as a special type of hyperparameter, although its dimension is substantially higher
than scalar-valued hyperparameters such as the learning rate, and it is harder to optimize.

3

Source: Liu et al. (2019)

Gradient descent

Gradient Descent, DARTS, optimise the type of operation at the same time as the weights.

TPS Exercise

Training every architecture during the search process would be very
costly.

How to lower the cost of deciding which generated architecture to
keep?

2min think, 2min pair, 3min share = 7min

How could you lower the cost of deciding which generated architecture
to keep?

- Low number of Epoch
- Share weights between similar networks (Weight Sharing)
- Optimise architecture and weights together (DARTS)
- Train a surrogate model
- Train one super network (One-shot model)

- low number of epoch, can use learning curves for prediction

How could you lower the cost of deciding which generated architecture
to keep?

Sc
al

es

Layers
Input

Output

Figure 1: Fabrics embedding two seven-layer CNNs (red, green) and a ten-layer deconvolutional
network (blue). Feature map size of the CNN layers are given by height. Fabric nodes receiving input
and producing output are encircled. All edges are oriented to the right, down in the first layer, and
towards the output in the last layer. The channel dimension of the 3D fabric is omitted for clarity.

which share parameters where the paths overlap. The acyclic trellis structure allows for learning
using standard error back-propagation methods. Learning can thus efficiently configure the fabric to
implement each one of exponentially many embedded architectures, as well as ensembles of them.
Experimental results competitive with the state of the art validate the effectiveness of our approach.

The contributions of our work are: (1) Fabrics allow by and large to sidestep the CNN model
architecture selection problem. Avoiding explicitly training and evaluating individual architectures
using, e.g ., local-search strategies [2]. (2) While scaling linearly in terms of computation and memory
requirements, our approach leverages exponentially many chain-structured architectures in parallel
by massively sharing weights among them. (3) Since our fabric is multi-scale by construction, it
can naturally generate output at multiple resolutions, e.g. for image classification and semantic
segmentation or multi-scale object detection, within a single non-branching network structure.

2 Related work

Several chain-structured CNN architectures, including Alex-net [13] and the VGG-16 and VGG-19
networks [27], are widely used for image classification and related tasks. Although very effective, it is
not clear that these architectures are the best ones given their computational and memory requirements.
Their widespread adoption is in large part due to the lack of more effective methods to find good
architectures than trying them one-by-one, possibly initializing parameters from related ones [2].

CNN architectures for semantic segmentation, as well as other structured prediction tasks such
as human pose estimation [25], are often derived from ones developed for image classification,
see e.g. [20, 24, 31, 33]. Up-sampling operators are used to increase the resolution of the output,
compensating for pooling operators used in earlier layers of the network [24]. Ronneberger et al .
[26] present a network with additional links that couple layers with the same resolution near the input
and output. Other architectures, see e.g . [3, 7], process the input in parallel across several resolutions,
and then fuse all streams by re-sampling to the output resolution. Such architectures induce networks
with multiple parallel paths from input to output. We will show that nearly all such networks are
embedded in our fabrics, either as paths or other simple sub-graphs.

While multi-dimensional networks have been proposed in the past, e.g. to process non-sequential
data with recurrent nets [5, 11], to the best of our knowledge they have not been explored as a
“basis” to span large classes of convolutional neural networks. Misra et al . [23] propose related
cross-stitch networks that exchange information across corresponding layers of two copies of the
same architecture that produces two different outputs. Their approach is based on Alex-net [13],
and does not address the network architecture selection problem. In related work Zhou et al . [34]
interlink CNNs that take input from re-scaled versions of the input image. The structure of their
network is related to our fabric, but lacks a sparse connectivity pattern across channels. They
consider their networks for semantic segmentation, and set the filter sizes per node manually, and

2

Source: Saxena and Verbeek (2016)

One Shot Model
Train a super network, give you an idea of the performance of a subnetwork.
Estimate not super good but still it works

- Search space : macro, cell-based, hierarchical
- Search strategies : random, Bayesian optimisation, gradient descent
- Performance estimation strategies : partial training, surrogate model, one-
shot model

Key concepts covered today:

Performance
Estimation
Strategy

Search Space

A
Search Strategy

architecture
A 2 A

performance
estimate of A

Figure 1: Abstract illustration of Neural Architecture Search methods. A search strategy
selects an architecture A from a predefined search space A. The architecture is
passed to a performance estimation strategy, which returns the estimated perfor-
mance of A to the search strategy.

• Search Space. The search space defines which architectures can be represented
in principle. Incorporating prior knowledge about typical properties of architectures
well-suited for a task can reduce the size of the search space and simplify the search.
However, this also introduces a human bias, which may prevent finding novel archi-
tectural building blocks that go beyond the current human knowledge.

• Search Strategy. The search strategy details how to explore the search space
(which is often exponentially large or even unbounded). It encompasses the clas-
sical exploration-exploitation trade-o↵ since, on the one hand, it is desirable to find
well-performing architectures quickly, while on the other hand, premature convergence
to a region of suboptimal architectures should be avoided.

• Performance Estimation Strategy. The objective of NAS is typically to find
architectures that achieve high predictive performance on unseen data. Performance

Estimation refers to the process of estimating this performance: the simplest option is
to perform a standard training and validation of the architecture on data, but this is
unfortunately computationally expensive and limits the number of architectures that
can be explored. Much recent research therefore focuses on developing methods that
reduce the cost of these performance estimations.

We refer to Figure 1 for an illustration. The article is also structured according to these
three dimensions: we start with discussing search spaces in Section 2, cover search strategies
in Section 3, and outline performance estimation methods in Section 4. We conclude with
an outlook on future directions in Section 5.

2. Search Space

The search space defines which neural architectures a NAS approach might discover in
principle. We now discuss common search spaces from recent works.

A relatively simple search space is the space of chain-structured neural networks, as illus-
trated in Figure 2 (left). A chain-structured neural network architecture A can be written
as a sequence of n layers, where the i’th layer Li receives its input from layer i � 1 and

2

Source: Elsken et al. (2019)

Reference for figures:

Saxena and Verbeek (2016)

Liu et al. (2019)

Ru et al. (2020)

Liu et al. (2018)
Zoph et al. (2018)
Elsken et al. (2019)

Vaswani et al. (2017)

Shendryk et al. (2019)

Mendoza et al. (2016)
Convolutional Neural Fabrics

DARTS: Differentiable Architecture Search

Neural Architecture Generator Optimization

Hierarchical Representations for Efficient Architecture Search
Learning Transferable Architectures for Scalable Image Recognition
Neural Architecture Search: A Survey

Vaswani et al. (2017)

Deep learning for multi-modal classification of cloud, shadow and land cover scenes

 in PlanetScope and Sentinel-2 imagery

Towards Automatically-Tuned Neural Networks

Python libaries
In depth explanation of DARTS

Auto-PyTorch, AutoKeras
towardsdatascience.com

If you want to go further:

https://github.com/automl/Auto-PyTorch
https://autokeras.com/
https://towardsdatascience.com/intuitive-explanation-of-differentiable-architecture-search-darts-692bdadcc69c

